EDM Implications for BSM Physics

Kaori Fuyuto

University of Massachusetts, Amherst

K. Fuyuto, M. Ramsey-Musolf, T. Shen, PLB788(2019)52 J. de Vries, P. Draper, K.Fuyuto, J. Kozaczuk and D. Sutherland, 1809.10143 K. Fuyuto, X-G He, G. Li and M. Ramsey-Musolf, work in Progress

December 8th, 2018 ACFI Workshop

CPV interactions in New Physics

New physics generally contains CP phases. My talk discusses

- What kind of CPV interactions are in BSM
- EDM constraints on CP phases

LeptoquarkDark Photon

- Implication for QCD theta term

J. M.Arnold, B. Fornal and M. B. Wise, Phys. Rev. D 88, 035009 (2013) J. M.Arnold, B. Fornal and M. B. Wise, Phys. Rev. D 87, 075004 (2013) I. Dorsner, S. Fajfer, A. Greljo, J. F. Kamenik and N. Kosnik, Phys. Rept. 641, 1 (2016)

Leptoquark couples to quark and lepton

Scalar LQ :
$$X = \begin{pmatrix} V \\ Y \end{pmatrix}$$
 (3, 2, 7/6)

$$\mathcal{L} = -\lambda_u^{ab} \bar{u}^a X^T \epsilon L^b - \lambda_e^{ab} \bar{e}^a X^\dagger Q^b + \text{h.c.}$$

 $\lambda_{u,e}$: Complex a, b: Flavor indices

Epsilon tensor : $\epsilon_{12} = 1$

Sources for two CP-violating interactions

J. M.Arnold, B. Fornal and M. B. Wise, Phys. Rev. D 88, 035009 (2013) J. M.Arnold, B. Fornal and M. B. Wise, Phys. Rev. D 87, 075004 (2013) I. Dorsner, S. Fajfer, A. Greljo, J. F. Kamenik and N. Kosnik, Phys. Rept. 641, 1 (2016)

Two CP-violating interactions are induced:

J. M.Arnold, B. Fornal and M. B. Wise, Phys. Rev. D 88, 035009 (2013) J. M.Arnold, B. Fornal and M. B. Wise, Phys. Rev. D 87, 075004 (2013) I. Dorsner, S. Fajfer, A. Greljo, J. F. Kamenik and N. Kosnik, Phys. Rept. 641, 1 (2016)

Two CP-violating interactions are induced:

4-fermi interaction can be larger than electron EDM.

J. M.Arnold, B. Fornal and M. B. Wise, Phys. Rev. D 88, 035009 (2013) J. M.Arnold, B. Fornal and M. B. Wise, Phys. Rev. D 87, 075004 (2013) I. Dorsner, S. Fajfer, A. Greljo, J. F. Kamenik and N. Kosnik, Phys. Rept. 641, 1 (2016)

Two CP-violating interactions are induced:

 e_L

 λ_u

J. M.Arnold, B. Fornal and M. B. Wise, Phys. Rev. D 88, 035009 (2013) J. M.Arnold, B. Fornal and M. B. Wise, Phys. Rev. D 87, 075004 (2013) I. Dorsner, S. Fajfer, A. Greljo, J. F. Kamenik and N. Kosnik, Phys. Rept. 641, 1 (2016)

Two CP-violating interactions are induced:

Electron EDM

Electron-nucleon interaction

 u_a

 λ_e

Constrained by EDM measurements in paramagnetic systems
 Polar molecule systems

Analytic formula

- Electron EDM

$$d_{e} = -\frac{em_{u_{a}}N_{C}}{32\pi^{2}m_{V}^{2}}\operatorname{Im}\left(\lambda_{u}^{a1}\lambda_{e}^{1a}\right)\left[\frac{2}{3}I_{2}\left(\frac{m_{u_{a}}^{2}}{m_{V}^{2}}\right) + \frac{5}{3}J_{2}\left(\frac{m_{u_{a}}^{2}}{m_{V}^{2}}\right)\right]$$

 m_V : LQ mass

 I_2, J_2 : Loop function

- Electron-nucleon interaction

$$C_S \simeq g_S \frac{v^2}{2m_V^2} \operatorname{Im}\left(\lambda_u^{11} \lambda_e^{11}\right)$$

✓ Up-quark contribution $C_S, \ d_e \propto \operatorname{Im}\left(\lambda_u^{11}\lambda_e^{11}\right)$

$$g_S = 6.3$$

J. Engel, M. J. Ramsey-Musolf and U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013)

Analytic formula

- Electron EDM

$$d_{e} = -\frac{em_{u_{a}}N_{C}}{32\pi^{2}m_{V}^{2}}\operatorname{Im}\left(\lambda_{u}^{a1}\lambda_{e}^{1a}\right)\left[\frac{2}{3}I_{2}\left(\frac{m_{u_{a}}^{2}}{m_{V}^{2}}\right) + \frac{5}{3}J_{2}\left(\frac{m_{u_{a}}^{2}}{m_{V}^{2}}\right)\right]$$

 m_V : LQ mass

 I_2, J_2 : Loop function

- Electron-nucleon interaction

$$C_S \simeq g_S \frac{v^2}{2m_V^2} \operatorname{Im}\left(\lambda_u^{11}\lambda_e^{11}\right)$$

 $g_{S} = 6.3$

J. Engel, M. J. Ramsey-Musolf and U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013)

Up-quark contribution
 C_s dominates the systems!

 $\frac{d_e}{\alpha_i C_S} \sim O(10^{-2})$

Current limit on d_e and C_s

Effective EDM :
$$d_j \equiv d_e + \alpha_j C_S$$

 $\alpha_{\rm ThO(HfF^+)} = 1.5(0.9) \times 10^{-20} \ e \ {\rm cm}$

Current experimental values :

ThO:
$$d_{\rm ThO} = (4.3 \pm 4.0) \times 10^{-30} \ e \ {\rm cm}$$

V.Andreev et al. [ACME Collaboration], Nature 562(2018)7727

Sole source: $|d_e| < 1.1 \times 10^{-29} \ e \ {\rm cm}$

HfF⁺: $d_{\rm HfF^+} = (0.9 \pm 7.9) \times 10^{-29} \ e \ {\rm cm}$ W.B. Cairneross et al., PRL. 119, no. 15, 153001 (2017) Sole source: $|d_e| < 1.3 \times 10^{-28} \ e \ {\rm cm}$

Result

 $\operatorname{Im}\left(\lambda_{u}^{11}\lambda_{e}^{11}\right) = \left|\lambda_{u}^{11}\lambda_{e}^{11}\right|\sin\theta_{ue}$

Result

 $\operatorname{Im}\left(\lambda_{u}^{11}\lambda_{e}^{11}\right) = \left|\lambda_{u}^{11}\lambda_{e}^{11}\right|\sin\theta_{ue}$

Result

Up-quark EDM and cEDM

Green : Neutron Orange : Proton $d_{p,n} \sim 10^{-32} \ e \ {
m cm}$ * Comparable to SM values

Nonzero $d_{p,n}$ point to different CPV sources.

QCD theta term

QCD theta term QCD theta term : $\mathcal{L} = \theta \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu}$ From neutron EDM limit : $\theta \lesssim 10^{-10}$

"Strong CP problem"

1. UV Solution Ex) Nelson-Barr models A.E. Nelson, PLB136 (1984) 387, S. M. A. Barr, PRD30(1984)1805. S. M. Barr, PRD30(1984)1805. $\theta = 0$ at UV, but $\theta \neq 0$ ($\approx 10^{-10}$) at some scale.

2. IR Solution Ex) Peccei-Quinn Symmetry

 $heta
ightarrow a/f_a$ a:Axion \mathbf{R}_{R}

R. Peccei and H. R. Quinn, Phys.Rev.Lett. 38 (1977) 1440 R. Peccei and H. R. Quinn, Phys.Rev. D16 (1977) 1791{1797.

Dimension 6 operators

New Physics : Dimension 6 operators

For example,
$$\mathcal{O}_{uB} = \bar{Q}\sigma^{\mu\nu}u_R\tilde{H}B_{\mu\nu}$$

They give large threshold corrections to theta term.

If experiments, EDMs or colliders, see any sing of dim 6 operators, it might point to IR solution.

See EDM predictions in pure theta scenario

Predictions of pure theta scenario

Inside of color regions is prediction in pure theta scenario.
 * Theoretical uncertainties give a spread of region.

Predictions of pure theta scenario

Inside of color regions is prediction in pure theta scenario.
Outside of color regions point to other BSM CP sources.

Predictions of pure theta scenario

 d_p , d_D and d_{He} as a function of d_n

EDM measurements would give implication for strong CP problem.

Conclusion

Leptoquark : Electron EDM and e-N interaction

 $d_e \ll C_S$ C_S is dominant source.

* Sole-source limit is not available.

✓ Dark Photon : Dimension 5 operators $\frac{\tilde{\beta}}{\Lambda}$ Tr $[W_{\mu\nu}\Sigma]$ $\tilde{X}_{\mu\nu}$ Examined by EDMs. * Induced by light degree of freedom

QCD theta term : Unique EDM predictions Looking for various EDMs is necessary. * Implication for solution to strong CP problem