Future GW Detectors, and Other GW Sources ACFI Workshop, Oct 2022

Meg Millhouse

Outline

- Near and far(ish) future of ground-based GW detectors
 - A+
 - Cosmic Explorer and Einstein Telescope
 - High frequency detector
- NSs as GW sources beyond inspirals
 - F-modes, continuous gravitational waves

Future of NS GW detections

- Summary of previous talks this week:
 - **SNR** detections
 - Upgraded detectors can help solve both of these issues

• To learn more about NS interiors, we will need more detections, and higher

Near future

O4 BNS Detections: ~ 7

Today

LVK, Living Reviews in Relativity 23, 3 (2020)

Future of current detector sites

LIGO A+ and AdV+

- Upgrades to current LIGO and Virgo sites
- Late 2020s
- Funded, minimal technology risk

Future of current detector sites

LIGO A+ and AdV+

- Upgrades to current LIGO and Virgo sites
- Late 2020s
- Funded, minimal technology risk

Voyager (Adhikari et al 2020 CQG **37** 165003)

- Possible further upgrades to current LIGO sites post-O5
- Significant technological development

• 3rd generation detectors, c. 2035

- 3rd generation detectors, c. 2035
 - Cosmic explorer:
 - 20km or 40km detector, or a combo

- 3rd generation detectors, c. 2035
 - Cosmic explorer:
 - 20km or 40km detector, or a combo
 - Einstein Telescope
 - Europe-based
 - 10km triangular configuration, underground

Img: ET collaboration, et-gw.eu

- 3rd generation detectors, c. 2035
 - Cosmic explorer:
 - 20km or 40km detector, or a combo
 - Einstein Telescope
 - Europe-based
 - 10km triangular configuration, underground
- Still some uncertainty in funding (need >\$1B), technology, timeline

Img: ET collaboration, et-gw.eu

- 3rd generation detectors, c. 2035
 - Cosmic explorer:
 - 20km or 40km detector, or a combo
 - Einstein Telescope
 - Europe-based
 - 10km triangular configuration, underground
- Still some uncertainty in funding (need >\$1B), technology, timeline

3G Landscape

- CE a "neutron star machine"
- Lots of multi messenger opportunity
- Also comes with data analysis challenges:
 - Need accurate waveforms, ability to handle lots of events in searches/PE

Hall and Vitale, LIGO DCC: G1900803

Neutron Star Extreme Matter Observatory (NEMO) Ackley et al. PASA (2020) 37, e047

- High frequency detector
- A "matter machine" targeting **BNS** systems
- Relatively cheap: \$200M
- Small technology risk
 - Can serve as technological development for 3G detectors

Thank you Paul Lasky for help with this slide!

Other high frequency prospects

Could tune current detectors for high frequency specifically

Ganapathy et al. PRD 103, 022002 (2021)

Other observing prospects

BNS inspirals not the only possible source of GWs from NSs

- Fundamental mode excitation/post-merger
- Quasiperiodic GWs from isolated neutron stars
- Plus surprises?

Neutron star *f*-modes

(Plot from P. Lasky)

- Bursts of GW radiation from excitation of the fundamental quadrupole moment
 - Short duration (~milliseconds)
 - High frequency (~ 1-4kHz)
 - Frequency related to NS radius

Neutron star *f***-modes**

- Model GW signal as damped sinusoid: $h(t) = h_0 e^{-t/\tau_{\rm GW}} \sin\left(\omega_{\rm GW} t\right)^{\dagger}$
 - Damping time $au_{
 m GW}$ and frequency $\omega_{
 m GW}$ depend on mass and radius of NS
- Potential mechanism: pulsar glitches
 - Sizes in range $\Delta \nu \approx 10^{-9} 10^{-5}$ Hz*
 - Possible causes: Starquakes, momentum transfer between crust and core

Image from J.B. Carlin

*Basu et al., MNR 414, 1679 (2011); Shaw et al., Jodrell Bank Glitch Catalogue; Hobbs et al. **ATNF Pulsar Catalogue**

† Kokkotas & Andersson 2002

Neutron star f-modes: Pulsar glitches **Recent LVK results**

Injection study for the all-sky search

Distribute sources uniformly across sky, masses between $1 - 2 M_{\odot}$

Use Vela as standard candle for distance (287 pc) and spin $(\nu_{\rm s} = 11.2 \text{ Hz})$

Radio observations show glitch sizes ~3 orders of magnitude smaller than what GW search is capable of

Neutron star *f*-modes

Ho et al, PRD 101, 103009 (2020)

For *f*-modes excited to similar levels of known pulsar glitches, could see quite a few with 3G detectors

BNS post-merger

- BNS merger could result in hypermassive neutron star
- Probe "hot" EoS
- Again, GW peak frequency related to NS mass and radius
 - Plus more structure, like subdominant peak
- Could also see evidence of phase transition [see Bauswein et al Phys. Rev. Lett; Phys. Rev. Lett. 122, 061102 (2019)]

BNS post-merger

Martynov et al. PRD 99, 102004 (2019)			
	SLY/APR4	SLY/SFHo	APR4/SFHo
LIGO-HF	$0.53^{+1.4}_{-0.41}$	$2.22^{+4.22}_{-1.82}$	$1.21^{+3.5}_{-1}$
Einstein Telescope	$0.15_{-0.12}^{+0.13}$	$0.42^{+0.8}_{-0.37}$	$0.27^{+0.65}_{-0.2}$
Cosmic Explorer	$1.44^{+3}_{-1.18}$	$4.84^{+10.01}_{-3.88}$	$3.94_{-3.15}^{+8.17}$
20 km-HF	$9.18\substack{+18.22 \\ -7.24}$	$31.37^{+65.25}_{-24.39}$	$22.27_{-17.71}^{+45.13}$

 Likely need next gen detectors for a post-merger detection

Torres-Rivas et al. Phys. Rev. D 99, 044014 (2019)

GWs from isolated NSs

- Long lasting, quasi-monochromatic gravitational waves from non-axisymmetric neutron stars
- Signals can be present in detector data for ~years
- Smaller amplitude than compact binaries, but signal evidence can accumulate

GWs from isolated NSs

Gravitational-wave frequency at detector / Hz

Img: Karl Wette

- Long signals will appear doppler shifter in the detectors
 - Good sky localization
 - Can discern overlapping signals

GWs from isolated NSs Emission mechanisms

Equatorial bulge (Or "mountains on neutron stars")

Predicted Johnson-McDaniel +

Constraining maximum ellipticity can constrain NS interior

$$f_{\rm GW} = 2f_{\rm rotation}$$

$$h_0 \propto \frac{f_{\rm GW}I_{zz}}{r} \epsilon \qquad \epsilon \equiv \frac{I_{xx} - I_{yy}}{I_{zz}}$$
maximum ellipticity: $10^{-5} - 10^{-1}$

$$I_{\rm Normal neutron matter}$$

GWs from isolated NSs Emission mechanisms

Lindblom et al., PRD **80**, 4843 (1998) Andersson, ApJ 502, 2 (1998) Haskell, IJMP E 24 (2015)

r-modes unstable to GW emission

Could be main mechanism by which young NSs are spun down

GWs from isolated NSs Sources

NASA/CXC/SAO/F.Seward; NASA/ESA/ASU/ J.Hester & A.Loll; NASA/JPL-Caltech/Univ. Minn./R.Gehrz

Known pulsars

- Very good frequency information vi EM counterparts
- Or, useful to test relation between crust & core rotation

-Youngest known NSs

- Possible r-mode source

- NS accreting

- Possibly in torque balance

GWs from isolated NSs Recent search results & prospects

- No detection yet, but beginning to beat indirect spin-down limit
 - Known pulsars: LVK, *ApJ* **935** 1 (2022) ullet
 - Constraints on r-mode emission: LVK, ApJ 922 71 (2021) \bullet
- Future prospects:
 - Detection prospects scale with detector sensitivity and observation time

Better detectors will help, but so will longer observing campaigns — but keep in mind computing cost!

arXiv:<u>2111.13106</u>

Summary

- Improved detectors crucial for understanding NS matter
 - Detectors sensitive at high frequency extra important to make inferences about NSs in pre- and post-merger phase
- Think beyond binary mergers!
 - Continuous gravitational waves could give info on maximum ellipticity, or presence of *r*-modes