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Goal #2: Reduce the neutron lifetime uncertainty, 
using the beam method, to < 0.2 s
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.

Source of correction Correction (s) Uncertainty (s) Section

6LiF deposit areal density 2.2 IV A
6Li cross section 1.2 II D
Neutron detector solid angle 1.0 II D 1
Absorption of neutrons by 6Li +5.2 0.8 IV A 2
Neutron beam profile and detector solid angle +1.3 0.1 IV A 2
Neutron beam profile and 6Li deposit shape −1.7 0.1 IV A 2
Neutron beam halo −1.0 1.0 IV B 2
Absorption of neutrons by Si substrate +1.2 0.1 IV A 2
Scattering of neutrons by Si substrate −0.2 0.5 IV A 3
Trap nonlinearity −5.3 0.8 IV C
Proton backscatter calculation 0.4 IV D 3
Neutron counting dead time +0.1 0.1 II D

Proton counting statistics 1.2 IV D 2
Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A
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∫

v

dv
(
1 − e−ρ(x,y)σ0

vo
v

NA
A

)

× I (v)φ(x, y)
%(x, y)

2π
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where %(x, y) is the detector solid angle and ρ(x, y) is the
areal density of the 6Li deposit. By design, %(x, y) is nearly
constant over the beam distribution and ρ(x, y) is both small
and nearly constant, making the ratio of Eqs. (15) and (14)
nearly 1. Nevertheless, the precise ratio is a correction that
must be included in each of our 13 series-based lifetime
values (Table IV). The solid angle %(x, y) is easily calculated
given the positions of the deposit and the apertures; ρ(x, y)
was measured during the manufacture of the deposits; and
φ(x, y) was measured using the dysprosium image method
(Sec. IV B1).

Rather than calculate the ratio of Eqs. (15) and (14)
directly, we decompose the calculation into three terms
with corresponding numerical corrections c1, c2, and c3 (see
Table VII), each of which leads to an additive correction
to the lifetime. The first takes into account the exponential
attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.

Source of correction Correction (s) Uncertainty (s) Section

6LiF deposit areal density 2.2 IV A
6Li cross section 1.2 II D
Neutron detector solid angle 1.0 II D 1
Absorption of neutrons by 6Li +5.2 0.8 IV A 2
Neutron beam profile and detector solid angle +1.3 0.1 IV A 2
Neutron beam profile and 6Li deposit shape −1.7 0.1 IV A 2
Neutron beam halo −1.0 1.0 IV B 2
Absorption of neutrons by Si substrate +1.2 0.1 IV A 2
Scattering of neutrons by Si substrate −0.2 0.5 IV A 3
Trap nonlinearity −5.3 0.8 IV C
Proton backscatter calculation 0.4 IV D 3
Neutron counting dead time +0.1 0.1 II D

Proton counting statistics 1.2 IV D 2
Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A

da

∫

v

dv
(
1 − e−ρ(x,y)σ0

vo
v

NA
A

)

× I (v)φ(x, y)
%(x, y)

2π
, (15)

where %(x, y) is the detector solid angle and ρ(x, y) is the
areal density of the 6Li deposit. By design, %(x, y) is nearly
constant over the beam distribution and ρ(x, y) is both small
and nearly constant, making the ratio of Eqs. (15) and (14)
nearly 1. Nevertheless, the precise ratio is a correction that
must be included in each of our 13 series-based lifetime
values (Table IV). The solid angle %(x, y) is easily calculated
given the positions of the deposit and the apertures; ρ(x, y)
was measured during the manufacture of the deposits; and
φ(x, y) was measured using the dysprosium image method
(Sec. IV B1).

Rather than calculate the ratio of Eqs. (15) and (14)
directly, we decompose the calculation into three terms
with corresponding numerical corrections c1, c2, and c3 (see
Table VII), each of which leads to an additive correction
to the lifetime. The first takes into account the exponential
attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.

Source of correction Correction (s) Uncertainty (s) Section

6LiF deposit areal density 2.2 IV A
6Li cross section 1.2 II D
Neutron detector solid angle 1.0 II D 1
Absorption of neutrons by 6Li +5.2 0.8 IV A 2
Neutron beam profile and detector solid angle +1.3 0.1 IV A 2
Neutron beam profile and 6Li deposit shape −1.7 0.1 IV A 2
Neutron beam halo −1.0 1.0 IV B 2
Absorption of neutrons by Si substrate +1.2 0.1 IV A 2
Scattering of neutrons by Si substrate −0.2 0.5 IV A 3
Trap nonlinearity −5.3 0.8 IV C
Proton backscatter calculation 0.4 IV D 3
Neutron counting dead time +0.1 0.1 II D

Proton counting statistics 1.2 IV D 2
Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A

da

∫

v

dv
(
1 − e−ρ(x,y)σ0

vo
v

NA
A

)

× I (v)φ(x, y)
%(x, y)

2π
, (15)

where %(x, y) is the detector solid angle and ρ(x, y) is the
areal density of the 6Li deposit. By design, %(x, y) is nearly
constant over the beam distribution and ρ(x, y) is both small
and nearly constant, making the ratio of Eqs. (15) and (14)
nearly 1. Nevertheless, the precise ratio is a correction that
must be included in each of our 13 series-based lifetime
values (Table IV). The solid angle %(x, y) is easily calculated
given the positions of the deposit and the apertures; ρ(x, y)
was measured during the manufacture of the deposits; and
φ(x, y) was measured using the dysprosium image method
(Sec. IV B1).

Rather than calculate the ratio of Eqs. (15) and (14)
directly, we decompose the calculation into three terms
with corresponding numerical corrections c1, c2, and c3 (see
Table VII), each of which leads to an additive correction
to the lifetime. The first takes into account the exponential
attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.

Source of correction Correction (s) Uncertainty (s) Section

6LiF deposit areal density 2.2 IV A
6Li cross section 1.2 II D
Neutron detector solid angle 1.0 II D 1
Absorption of neutrons by 6Li +5.2 0.8 IV A 2
Neutron beam profile and detector solid angle +1.3 0.1 IV A 2
Neutron beam profile and 6Li deposit shape −1.7 0.1 IV A 2
Neutron beam halo −1.0 1.0 IV B 2
Absorption of neutrons by Si substrate +1.2 0.1 IV A 2
Scattering of neutrons by Si substrate −0.2 0.5 IV A 3
Trap nonlinearity −5.3 0.8 IV C
Proton backscatter calculation 0.4 IV D 3
Neutron counting dead time +0.1 0.1 II D

Proton counting statistics 1.2 IV D 2
Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A

da

∫

v

dv
(
1 − e−ρ(x,y)σ0

vo
v

NA
A

)

× I (v)φ(x, y)
%(x, y)

2π
, (15)

where %(x, y) is the detector solid angle and ρ(x, y) is the
areal density of the 6Li deposit. By design, %(x, y) is nearly
constant over the beam distribution and ρ(x, y) is both small
and nearly constant, making the ratio of Eqs. (15) and (14)
nearly 1. Nevertheless, the precise ratio is a correction that
must be included in each of our 13 series-based lifetime
values (Table IV). The solid angle %(x, y) is easily calculated
given the positions of the deposit and the apertures; ρ(x, y)
was measured during the manufacture of the deposits; and
φ(x, y) was measured using the dysprosium image method
(Sec. IV B1).

Rather than calculate the ratio of Eqs. (15) and (14)
directly, we decompose the calculation into three terms
with corresponding numerical corrections c1, c2, and c3 (see
Table VII), each of which leads to an additive correction
to the lifetime. The first takes into account the exponential
attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.

Source of correction Correction (s) Uncertainty (s) Section

6LiF deposit areal density 2.2 IV A
6Li cross section 1.2 II D
Neutron detector solid angle 1.0 II D 1
Absorption of neutrons by 6Li +5.2 0.8 IV A 2
Neutron beam profile and detector solid angle +1.3 0.1 IV A 2
Neutron beam profile and 6Li deposit shape −1.7 0.1 IV A 2
Neutron beam halo −1.0 1.0 IV B 2
Absorption of neutrons by Si substrate +1.2 0.1 IV A 2
Scattering of neutrons by Si substrate −0.2 0.5 IV A 3
Trap nonlinearity −5.3 0.8 IV C
Proton backscatter calculation 0.4 IV D 3
Neutron counting dead time +0.1 0.1 II D

Proton counting statistics 1.2 IV D 2
Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A

da

∫
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dv
(
1 − e−ρ(x,y)σ0

vo
v
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)

× I (v)φ(x, y)
%(x, y)

2π
, (15)

where %(x, y) is the detector solid angle and ρ(x, y) is the
areal density of the 6Li deposit. By design, %(x, y) is nearly
constant over the beam distribution and ρ(x, y) is both small
and nearly constant, making the ratio of Eqs. (15) and (14)
nearly 1. Nevertheless, the precise ratio is a correction that
must be included in each of our 13 series-based lifetime
values (Table IV). The solid angle %(x, y) is easily calculated
given the positions of the deposit and the apertures; ρ(x, y)
was measured during the manufacture of the deposits; and
φ(x, y) was measured using the dysprosium image method
(Sec. IV B1).

Rather than calculate the ratio of Eqs. (15) and (14)
directly, we decompose the calculation into three terms
with corresponding numerical corrections c1, c2, and c3 (see
Table VII), each of which leads to an additive correction
to the lifetime. The first takes into account the exponential
attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.

Source of correction Correction (s) Uncertainty (s) Section

6LiF deposit areal density 2.2 IV A
6Li cross section 1.2 II D
Neutron detector solid angle 1.0 II D 1
Absorption of neutrons by 6Li +5.2 0.8 IV A 2
Neutron beam profile and detector solid angle +1.3 0.1 IV A 2
Neutron beam profile and 6Li deposit shape −1.7 0.1 IV A 2
Neutron beam halo −1.0 1.0 IV B 2
Absorption of neutrons by Si substrate +1.2 0.1 IV A 2
Scattering of neutrons by Si substrate −0.2 0.5 IV A 3
Trap nonlinearity −5.3 0.8 IV C
Proton backscatter calculation 0.4 IV D 3
Neutron counting dead time +0.1 0.1 II D

Proton counting statistics 1.2 IV D 2
Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A

da

∫

v

dv
(
1 − e−ρ(x,y)σ0

vo
v
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)

× I (v)φ(x, y)
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where %(x, y) is the detector solid angle and ρ(x, y) is the
areal density of the 6Li deposit. By design, %(x, y) is nearly
constant over the beam distribution and ρ(x, y) is both small
and nearly constant, making the ratio of Eqs. (15) and (14)
nearly 1. Nevertheless, the precise ratio is a correction that
must be included in each of our 13 series-based lifetime
values (Table IV). The solid angle %(x, y) is easily calculated
given the positions of the deposit and the apertures; ρ(x, y)
was measured during the manufacture of the deposits; and
φ(x, y) was measured using the dysprosium image method
(Sec. IV B1).

Rather than calculate the ratio of Eqs. (15) and (14)
directly, we decompose the calculation into three terms
with corresponding numerical corrections c1, c2, and c3 (see
Table VII), each of which leads to an additive correction
to the lifetime. The first takes into account the exponential
attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.

Source of correction Correction (s) Uncertainty (s) Section

6LiF deposit areal density 2.2 IV A
6Li cross section 1.2 II D
Neutron detector solid angle 1.0 II D 1
Absorption of neutrons by 6Li +5.2 0.8 IV A 2
Neutron beam profile and detector solid angle +1.3 0.1 IV A 2
Neutron beam profile and 6Li deposit shape −1.7 0.1 IV A 2
Neutron beam halo −1.0 1.0 IV B 2
Absorption of neutrons by Si substrate +1.2 0.1 IV A 2
Scattering of neutrons by Si substrate −0.2 0.5 IV A 3
Trap nonlinearity −5.3 0.8 IV C
Proton backscatter calculation 0.4 IV D 3
Neutron counting dead time +0.1 0.1 II D

Proton counting statistics 1.2 IV D 2
Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A
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∫

v

dv
(
1 − e−ρ(x,y)σ0
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)

× I (v)φ(x, y)
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where %(x, y) is the detector solid angle and ρ(x, y) is the
areal density of the 6Li deposit. By design, %(x, y) is nearly
constant over the beam distribution and ρ(x, y) is both small
and nearly constant, making the ratio of Eqs. (15) and (14)
nearly 1. Nevertheless, the precise ratio is a correction that
must be included in each of our 13 series-based lifetime
values (Table IV). The solid angle %(x, y) is easily calculated
given the positions of the deposit and the apertures; ρ(x, y)
was measured during the manufacture of the deposits; and
φ(x, y) was measured using the dysprosium image method
(Sec. IV B1).

Rather than calculate the ratio of Eqs. (15) and (14)
directly, we decompose the calculation into three terms
with corresponding numerical corrections c1, c2, and c3 (see
Table VII), each of which leads to an additive correction
to the lifetime. The first takes into account the exponential
attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.

Source of correction Correction (s) Uncertainty (s) Section

6LiF deposit areal density 2.2 IV A
6Li cross section 1.2 II D
Neutron detector solid angle 1.0 II D 1
Absorption of neutrons by 6Li +5.2 0.8 IV A 2
Neutron beam profile and detector solid angle +1.3 0.1 IV A 2
Neutron beam profile and 6Li deposit shape −1.7 0.1 IV A 2
Neutron beam halo −1.0 1.0 IV B 2
Absorption of neutrons by Si substrate +1.2 0.1 IV A 2
Scattering of neutrons by Si substrate −0.2 0.5 IV A 3
Trap nonlinearity −5.3 0.8 IV C
Proton backscatter calculation 0.4 IV D 3
Neutron counting dead time +0.1 0.1 II D

Proton counting statistics 1.2 IV D 2
Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A

da

∫

v

dv
(
1 − e−ρ(x,y)σ0

vo
v

NA
A

)

× I (v)φ(x, y)
%(x, y)

2π
, (15)

where %(x, y) is the detector solid angle and ρ(x, y) is the
areal density of the 6Li deposit. By design, %(x, y) is nearly
constant over the beam distribution and ρ(x, y) is both small
and nearly constant, making the ratio of Eqs. (15) and (14)
nearly 1. Nevertheless, the precise ratio is a correction that
must be included in each of our 13 series-based lifetime
values (Table IV). The solid angle %(x, y) is easily calculated
given the positions of the deposit and the apertures; ρ(x, y)
was measured during the manufacture of the deposits; and
φ(x, y) was measured using the dysprosium image method
(Sec. IV B1).

Rather than calculate the ratio of Eqs. (15) and (14)
directly, we decompose the calculation into three terms
with corresponding numerical corrections c1, c2, and c3 (see
Table VII), each of which leads to an additive correction
to the lifetime. The first takes into account the exponential
attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.

Source of correction Correction (s) Uncertainty (s) Section

6LiF deposit areal density 2.2 IV A
6Li cross section 1.2 II D
Neutron detector solid angle 1.0 II D 1
Absorption of neutrons by 6Li +5.2 0.8 IV A 2
Neutron beam profile and detector solid angle +1.3 0.1 IV A 2
Neutron beam profile and 6Li deposit shape −1.7 0.1 IV A 2
Neutron beam halo −1.0 1.0 IV B 2
Absorption of neutrons by Si substrate +1.2 0.1 IV A 2
Scattering of neutrons by Si substrate −0.2 0.5 IV A 3
Trap nonlinearity −5.3 0.8 IV C
Proton backscatter calculation 0.4 IV D 3
Neutron counting dead time +0.1 0.1 II D

Proton counting statistics 1.2 IV D 2
Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A

da

∫

v

dv
(
1 − e−ρ(x,y)σ0

vo
v

NA
A

)

× I (v)φ(x, y)
%(x, y)

2π
, (15)

where %(x, y) is the detector solid angle and ρ(x, y) is the
areal density of the 6Li deposit. By design, %(x, y) is nearly
constant over the beam distribution and ρ(x, y) is both small
and nearly constant, making the ratio of Eqs. (15) and (14)
nearly 1. Nevertheless, the precise ratio is a correction that
must be included in each of our 13 series-based lifetime
values (Table IV). The solid angle %(x, y) is easily calculated
given the positions of the deposit and the apertures; ρ(x, y)
was measured during the manufacture of the deposits; and
φ(x, y) was measured using the dysprosium image method
(Sec. IV B1).

Rather than calculate the ratio of Eqs. (15) and (14)
directly, we decompose the calculation into three terms
with corresponding numerical corrections c1, c2, and c3 (see
Table VII), each of which leads to an additive correction
to the lifetime. The first takes into account the exponential
attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.

Source of correction Correction (s) Uncertainty (s) Section

6LiF deposit areal density 2.2 IV A
6Li cross section 1.2 II D
Neutron detector solid angle 1.0 II D 1
Absorption of neutrons by 6Li +5.2 0.8 IV A 2
Neutron beam profile and detector solid angle +1.3 0.1 IV A 2
Neutron beam profile and 6Li deposit shape −1.7 0.1 IV A 2
Neutron beam halo −1.0 1.0 IV B 2
Absorption of neutrons by Si substrate +1.2 0.1 IV A 2
Scattering of neutrons by Si substrate −0.2 0.5 IV A 3
Trap nonlinearity −5.3 0.8 IV C
Proton backscatter calculation 0.4 IV D 3
Neutron counting dead time +0.1 0.1 II D

Proton counting statistics 1.2 IV D 2
Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A

da

∫

v

dv
(
1 − e−ρ(x,y)σ0

vo
v

NA
A

)

× I (v)φ(x, y)
%(x, y)

2π
, (15)

where %(x, y) is the detector solid angle and ρ(x, y) is the
areal density of the 6Li deposit. By design, %(x, y) is nearly
constant over the beam distribution and ρ(x, y) is both small
and nearly constant, making the ratio of Eqs. (15) and (14)
nearly 1. Nevertheless, the precise ratio is a correction that
must be included in each of our 13 series-based lifetime
values (Table IV). The solid angle %(x, y) is easily calculated
given the positions of the deposit and the apertures; ρ(x, y)
was measured during the manufacture of the deposits; and
φ(x, y) was measured using the dysprosium image method
(Sec. IV B1).

Rather than calculate the ratio of Eqs. (15) and (14)
directly, we decompose the calculation into three terms
with corresponding numerical corrections c1, c2, and c3 (see
Table VII), each of which leads to an additive correction
to the lifetime. The first takes into account the exponential
attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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3. Uncertainty Achieved With the Existing Devices

The Alpha-Gamma technique has been used to perform a 0.06% measure-
ment of ✏

0

(0, 0).15 The summary of uncertainties is shown in Tab. 1. In
order to perform a 0.01% measurement with this technique, six sources of
uncertainty must be reduced.

Table 1. Sources of uncertainties in the Alpha-Gamma measurement of
✏0(0, 0) and their fractional uncertainties.15

Source of uncertainty Fractional uncertainty

Neutron counting statistics 3.1⇥ 10�4

↵-source calibration of AG ↵-detector 2.7⇥ 10�4

� attenuation in B4C target 2.5⇥ 10�4

Neutron beam wavelength 2.4⇥ 10�4

� attenuation in thin 10B target 1.3⇥ 10�4

�
mono

2 contamination of beam 1.0⇥ 10�4

Neutron backscatter in monitor substrate 3.9⇥ 10�5

AG ↵ solid angle for beam spot 2.7⇥ 10�5

Detector dead time 2.4⇥ 10�5

Neutron loss in Si substrate 1.8⇥ 10�5

Neutron absorption by 6Li 1.2⇥ 10�5

Self-shielding of 6Li deposit 6.0⇥ 10�6

Neutron monitor solid angle for beam spot 4.5⇥ 10�6

� production in thin 10B target Si subtrate 3.2⇥ 10�6

Monitor misalignment w.r.t. beam 2.0⇥ 10�6

Neutron scattering from B4C 3.3⇥ 10�7

Total 5.7⇥ 10�4

The Alpha-Gamma experiment was limited by statistical uncertainty
attributable to charged particle counting in the neutron monitor (0.031%)
and alpha particle counting with the 239Pu source (0.027%). The neutron
monitor rate (r↵,t ⇡ 15 s�1) was limited by the low detection e�ciency of
the monitor (✏ ⇡ 9⇥10�5) and strong restrictions on the beam diameter due
to the limited acceptance of the Alpha-Gamma target (accepts a maximum
beam diameter of 22 mm compared to 38 mm for the monitor). The 239Pu
source measurements were limited by the observed alpha rates, attributable
to the total source activity (R

Pu

⇡ 24000 s�1) and the low solid angle of
the detection geometries (⌦

stack

⇡ 5⇥ 10�3 and ⌦
AG

⇡ 7⇥ 10�3).
The neutron beam wavelength �

mono

(and a small �
mono

2

component
not removed by an upstream beryllium filter) were measured by Bragg
scattering with a perfect crystal silicon analyzer. Four of the thirty-one
measurements of the Bragg angle fell outside the expected normal distri-

2013 result error budget

counting statistics

reduced using new geometry

can be done better
<0.01% achieved previously at NIST
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3. Uncertainty Achieved With the Existing Devices

The Alpha-Gamma technique has been used to perform a 0.06% measure-
ment of ✏

0

(0, 0).15 The summary of uncertainties is shown in Tab. 1. In
order to perform a 0.01% measurement with this technique, six sources of
uncertainty must be reduced.

Table 1. Sources of uncertainties in the Alpha-Gamma measurement of
✏0(0, 0) and their fractional uncertainties.15

Source of uncertainty Fractional uncertainty

Neutron counting statistics 3.1⇥ 10�4

↵-source calibration of AG ↵-detector 2.7⇥ 10�4

� attenuation in B4C target 2.5⇥ 10�4

Neutron beam wavelength 2.4⇥ 10�4

� attenuation in thin 10B target 1.3⇥ 10�4

�
mono

2 contamination of beam 1.0⇥ 10�4

Neutron backscatter in monitor substrate 3.9⇥ 10�5

AG ↵ solid angle for beam spot 2.7⇥ 10�5

Detector dead time 2.4⇥ 10�5

Neutron loss in Si substrate 1.8⇥ 10�5

Neutron absorption by 6Li 1.2⇥ 10�5

Self-shielding of 6Li deposit 6.0⇥ 10�6

Neutron monitor solid angle for beam spot 4.5⇥ 10�6

� production in thin 10B target Si subtrate 3.2⇥ 10�6

Monitor misalignment w.r.t. beam 2.0⇥ 10�6

Neutron scattering from B4C 3.3⇥ 10�7

Total 5.7⇥ 10�4

The Alpha-Gamma experiment was limited by statistical uncertainty
attributable to charged particle counting in the neutron monitor (0.031%)
and alpha particle counting with the 239Pu source (0.027%). The neutron
monitor rate (r↵,t ⇡ 15 s�1) was limited by the low detection e�ciency of
the monitor (✏ ⇡ 9⇥10�5) and strong restrictions on the beam diameter due
to the limited acceptance of the Alpha-Gamma target (accepts a maximum
beam diameter of 22 mm compared to 38 mm for the monitor). The 239Pu
source measurements were limited by the observed alpha rates, attributable
to the total source activity (R

Pu

⇡ 24000 s�1) and the low solid angle of
the detection geometries (⌦

stack

⇡ 5⇥ 10�3 and ⌦
AG

⇡ 7⇥ 10�3).
The neutron beam wavelength �

mono

(and a small �
mono

2

component
not removed by an upstream beryllium filter) were measured by Bragg
scattering with a perfect crystal silicon analyzer. Four of the thirty-one
measurements of the Bragg angle fell outside the expected normal distri-

2013 result error budget

counting statistics

reduced using new geometry

can be done better
<0.01% achieved previously at NIST

need a factor of 6 
better for BL3
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the HPGe detectors eliminates the large corrections for gamma attenuation
in the targets. The expected gamma rates from the thin and thick targets
are r�(thin) ⇡ 100 s�1 and r�(thick) ⇡ 4000 s�1.

Fig. 1. Drawings of the existing neutron monitor and Alpha-Gamma device and possible

updated versions of the devices.

To determine the run time required to reach 0.01% statistical uncer-
tainty, we assume the same run schedule used in the existing Alpha-Gamma

new apparatus
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.

Source of correction Correction (s) Uncertainty (s) Section

6LiF deposit areal density 2.2 IV A
6Li cross section 1.2 II D
Neutron detector solid angle 1.0 II D 1
Absorption of neutrons by 6Li +5.2 0.8 IV A 2
Neutron beam profile and detector solid angle +1.3 0.1 IV A 2
Neutron beam profile and 6Li deposit shape −1.7 0.1 IV A 2
Neutron beam halo −1.0 1.0 IV B 2
Absorption of neutrons by Si substrate +1.2 0.1 IV A 2
Scattering of neutrons by Si substrate −0.2 0.5 IV A 3
Trap nonlinearity −5.3 0.8 IV C
Proton backscatter calculation 0.4 IV D 3
Neutron counting dead time +0.1 0.1 II D

Proton counting statistics 1.2 IV D 2
Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A

da

∫

v

dv
(
1 − e−ρ(x,y)σ0

vo
v

NA
A

)

× I (v)φ(x, y)
%(x, y)

2π
, (15)

where %(x, y) is the detector solid angle and ρ(x, y) is the
areal density of the 6Li deposit. By design, %(x, y) is nearly
constant over the beam distribution and ρ(x, y) is both small
and nearly constant, making the ratio of Eqs. (15) and (14)
nearly 1. Nevertheless, the precise ratio is a correction that
must be included in each of our 13 series-based lifetime
values (Table IV). The solid angle %(x, y) is easily calculated
given the positions of the deposit and the apertures; ρ(x, y)
was measured during the manufacture of the deposits; and
φ(x, y) was measured using the dysprosium image method
(Sec. IV B1).

Rather than calculate the ratio of Eqs. (15) and (14)
directly, we decompose the calculation into three terms
with corresponding numerical corrections c1, c2, and c3 (see
Table VII), each of which leads to an additive correction
to the lifetime. The first takes into account the exponential
attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.
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Proton backscatter calculation 0.4 IV D 3
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Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A

da
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v

dv
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1 − e−ρ(x,y)σ0

vo
v

NA
A

)

× I (v)φ(x, y)
%(x, y)

2π
, (15)
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attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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BL3 Systematic Improvements

Proton Counting:

• larger detector area (30x)
• pixellated detector
• variable field expansion by detector translation (backscatter correction)
• <0.01% magnetic field uniformity in trap region
• trim coils to test variations in field uniformity

Neutron Counting:

• precision neutron spectral flux measurement
• improved alpha-gamma geometry
• multiple independent absolute flux calibrations



Summary

•  >30 years experience with the Sussex-ILL-NIST beam neutron lifetime 
program.

•  With a larger beam, magnet, and trap of design similar to the existing 
apparatus, proton counting statistics can achieve < 0.1 s uncertainty

•  With achievable technical improvements (no high-risk R&D), known 
systematic effects can be reduced to < 0.1 s.

•  As before, neutron counting systematics are the most challenging part.

•  Estimated capital cost is approx. $2M (DOE + NSF)

•  Timetable: 2015: proposal
2016-2017: funding
2017-2020: design/construction
2020+ commissioning at NIST.




