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1.   Introduction and Motivation 
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1.1  Precise test of the Standard Model 

4 

1.1   Test of New Physics : Vus 

• Studying W and Kl3 decays         indirect searches of new physics, 
several possible high-precision tests: 
¾ Extraction of Vus 
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1.1   Test of New Physics : Vus 

• Studying W and Kl3 decays         indirect searches of new physics, 
several possible high-precision tests: 
¾ Extraction of Vus 

 
 

 
 
 

 
 
 
 

   Knowledge of the two form factors:  
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1.2  Callan-Treiman Low Energy Theorem 

Very precisely known  
from Br(Kl2/Sl2), *(Ke3) and      

¾ Callan-Treiman (CT) theorem : 
 

 
 

 
 
 
 
 
 

– In the Standard Model : 
 

– In presence of new physics, new couplings : 
 

 

1.1   Test of New Physics : Callan-Treiman theorem 
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•  Callan-Treiman theorem:  

 
 
 
 
 
 

•  In the Standard Model :  
 
 
 
 
 

•  In presence of new physics, new couplings : 

•  Ex:   

 

Bernard, Oertel, E.P., Stern’06, ‘08 

  Bexp = 1.2446(41)

1r = ( )ln 0.2141(73)SMC =

1r ≠

3( 3.5 8).10CT
−Δ = − ±

NLO value + large  
error bars in  
agreement with  
Bijnens&Ghorbani’07 
Kastner & Neufeld’08 
 

Experimental determination of Vus from kaon decays – M. Moulson (Frascati) – CKM 2014, Vienna, 8 September 2014"
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1.2  Callan-Treiman Low Energy Theorem 

Dispersive representation for the form factors 

•  Take the Kπ rescattering into account 

•  Allow to determine the slope and curvature of the form factors: only 2 param. 

 
 
•  Use the CT theorem for the scalar FF         Write a twice substracted 

dispersion relation for ln f(t) at t=0 and at the CT point for the scalar FF 
•  Does it improve the agreement with data?  
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1.1   Test of New Physics 
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�
SUSY loops 
Z’, Charged Higgs, 
Right-Handed 
Currents,…. 

[E.g. Bernard et al’06,’07, Deschamps et al’09,  
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1.3  Test of New Physics 
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1.4  Kπ form factors 

•           accessible in Ke3 and KP3 decays 
 

•          only accessible in KP3 (suppressed by ml
2/MK

2) + correlations      
  difficult to measure  

 

• Data from Belle and BaBar on W o KSQW decays (Belle II, SuperB soon!) 
 Use them to constrain the form factors and especially  
 

• W o KSQW decays  
 

 
 
 

 Hadronic matrix element: Crossed channel 
 

 
 
 

1.2   Determination of the KS form factors 
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1.5  Parametrization of the Kπ form factors 

•    

 
 
 
 
•  Taylor Expansion: 

 

 
Ok for Kl3 but can not combine with tau data and large correlations 
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1.5  Parametrization of the Kπ form factors 

•    

 
 
 
 
•  Taylor Expansion: 

 

 
Ok for Kl3 but can not combine with tau data and large correlations 

•  Pole parametrization:  
 
 
 
 
Ok for Kl3 but can not combine with tau data: will explode at the resonance 
mass!          Ok for vector but not so obvious for scalar 
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2.   Dispersive representation of the Kπ form 
factors 
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2.1  Introduction  

13 

• Parametrization to analyse both Kl3 and W  

– Vector form factor:           Dominance of K*(892) resonance 
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2.1  Introduction  
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• Parametrization to analyse both Kl3 and W  

– Scalar form factor:           No obvious dominance of a resonance 
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•  Parametrization to analyse both Kl3 and  
τ       Kπντ          Use dispersion relations 

 
 
 
 
 

•  Omnès representation:  

 
 
 

    - 
 
 

    -                           unknown 

 
 

 
 

•  Subtract dispersion relation to weaken the high energy contribution of the 
phase. Improve the convergence but sum rules to be satisfied! 

 

2.2  Dispersive representation for the form factors 
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disc f 0,+ (s)⎡⎣ ⎤⎦ ∝ tℓ

I∗(s) f 0,+ (s)
Unitarity: 



For s<sin:K� scattering phase  
extracted from the data  

 

•  Dispersion relation with n subtractions in     : 

Ø                    dispersion relation with 2 subtractions: 1 in s=0 and 1 in s=ΔKπ 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

  2 parameters to fit to the data                              and 
 

 
 

 

2.2   Dispersive representation 
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•  Dispersion relation with n subtractions in     : 

Ø                    dispersion relation with 2 subtractions in s=0 
 
 
 
 
 
 
 

 
 
 
1 parameter to fit to the data: 

         
  
 

 

 
 
 

 
 
 

   
 
 

 

2.2   Dispersive representation 
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2.2  Dispersive Representation 
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Dispersive representation for the form factors 

•  Take the Kπ rescattering into account 

•  Allow to determine the slope and curvature of the form factors: only 2 param. 

 
 
•  Use the CT theorem for the scalar FF         Write a twice substracted 

dispersion relation for ln f(t) at t=0 and at the CT point for the scalar FF 
•  Does it improve the agreement with data?  
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2.3  Scalar form factor 

•  Scalar form factor:  

•  Phase used:  
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2.3  Scalar form factor 

•  Scalar form factor:  

•  Form factor:  
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2.4  Vector form factor 

•  Vector form factor:  

•  Phase used:  

with 

Maximal value for H(t) : 
 
H(t0) = (2.16 +/- 0.04 +/- 0.33) x 10-3 
 

does not exceed 10% of Λ+ ~ 24 x10-3 

   

Bernard, Oertel, E.P., Stern’06,’09 
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2
0 ( )Kt m mpé ù= -ë û

since it already gives a very good description of the phase in the vicinity of the resonance
K∗(892) and down to threshold. We will consider the impact of a higher order polynomial in
section 4.2.2. The constants a and b are determined from the mass and the width of the K∗(892)
characterized as

ctg(δ1(s))|s=M2
K∗

= 0 and
dδ1(s)

ds

∣

∣

∣

∣

s=M2
K∗

=
1

MK∗ΓK∗

. (3.15)

Note that there exists in the literature another definition of mass and width in terms of the
position of the pole in the complex plane. The latter is process independent. The uncertainties
coming from the inputs used for MK∗ and ΓK∗ will be discussed in section 4.2.2. Another
possibility would be to determine a and b from a direct fit to the data [35]. This would, however,
lead to a function H(t) lying within the error bars discussed below. We checked that the phase
constructed in this way with no free parameters leads to values of the p-wave scattering length,
a1 = 0.0183m2

π, agreeing with other determinations [27, 37, 38].

1 2 3 4
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0

 φ
 1
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aM=-7 10-3

aM=-7.5 10-3
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π

2π

3π
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10
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Figure 2: Comparison of our model for the phase of the vector form factor, Eq. (3.12), with the
coupled channel analysis of Ref. [34]. The grey band corresponds to the assumption that above
ΛV the phase equals π+2π

−π , see text.

In p-wave scattering, inelasticity effects which imply φ1(s) ̸= δ1(s) become important at
lower energies than in the scalar case, the mass of the vector resonance K∗(1414) being an
indication of the start of the inelasticity. At high energy, following the same arguments on
the asymptotic behaviour as for the scalar case, the phase will reach its asymptotic value, π.
Therefore, similarly to what has been done for G(t), the function H(t), Eq. (3.7), is decomposed
into two parts:

H(t) = HKπ(ΛV , t) +Has(ΛV , t)± δH(t) , (3.16)
with

HKπ(ΛV , t) =
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π t
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∫ s0
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. (3.18)

In these equations, ΛV denotes the end of the elastic region. In what follows, we will use
ΛV = (1.414)2 GeV2 and we will discuss other values for ΛV in section 4.2.2. In Eq. (3.17),
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2.4  Vector form factor 

•  Vector form factor:  

•  Form factor:  

Bernard, Oertel, E.P., Stern’06,’09 
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Figure 11: Dispersive representation of the scalar (left panel) and vector (right panel) form
factor over a wide range of energies. For comparison two different values of lnC (right) and
Λ+ (left) have been used: lnC|SM is from Eq. (2.8), lnC|NA48 = 0.1438, ΛNA48

+ = 0.0233 are
the central values of the NA48 experimental results [7] and Λpole

+ = 0.02450 is from the pole
parametrization with theK∗(892) mass. The band takes care of all the uncertainties discussed
in the text.

their respective free parameters lnC and Λ+. The figure nicely illustrates the fact that our dis-
persive representation describes to a very high accuracy the form factor shapes in the physical
region of Kℓ3-decays. Eqs. (3.1, 3.7) thus represent a very useful tool for an optimal analysis of
the Kℓ3-data. As already pointed out, it allows to determine the shape of these form factors in
an unambiguous way, contrary to other parametrizations used in the data analysis. Furthermore,
as emphasized in Ref. [11], a measurement of lnC, with C the value of the normalized scalar
form factor at the Callan-Treiman point, allows to test the Standard Model. A departure of the
measured value from Eq. (2.8) would signal, under the hypothesis of no zeros in the form factor,
a failure of the SM, as for example the presence of a direct coupling of right-handed quarks to
W [11]. We have, however, to moderate slightly the conclusion drawn there. We have indeed
seen that the shape of the scalar form factor could be slightly modified in the highly improbable
case where it would have zeros in a very small domain of the complex plane within or close to
the Kµ3 physical region. Even though the likelihood of this scenario is very small we have not
been able at present to totally eliminate it. Note, however, that for the vector form factor, zeros
that would affect the dispersive parametrization in the low energy region we are interested in
here, are excluded by the tau data.
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3.   Combining Kl3 and τ → Kπντ to improve the 
Kπ  form factors determination 
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3.1  Kπ form factors from τ → Kπντ and Kl3 decays  

24 

•  Fit to the τ → Kπντ decay data  
–  from Belle [Epifanov et al’08] (BaBar?)  
 
 
 
 
 
 
 
 
 
–  Normalization disappears by taking the ratio                            
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•  Dispersion relation with n subtractions in     : 

 
 
 
 

Ø                    dispersion relation with 3 subtractions: 2 in s=0 and 1 in s=ΔKπ 
             Callan-Treiman 

 

Ø                  dispersion relation with 3 subtractions in s=0 
 

 
 
 
 
 
 

   
 
 

 

3.2  Dispersive representation for the FFs 
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•  Model for ϕ+(s):        

 
 
 
 

         
 
 
 
 

   
 
 

 

Modeling of the phase 
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: 2 resonances  3 subtractions⇤ � ��K⇥
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iii. fits to tau data + constraints from Kl3
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iii. fits to tau data + constraints from Kl3

   D mn ,Γ n( ) = mn
2 − s −κ n Re !H∑ − imnΓ n(s)with 

   
tanδ Kπ

P ,1/2 =
Im !f+ (s)
Re !f+ (s)

Boito, Escribano, Jamin’09,’10 

Jamin, Pich, Portolés’08 
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Fit to the τ     Kπντ  decay data + Kl3 constraints 
    Bernard, Boito, E.P.’11 

Emilie Passemar 

1  K
events tot w

K

dN N b
d s

π

π

Γ
∝

Γ
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3.3  Determination of the form factors 

28 

•  Results of the fits: 
    Bernard, Boito, E.P.’11 
   Antonelli, Cirigliano Lusiani, E.P.’13 

Very accurate 
determination of 

K*(892)! 

Emilie Passemar 



3.4  Kπ form factors from τ → Kπντ and Kl3 decays  
 

•  Precise extraction of Kπ scattering phase and good determination of K* 
 

                                                     and 

 
     PDG :                                               and  
 
 
 
 

•  Callan-Treiman test or lattice QCD test (FK/Fπ and f+(0)) 
 
 
 
 

•  Vus from τ → Kπντ: 
: 
 
 
 

 

•  Prediction of the strange Brs and Vus 

 
 
 
 
 
 

•  Use of the form factors for CPV tests, etc. 

 
 
 
 
 
 

   
 
 

 

Emilie Passemar 

* 892.02 0.21 MeVKm = ± * 46.300 0.426 MeVKΓ = ±

* 891.66 0.26 MeVKm = ± * 50.8 0.9 MeVKΓ = ±

2
(0)VK u KsN If

τ

τ
τ πν +→Γ = ( )0 , ( ), ( )KI ds F s f s f sτ

+= ∫with 

29 



3.5  Kπ phase shift 
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NB:	BRs	measured	by	B	factories	are	systema4cally		
smaller	than	previous	measurements	

Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters

1.2   Ex: �π scattering: P-wave 

 
 
 

 
 

Emilie Passemar 5 

Tau data 

τ � Kπντ  

   Boito, Escribano & Jamin’10 

See also  
lattice QCD 
Dudek et al. 
Wilson et al.’14 



4.   Applications 
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•  Decay rate master formula 
 
 
 

     
 

      

 

 
 
 
 
 

4.1  Extraction of  Vus  from τ → Kπντ  

  
f+ 0( )Vus = 0.2141 ± 0.0014IK

± 0.0021exp   Vus = 0.2212 ± 0.0027

  f+ 0( ) = 0.9677 27( )

Emilie Passemar 

  
BR τ → K 0π −ντ( ) = 0.416 ± 0.008( )%

Belle’14 

Γ τ → Kπντ γ⎡⎣ ⎤⎦( ) = GF
2mτ

5

96π 3 CK
2 SEW

τ Vus
2
f+
K 0π −

(0)
2
IK
τ 1+ δEM

Kτ + δ!SU(2)
Kπ⎛

⎝
⎞
⎠

2

ew 1.0201S =

Marciano & Sirlin’88,  
Braaten & Li’90, Erler’04 

( )0

EM 0.15 0.2 %K τδ = − ±

  IK 0
τ = 0.50432 ± 0.01721

Antonelli, Cirigliano, Lusiani, E.P.’13 

FLAG’19 
Nf = 2+1 
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•  Decay rate master formula 
 
 
 

     
 

      

 

•  Result of fit to Kl3 + τ       Kπντ and Kπ scattering data including 
     inelasticities in the dispersive FFs  

 
 
 
 
 

4.1  Extraction of  Vus from τ → Kπντ  

  
f+ 0( )Vus = 0.2141 ± 0.0014IK

± 0.0021exp   Vus = 0.2212 ± 0.0027

  f+ 0( ) = 0.9677 27( )

Emilie Passemar 

Γ τ → Kπντ γ⎡⎣ ⎤⎦( ) = GF
2mτ

5

96π 3 CK
2 SEW

τ Vus
2
f+
K 0π −

(0)
2
IK
τ 1+ δEM

Kτ + δ!SU(2)
Kπ⎛

⎝
⎞
⎠

2

Antonelli, Cirigliano, Lusiani, E.P.’13 

  f+ 0( )Vus = 0.2163 ± 0.0014 Bernard’14 

FLAG’19 
Nf = 2+1 
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0.21

0.21

0.22

0.22

0.23

0.23

0.24

0.24

0.25

0.25

Vus

τ -> Kν absolute (+ fK)

τ -> Kπντ decays (+ f+(0), FLAG)

τ  branching fraction ratio

Kl3 analyses

Kl2 /πl2 decays (+ fK/fπ)

τ -> s inclusive 

Our result from Belle BR

τ decays

Kaon and hyperon decays

Kl3 decays (+ f+(0))

Hyperon decays

τ -> Kν / τ -> πν (+ fK/fπ)

From Unitarity 
Flavianet  

Kaon WG’10 
  update by M.Moulson 

CKM’18 

BaBar & Belle 
HFAG 

 update by A.Lusiani 
Tau’18 
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NB: BRs measured by B factories are systematically  
smaller than previous measurements 



•  Modes measured in the strange channel for              :   
 
 
 
 
 
 

 

 
        

 
 
 
 
 

 

sτ →
HFAG’12 

~70% of the decay  
modes crossed  
channels 
from Kaons!   

4.2  Vus using info on Kaon decays and τ     Kπντ 

35 



4.2  Vus using info on Kaon decays and τ      Kπντ Use information from K decays 

Larger  R6 
 
 
 

Larger   Vus 

Antonelli-Cirigliano-Lusiani-Passemar 

(0.713 ± 0.003)% 
(0.471 ± 0.018)% 

(0.857 ± 0.030)% 
 
(2.967 ± 0.060)% 

A. Pich                                                                                            W  Physics                                                                                                  15 

Use information from K decays 

Larger  R6 
 
 
 

Larger   Vus 

Antonelli-Cirigliano-Lusiani-Passemar 

(0.713 ± 0.003)% 
(0.471 ± 0.018)% 

(0.857 ± 0.030)% 
 
(2.967 ± 0.060)% 

A. Pich                                                                                            W  Physics                                                                                                  15 

Antonelli, Cirigliano, Lusiani, E.P. ‘13 

•  Longstanding inconsistencies  
between τ  and kaon decays  
in extraction of Vus seem to have  
been resolved ! 

	    R. Hudspith, R. Lewis, K. Maltman, 
     J. Zanotti’17 
	
•  Crucial input:  

τ	→	Kπντ	Br + spectrum  
 
 
 

               need new data 
	

  Vus = 0.2229 ± 0.0022exp ± 0.0004theo
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Antonelli, Cirigliano, Lusiani, E.P. ‘13 

•  Longstanding inconsistencies  
between τ  and kaon decays  
in extraction of Vus seem to have  
been resolved ! 

	    R. Hudspith, R. Lewis, K. Maltman, 
     J. Zanotti’17 
	
•  Crucial input:  

τ	→	Kπντ	Br + spectrum  
 
 
 

               need new data 
	

  Vus = 0.2229 ± 0.0022exp ± 0.0004theo

|us|V
0.22 0.225

, PDG 2016l3K
 0.0010±0.2237 

, PDG 2016l2K
 0.0007±0.2254 

CKM unitarity, PDG 2016
 0.0009±0.2258 

 s incl., Maltman 2017→ τ
 0.0004± 0.0022 ±0.2229 

 s incl., HFLAV 2016→ τ
 0.0021±0.2186 

, HFLAV 2016νπ → τ / ν K→ τ
 0.0018±0.2236 

 average, HFLAV 2016τ
 0.0015±0.2216 

HFLAV
Spring 2017

Figure 1: |V
us

| averages. The “Maltman 2017” |V
us

| determination [87] reports the experimental uncertainty followed
by the theoretical uncertainty.

5.3 |V
us

| from ⌧ summary

We summarize the |V
us

| results reporting the values, the discrepancy with respect to the |V
us

| determination from
CKM unitarity, and an illustration of the measurement method:

|V
us

|
uni

= 0.22582 ± 0.00089 [from
p

1 � |V
ud

|2 (CKM unitarity)] ,

|V
us

|⌧s

= 0.2186 ± 0.0021 � 3.1� [from �(⌧� ! X�
s

⌫⌧ )] ,

|V
us

|⌧K/⇡ = 0.2236 ± 0.0018 � 1.1� [from �(⌧� ! K�⌫⌧ )/�(⌧� ! ⇡�⌫⌧ )] .

Averaging the two above |V
us

| determinations that rely on the ⌧ branching fractions (taking into account all corre-
lations due to the ⌧ HFLAV and other mentioned inputs) we obtain, for |V

us

| and its discrepancy:

|V
us

|⌧ = 0.2216 ± 0.0015 � 2.4� [average of 2 |V
us

| ⌧ measurements] .

All |V
us

| determinations based on measured ⌧ branching fractions are lower than both the kaon and the CKM-unitarity
determinations. This is correlated with the fact that the direct measurements of the three major ⌧ branching fractions
to kaons [B(⌧ ! K�⌫⌧ ), B(⌧ ! K�⇡0⌫⌧ ) and B(⌧ ! ⇡�K

0

⌫⌧ )] are lower than their determinations from the
kaon branching fractions into final states with leptons within the SM [69, 88, 89]. In addition, according to recent
studies [90, 87], the theory uncertainty of the |V

us

| determination from inclusive ⌧ ! X
s

⌫ may be underestimated.
The same recent studies also report an alternative |V

us

| determination that relies on the ⌧ spectral functions in
addition to the inclusive ⌧ ! X

s

⌫ branching fraction. The resulting value of |V
us

| is consistent with the other
|V

us

| determinations (more precisely, it is about 1� lower); however the better agreement mostly depends on the
fact that the HFLAV average of B(⌧ ! K�⌫⌧ ) has been replaced with the SM prediction based on the measured
B(K� ! µ�⌫µ) and the HFLAV average of B(⌧ ! K�⇡0⌫⌧ ) has been replaced with a yet unpublished BABAR
result contained in a PhD thesis.

In previous editions of the HFLAV report, we also computed |V
us

| using the branching fraction B(⌧ ! K⌫) and
without taking the ratio with B(⌧ ! ⇡⌫). We do not report this additional determination because it did not include
the long-distance radiative corrections in addition to the short-distance contribution, and because it had a negligible
effect on the overall precision of the |V

us

| calculation with ⌧ data.

Figure 1 summarizes the |V
us

| results, reporting also recent determinations of |V
us

| from kaon decays [91], CKM
matrix unitarity [91] and the above mentioned determination of |V

us

| from inclusive ⌧ ! X
s

⌫ decays and ⌧ spectral
functions [87].
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4.3  Callan-Treiman theorem and test of new physics 

Emilie Passemar 

Very precisely known  
from Br(Kl2/Sl2), *(Ke3) and      

¾ Callan-Treiman (CT) theorem : 
 

 
 

 
 
 
 
 
 

– In the Standard Model : 
 

– In presence of new physics, new couplings : 
 

 

1.1   Test of New Physics : Callan-Treiman theorem 

6 

0

V 1( ) V  
(0) V (0) V

us
K udK

K CT CTud us

FFC f
F f F

r
fS

S S� �

 '  � '  � '

udV

2 2
Km mS�

1r  � �ln 0.2141(73)SMC  

1r z

Bernard, Oertel, E.P., Stern’06 

4.2  Looking for New Physics with Kl2 and Kl3 

66 Emilie Passemar 

•  Callan-Treiman theorem:  

 
 
 
 

•  In the Standard Model :  
 
 

•  In presence of new physics, new couplings :  

 

Experiment Ke3+Kµ3 ln C 

NA48’07 (Kµ3 alone)  0.144(14) 

KLOE’08 0.204(25) 

KTeV’10 0.192(12) 

NA48 (preliminary) ? 

Bernard, Oertel, E.P., Stern’06, ‘08 

  Bexp = 1.2446(41)

1r = ( )ln 0.2141(73)SMC =

1r ≠

3( 3.5 8).10CT
−Δ = − ±

NLO value + large  
error bars in  
agreement with  
Bijnens&Ghorbani’07 
Kastner & Neufeld’08 
 

/NA62’18 0.184(15) 



5.   Conclusion and outlook 
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Conclusion and outlook 

•  Kπ  form factors (shape and normalization) are an important input in the 
determination of Vus 

•  In this talk we discussed the determination of the shape of the vector and scalar 
form factors using a dispersive approach 
Main input: Kπ  scattering phase-shifts. 
Unknown: Kπ  phase in the inelastic region        source of systematic uncertainty 

•  Possible improvement comes from combining τ → Kπντ and Kl3 decays 
        model of the phase at higher energies 
Will allow to reduce the large 2π band in the inelastic region 
 

•  It would be great to have more precise data from Tau sector 

•  Many possible applications:  

–  Vus extraction from Kl3 and τ → Kπντ data  
–  Callan-Treiman test of the Standard Model and New Physics 

 

•  It would be great to have lattice information on the shape of these FFs 
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6.   Back-up 


