CURRENT STATUS AND FUTURE COLLIDER TESTS FOR CP VIOLATION IN HIGGS PHYSICS

Felix Yu

Johannes Gutenberg University, Mainz

Based, in part, on Roni Harnik, Adam Martin, Takemichi Okui, Reinard Primulando, FY Phys. Rev. D**88** (2013) 076009 [1308.1094 [hep-ph]]

> Testing CP Violation for Baryogenesis UMass Amherst – March 30, 2018

CP Violation – Motivated and Required

- Our picture of baryogenesis is embarrassingly incomplete
 - SM EW baryogenesis is insufficient
 - Strongly motivates new mechanisms for strengthening
 EW phase transition
 c.f. talk by Ramsey-Musolf
 - Also strongly motivates new sources of CPV

CP Violation – Motivated and Required

- Our picture of baryogenesis is embarrassingly incomplete
 - SM EW baryogenesis is insufficient
 - Strongly motivates new mechanisms for strengthening
 EW phase transition
 c.f. talk by Ramsey-Musolf
 - Also strongly motivates new sources of CPV
- Open question establishing targets for CPV searches (in Higgs physics and elsewhere) for specific mechanisms of EW SFOPTs

CP Violation – Motivated and Required

- Many CP puzzles remain outstanding
 - Leading SM CPV comes from CKM phase
 - Θ -parameter of QCD constrained to be < 10^{-10}
 - Possible Dirac and Majorana phases of PMNS matrix are next targets of neutrino experiments
- SM predicts no tree-level CPV in Higgs couplings
 - Attractive possibility to use first-order electroweak phase transition + CP violation in Higgs couplings to generate the baryon asymmetry See, e.g. Konstandin [1302.6713]

and many others

Outline

- Bosonic CPV observables in Higgs physics
 - CPV counting in SMEFT
 - Current status on bosonic CPV
- Fermionic CPV observables in Higgs physics
 Focus on h→ττ
- Future prospects
- Conclusions

- SM Higgs physics in broken phase of EW symmetry is highly predictive: J^{CP}(h) = 0⁺⁺
- Mass-coupling degeneracy strong consequence of chiral EW symmetry
 - Generally expect any modification of Higgs couplings to cause deviation in rate and distribution

Basic CPV collider phenomenology

- CPV couplings generally affect inclusive rates
 - Normalized differential distributions fold out rate information (by construction)
 - Need statistics (=inclusive distributions=integrated luminosity) before asymmetry variables or differential distributions are meaningful
- Canonical observables
 - triple product of 3-vectors CP-odd, T-odd combination
 - $\mathbf{p}_1 \cdot (\mathbf{p}_2 \times \mathbf{p}_3)$
 - angular distributions uses decays of polarized intermediate particles
 - acoplanarity in $h \rightarrow ZZ^* \rightarrow 4$ leptons

- Each Higgs coupling (except h³) can readily have a CP phase: distinct UV origins
 - scalar-pseudoscalar admixture
 - e.g. scalar potential has imaginary phase in 2HDM bilinear
 - readily (naïvely) tested via rate suppression

 $\mu = 1.09^{+0.11}_{-0.10}$ = 1.09^{+0.07}_{-0.07} (stat)^{+0.04}_{-0.04} (expt)^{+0.03}_{-0.03} (thbgd)^{+0.07}_{-0.06} (thsig)

ATLAS, CMS [1606.02266]

- Each Higgs coupling (except h³) can readily have a CP phase: distinct UV origins
 - scalar-pseudoscalar admixture
 - e.g. scalar potential has imaginary phase in 2HDM bilinear
 - readily (naïvely) tested via rate suppression

 $\mu = 1.17^{+0.10}_{-0.10}$ = 1.17^{+0.06}_{-0.06} (stat.)^{+0.06}_{-0.05} (sig. th.)^{+0.06}_{-0.06} (other sys.)

CMS-HIG-17-031

- Each Higgs coupling (except h³) can readily have a CP phase: distinct UV origins
 - scalar-pseudoscalar admixture
 - couplings to gauge bosons (e.g. bosonic CPV)

$$\mathcal{L} = \frac{m_Z^2}{v} h Z_\mu Z^\mu + c_{ZZ} \frac{h}{\Lambda} Z_{\mu\nu} Z^{\mu\nu} + c_{Z\tilde{Z}} \frac{h}{\Lambda} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$$

- Many results and constraints
- For example, tested via acoplanarity measurement in h→ZZ^{*}→4l

Review: Angular observables

- X decays to V₁ V₂, decays to 4 fermions
- Characterize by five angles, two masses (+X mass if unknown)
- $\cos \theta_{p_1} = -\hat{p}_{p_1} \cdot \hat{p}_{V_2}$ $\cos \theta_{p_3} = -\hat{p}_{p_3} \cdot \hat{p}_{V_1}$ $\cos \theta^* = \hat{p}_{V_1} \cdot \hat{z}_{\text{beam}}$ $\Phi_{V_1} = \frac{\vec{p}_{V_1} \cdot (\hat{n}_1 \times \hat{n}_{sc})}{\vec{p}_{V_1} \cdot (\hat{n}_1 \times \hat{n}_{sc})|} \operatorname{arccos}(\hat{n}_1 \cdot \hat{n}_{sc})$ $\Phi = \frac{\vec{p}_{V_1} \cdot (\hat{n}_1 \times \hat{n}_2)}{\vec{p}_{V_1} \cdot (\hat{n}_1 \times \hat{n}_2)|} \operatorname{arccos}(-\hat{n}_1 \cdot \hat{n}_2)$

Current status – 41 tests

Felix Yu – CPV in Higgs Physics

ATLAS [1712.02304]

Current status – 41 tests

Felix Yu – CPV in Higgs Physics

ATLAS [1712.02304]

Current status – diphotons

• Analyze in Collins-Soper frame

$$A_{|\Delta\phi_{jj}|}^{\text{meas}} = 0.45_{-0.24}^{+0.18} \text{ (stat.)}_{-0.11}^{+0.10} \text{ (syst.)}$$
$$A_{|\Delta\phi_{jj}|}^{\text{SM}} = 0.44 \pm 0.01$$

Felix Yu – CPV in Higgs Physics

ATLAS [1802.04146]

- Each Higgs coupling (except h³) can readily have a CP phase: distinct UV origins
 - scalar-pseudoscalar admixture
 - couplings to gauge bosons (e.g. bosonic CPV)
 - couplings to fermions (e.g. fermionic CPV)

$$\mathcal{L} = -m_f \bar{f} f - \frac{y_f}{\sqrt{2}} h \bar{f} (\cos \Delta + i\gamma_5 \sin \Delta) f$$

- $\Delta = 0$ is predicted in the SM (purely CP-even)
- $\Delta = \pi/2$ is pure CP-odd (and CP conserving)
- $\Delta = \pm \pi/4$ is maximally CP-violating

Yukawa CP phases

$$\mathcal{L} = -\left(\alpha_{ij} + \beta_{ij} \frac{H^{\dagger} H}{\Lambda^2}\right) H \bar{f}^i f^j$$

- In dim-6 SMEFT, can readily generate BSM Yukawa couplings including
 - Enhanced/suppressed diagonal flavor couplings
 - New off-diagonal flavor-violating couplings
 - CP phases in diagonal or off-diagonal couplings
- α and β are generally complex matrices must have flavor symmetry in UV physics to ensure they are aligned
- In EW broken phase, one combination gives known fermion masses, other generally leads to *complex* Yukawa matrices

Yukawa CP phases

- Curious fact: Suppressing Yukawa CP phases in SMEFT requires parametrically (chirally) large scale separation $\mathcal{L} \supset y_u \bar{Q}_L \tilde{H} u_R + y'_u \frac{H^{\dagger} H}{\Lambda^2} \bar{Q} \tilde{H} u_R + y_\ell \bar{L} H \ell_R + y'_\ell \frac{H^{\dagger} H}{\Lambda^2} \bar{L} H \ell_R$ $+ y_d \bar{Q}_L H d_R + y'_d \frac{H^{\dagger} H}{\Lambda^2} \bar{Q} H d_R + \text{ h.c.}$
- Flavor symmetries diagonalize and remove phases in mass matrices $m_f = \frac{y_f v}{\sqrt{2}} + \frac{y'_f v^3}{2\sqrt{2}\Lambda^2}$
- Yukawa phases can be chirally enhanced for light fermions $\frac{y_{f, \text{ eff}}}{\sqrt{2}} = \frac{y_f}{\sqrt{2}} + \frac{3y'_f v^2}{2\sqrt{2}\Lambda^2} = \frac{m_f}{v} + \frac{2y'_f v^2}{2\sqrt{2}\Lambda^2}$
 - Fine-tuning mass generation \leftrightarrow large BSM effects

Dimension 6 CPV

Alonso, Jenkins, Manohar, Trott [1312.2014] Also see Grzadowski, Iskrzynski, Misiak, Rosiek [1008.4884]

- 1: X^3 2: H^6 Henning, Lu, Melia, Murayama [1512.03433]5: $\psi^2 H^3$ + h.c.6: $\psi^2 X H$ + h.c.3: $H^4 D^2$ 4: $X^2 H^2$ 5: $(\bar{L}L)(\bar{L}L)$ 8: $(\bar{R}R)(\bar{R}R)$ 7: $\psi^2 H^2 D$ 8: $(\bar{L}R)(\bar{R}L)$ + h.c.8: $(\bar{L}R)(\bar{R}R)$ 8: $(\bar{L}L)(\bar{R}R)$ 8: $(\bar{L}R)(\bar{R}L)$ + h.c.8: $(\bar{L}R)(\bar{L}R)$ + h.c.
 - 1350 CP-even, 1149-CP odd operators (B-conserving)

Class	N_{op}	CP-even			CP-odd		
		n_g	1	3	n_g	1	3
1	4	2	2	2	2	2	2
2	1	1	1	1	0	0	0
3	2	2	2	2	0	0	0
4	8	4	4	4	4	4	4
5	3	$3n_g^2$	3	27	$3n_g^2$	3	27
6	8	$8n_g^2$	8	72	$8n_g^2$	8	72
7	8	$\frac{1}{2}n_g(9n_g+7)$	8	51	$\frac{1}{2}n_g(9n_g-7)$	1	30
$8 : (\overline{L}L)(\overline{L}L)$	L) 5	$\frac{1}{4}n_g^2(7n_g^2+13)$	5	171	$\frac{7}{4}n_g^2(n_g-1)(n_g+1)$	0	126
$8 : (\overline{R}R)(\overline{R})$	(R) 7	$\frac{1}{8}n_g(21n_g^3+2n_g^2+31n_g+2)$	7	255	$\frac{1}{8}n_g(21n_g+2)(n_g-1)(n_g+1)$	0	195
$8 : (\overline{L}L)(\overline{R})$	R) = 8	$4n_g^2(n_g^2+1)$	8	360	$4n_g^2(n_g-1)(n_g+1)$	0	288
$8 : (\overline{L}R)(\overline{R})$	L) 1	n_g^4	1	81	n_g^4	1	81
$8 : (\overline{L}R)(\overline{L}R)$	R) 4	$4n_g^4$	4	324	$4n_g^4$	4	324
8 : All	25	$\frac{1}{8}n_g(107n_g^3 + 2n_g^2 + 89n_g + 2)$	25	1191	$\frac{1}{8}n_g(107n_g^3 + 2n_g^2 - 67n_g - 2)$	5	1014
Total	59	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 213n_g^2 + 30n_g + 72)$) 53	1350	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 57n_g^2 - 30n_g + 48)$	23	1149

Complementarity with EDMs

Talks by Fuyuto, Brod, Stamou

• Top CPV phase naïvely constrained by electron EDM

Brod, Haisch, Zupan [1310.1385]

• Indirect probe, still complementary to direct tests at LHC

See Buckley, Goncalves [1507.07926],

Mileo, Kies, Szynkman, Crane, Gegner [1603.03632],

slides by Sakurai

• Light quark CPV phases confront neutron EDM

Chien, Cirigliano, Dekens, de Vries, Mereghetti [1510.00725]

Open room for τ Yukawa phase – HL-LHC and future colliders could provide leading sensitivity

Harnik, Martin, Okui, Primulando, FY [1308.1094] Berge, Bernreuther, Kirchner [1510.03850] CP phase in Tau Yukawa

$$\mathcal{L} = -m_{\tau}\bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}}h\bar{\tau}(\cos\Delta + i\gamma_5\sin\Delta)\tau$$

eEDM probes currently leave Δ unconstrained

Felix Yu – CPV in Higgs Physics

Brod, Haisch, Zupan [1310.1385]

CP phase in Tau Yukawa

$$\mathcal{L} = -m_{\tau}\bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}}h\bar{\tau}(\cos\Delta + i\gamma_5\sin\Delta)\tau$$

eEDM probes currently leave Δ unconstrained

Felix Yu – CPV in Higgs Physics

Brod, Haisch, Zupan [1310.1385]

Extracting the phase in Higgs decays to taus

- Tau Yukawa CPV is imprinted on the tau polarizations relative to each other
 - Tau polarizations then get imprinted on the v and ρ , ρ polarization is imparted to the π s
- Simplest observable (appropriate for LHC) is ρ⁺ρ⁻ acoplanarity angle
 - Better observable (appropriate for e^+e^- collider) is Θ

$$h \to \tau^{-} \tau^{+}$$
$$\to \rho^{-} \nu_{\tau} \rho^{+} \bar{\nu}_{\tau}$$
$$\to \pi^{-} \pi^{0} \nu_{\tau} \pi^{+} \pi^{0} \bar{\nu}_{\tau}$$

Matrix element calculation

 Treat the Higgs decay as a sequence of on-shell 2body decays

$$\mathcal{M}_{h\to\tau\tau} \propto \sum_{s,s'} \chi_{s,s'} \bar{u}_{\tau^-}^s (\cos \Delta + i\gamma_5 \sin \Delta) v_{\tau^+}^{s'}$$
$$\mathcal{M}_{\tau\to\rho\nu} \propto (\epsilon_{\rho^-}^*)_{\mu} \bar{u}_{\nu_{\tau}} \gamma^{\mu} P_L u_{\tau^-}$$
$$\mathcal{M}_{\rho\to\pi\pi} \propto \epsilon_{\rho^-} \cdot (p_{\pi^-} - p_{\pi^0})$$

• Together, gives

$$\mathcal{M}_{\text{full}} \propto \bar{u}_{\nu^{-}} (\not\!\!p_{\pi^{-}} - \not\!\!p_{\pi^{0-}}) P_L (\not\!\!p_{\tau^{-}} + m_{\tau}) \\ \times (\cos \Delta + i\gamma_5 \sin \Delta) \\ \times (-\not\!\!p_{\tau^{+}} + m_{\tau}) (\not\!\!p_{\pi^{+}} - \not\!\!p_{\pi^{0+}}) P_L v_{\nu^{+}}$$

Matrix element calculation assumptions

$$\mathcal{M}_{\text{full}} \propto \bar{u}_{\nu^{-}} (\not\!\!p_{\pi^{-}} - \not\!\!p_{\pi^{0-}}) P_L (\not\!\!p_{\tau^{-}} + m_{\tau})$$
$$\times (\cos \Delta + i\gamma_5 \sin \Delta)$$
$$\times (-\not\!\!p_{\tau^{+}} + m_{\tau}) (\not\!\!p_{\pi^{+}} - \not\!\!p_{\pi^{0+}}) P_L v_{\nu^{+}}$$

- Neglect π⁰ exchange (spatially separated; the τ's are boosted and back-to-back in the Higgs rest frame)
- All intermediate particles assumed on-shell
- Neglect $\pi^{\pm}-\pi^{0}$ mass difference
- Obtain $\mathcal{M}_{\text{full}} \propto \bar{u}_{\nu^-} \not\!\!\!/ q_- (e^{i\Delta} \not\!\!\!/ p_{\tau^-} e^{-i\Delta} \not\!\!\!/ p_{\tau^+}) \not\!\!\!/ q_+ P_L v_{\nu^+}$ with $q_{\pm} \equiv p_{\pi^{\pm}} - p_{\pi^{0\pm}}$

– Recall ρ_{\pm} polarization is generally aligned with q_{\pm}

Calculating the Theta Variable

- We then write the squared matrix element as $|\mathcal{M}|^2 \propto P_{\Delta,S} + P_{\Delta,\$} + P_{\Delta,S} + P_{\Delta,S}^*$ where the most interesting piece is $P_{\Delta,S} = -2e^{i(2\Delta - \Theta)} |\vec{E}_+||\vec{E}_-|$
- In the Higgs rest frame, the "electric" components are

$$\vec{E}_{\pm} = \frac{m_h}{2} \left[(y_{\pm} - r) \vec{p}_{\pi^{\pm}} |_0 - (y_{\pm} + r) \vec{p}_{\pi^0 \pm} |_0 \right]^{\perp}$$

$$y_{\pm} \equiv \frac{2q_{\pm} \cdot p_{\tau^{\pm}}}{m_{\tau}^2 + m_{\rho}^2} = \frac{q_{\pm} \cdot p_{\tau^{\pm}}}{p_{\rho^{\pm}} \cdot p_{\tau^{\pm}}}$$
$$r \equiv \frac{m_{\rho}^2 - 4m_{\pi}^2}{m_{\tau}^2 + m_{\rho}^2} \approx 0.14$$

 $|_0$ = tau rest frame, y_± and r are kinematic constants

Calculating the Theta Variable $\Theta = \operatorname{sgn} \left[\vec{v}_{\tau^+} \cdot (\vec{E}_- \times \vec{E}_+) \right] \operatorname{arccos} \left[\frac{\vec{E}_+ \cdot \vec{E}_-}{|\vec{E}_+||\vec{E}_-|} \right]$

- If neutrino 4-momenta were determined, could then reconstruct tau momentum as well as tau and Higgs rest frames
 - Not possible at LHC
 - Have 2 undetermined momenta
 - Possible at CEPC, FCCee, ILC

Ideal situation

Θ is an optimal reconstructable angular variable senstive to CPV in $h \rightarrow \tau \tau$

Felix Yu – CPV in Higgs Physics

Harnik, Martin, Okui, Primulando, FY [1308.1094] 27

LHC prospects

- Consider h+j events ("boosted" τ_{had}τ_{had} sample)
- At the LHC, need to approximate neutrino momenta
 - Have (8-2-2-2=) 2 unknown four-momentum components
 - Will use collinear approximation for neutrino momenta
 - In this approximation, Θ is identical to ρρ acoplanarity angle
 - Other approximations considered tended to wash out or distort the sinuisoidal shape of the Θ distribution
 - First proposal to measure Δ at the LHC with prompt tau decays and kinematics

Ideal vs. Collinear approximation

LHC14 simulation details

- Use MadGraph5 for h+j and Z+j events at LHC14
 - Mimic cuts for 1-jet, hadronic taus Higgs search category
 - Impose preselection of $p_T(j) > 140$ GeV, $|\eta(j)| < 2.5$
 - Normalize to MCFM NLO $\sigma(h+j)=2.0 \text{ pb}, \sigma(Z+j)=420 \text{ pb}$
 - No pileup or detector simulation, aside from tau-tagging efficiencies
 - Pileup degrades primary vertex determination for charged pion tracks and adds ECAL deposits that reduce neutral pion resolution
 - Tracking and detector resolution will clearly smear the Θ distribution

Yields for 3 ab⁻¹ LHC

• Signal region: MET > 40 GeV, $p_T(\rho) > 45$ GeV, $|\eta(\rho)| < 2.1$, $m_{coll} > 120$ GeV

Inject an additional 10% contribution to (flat) Zj
 background to account for QCD multijets

	hj	Z j
Inclusive σ	$2.0~{ m pb}$	420 pb
$Br(\tau^+\tau^- decay)$	6.1%	3.4%
$Br(\tau^- \to \pi^- \pi^0 \nu)$	26%	26%
Cut efficiency	18%	0.24%
$\mathrm{N}_{\mathrm{events}}$	1100	1800

 N_{events} for 3 $ab^{\text{-1}}$ with $\tau\text{-tagging}$ 50% efficiency

Yields for 3 ab⁻¹ LHC

 Consider τ tagging efficiency benchmarks of 50% and 70%, use likelihood analysis testing different Δ

τ_h efficiency	50%	70%
3σ	$L = 550 \text{ fb}^{-1}$	$L = 300 {\rm ~fb}^{-1}$
5σ	$L = 1500 \text{ fb}^{-1}$	$L = 700 \text{ fb}^{-1}$
$Accuracy(L = 3 \text{ ab}^{-1})$	11.5°	8.0°

- Discriminating pure scalar vs. pure pseudoscalar at 3σ
 requires 550 (300) fb⁻¹ with 50% (70%) τ tagging
 efficiency
 - For 5σ, require 1500 (700) fb⁻¹ with 50% (70%) τ tagging efficiency
- Again, detector effects and pileup are neglected Felix Yu – CPV in Higgs Physics

Hadronic T Reconstruction

Zanzi for ATLAS and CMS [1703.10259]

Updated Delphes analysis

Askew, Jaiswal, Okui, Prosper, Sato [1501.03156]

- Collinear approx. at LHC is likely a hard limit
- Angular resolution negligibly (4%) degrades Θ
 distribution
- MET resolution most significantly affects contamination from irreducible Z background

HE-LHC (first look)

• Higgs+jet rates will give 3.5× increase in signal

statistics	p _T cut (GeV) on h+j for	NLO cross section for 27 TeV pp collider (MCFM 8.0)	n for der Signal enhancement compared to 14 TeV, p _T > 140 GeV 6.05× 3.48× [Our original working point] 3.06× 1.72× 1.04×	
	100	12.1 pb	6.05×	
	140	6.96 pb	3.48× [Our original working point]	
	150	6.12 pb	3.06×	
	200	3.43 pb	1.72×	
	250	2.08 pb	1.04×	

- Remark: Boosted Higgs studies will gain significantly by going to HE-LHC
 - Important for exotic Higgs decays with jet substructure

Lepton collider possibilities

- At a lepton collider, have enough constraints to solve algebraically for neutrino momenta
 - Have two neutrino momenta solution sets
 - Both solutions give correct Higgs mass
 - Weight each solution by half an event
 - Necessarily require visible Z decay
 - Finite resolution on different Z decay channels will moderate the Θ distribution (not included)

Lepton collider – reconstructed

Lepton collider – reconstructed

Lepton collider possibilities

- For Vs = 250 GeV, Zh production is about 0.23 pb
 - Signal yield (using SM Br(h $\rightarrow \tau\tau$) and restricting to visible Z decays) is about 770 events with 1 ab⁻¹
 - Restricting to Z \rightarrow ee, $\mu\mu$ decays gives about 65 events
 - Hadronic Z decays will help CPV study statistics at price of worse resolution
 - Construct binned likelihood using a sinuisoidal fit to signal, determine sensitivity by variation of test Δ

$$L = \frac{\prod_{i=1}^{N} \operatorname{Pois}(B_i + S_i^{\Delta=0} | B_i + S_i^{\Delta=\delta})}{\prod_{i=1}^{N} \operatorname{Pois}(B_i + S_i^{\Delta=0} | B_i + S_i^{\Delta=0})}$$

Luminosity scaling (without systematics)

Luminosity scaling (without systematics)

Lepton Collider Prospects

- Systematics will affect high luminosity estimates
- Expect some sensitivity losses from detector resolution, charged and neutral pion efficiency
 - Will update numbers using preliminary CEPC Delphes card
 - Reconstructing neutrino momenta is equivalent to knowing the rest frames of the Higgs and tau daughters
- Also expect a NP model giving a nonzero CP phase could enhance Br(h →ττ)

CPV in HVV interactions at future colliders

• Comparison for e⁺e⁻ and pp

TABLE III: List of f_{CP} values in HVV couplings expected to be observed with 3σ significance and the corresponding uncertainties δf_{CP} for several collider scenarios, with the exception of $V^* \to VH$ mode at pp 300 fb⁻¹ where the simulated measurement does not quite reach 3σ . Numerical estimates are given for the effective couplings Hgg, $H\gamma\gamma$, $HZ\gamma$, HZZ/HWW, assuming custodial Z/W symmetry and using HZZ couplings as the reference. The \checkmark mark indicates that a measurement is in principle possible but is not covered in this study.

				HZZ/HWW						gg	$HZ\gamma$	H	$\gamma\gamma$	
collider	energy	\mathcal{L}	$H \to V$	VV^*	$V^{*} -$	$\rightarrow VH$	$V^*V^* \to H$		gg -	$\rightarrow H$	$H \to Z \gamma$	$\gamma\gamma \to H$	$H \rightarrow$	$\rightarrow \gamma \gamma$
	${\rm GeV}$	fb^{-1}	f_{CP} δ	δf_{CP}	f_{CP}	δf_{CP}	f_{CP} δf_{CP}		f_{CP}	δf_{CP}				
pp	14000	300	0.18 (0.06	6×10^{-4}	4×10^{-4}	18×10^{-4}	7×10^{-4}	_	0.50				
pp	14000	3000	0.06 (0.02	$3.7\times\!10^{-4}$	$1.2\times\!10^{-4}$	4.1×10^{-4}	1.3×10^{-4}	0.50	0.16	\checkmark		\checkmark	/
e^+e^-	250	250	\checkmark		21×10^{-4}	7×10^{-4}	~	(
e^+e^-	350	350	\checkmark		3.4×10^{-4}	1.1×10^{-4}	v	/						
e^+e^-	500	500	\checkmark		11×10^{-5}	4×10^{-5}	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/						
e^+e^-	1000	1000	\checkmark		20×10^{-6}	8×10^{-6}	~	/						
$\gamma\gamma$	125		\checkmark									\checkmark		

Anderson, et. al. [1309.4819]

Suite of Higgs modes to study

– EW dibosons

See, e.g. Anderson, et. al. [1309.4819]

- Probe in both decays and production, especially VBF and VH (using crossing symmetry)
- Part of general study of differential distributions to test momentumdependent form factors
- ttH See, e.g. Buckley, Goncalves [1507.07926], talk by Sakurai
 - Dileptonic tt final state with $H \rightarrow bb$ jet substructure
- ΖγFarina, Grossman, Robinson [1503.06470]
 - Take advantage of interference between continuum background and signal from gluon initiated events
- gg Dolan, Harris, Jankowiak, Spannowsky [1406.3322]
 - Use associated jets for angular analysis
- γγ
 Bishara, Grossman, Harnik, Robinson, Shu, Zupan [1312.2955]
 - Require converted photons (detector material) and angular resolution on leptonic opening angles
- bb, cc, etc. Galanti, Giammanco, Grossman, Kats, Stamou, Zupan
 - Can possible overcome QCD wash-out of quark polarization [1505.02771]
- Felix Yu CPV in Higgs Physics

Schematic collider program for CPV in

Higgs to bb, cc

 $\Lambda_b \to X_c \ell^- \nu$

 $\Lambda_c^+ \to p K^- \pi^+$

• Study baryonic decays

Galanti, Giammanco, Grossman, Kats, Stamou, Zupan [1505.02771] Kats [1505.06731]

- Baryonic decays preserve polarization to O(1)
- About 10% of b-quarks create Λ_b
- Measure polarization in tt, W+c SM processes
- Use data to control reconstruction techniques in Higgs decays

Open issues

- Post-discovery: what Lagrangian CPV source is responsible in the case of a positive measurement?
- Targets for CPV sensitivity theory questions
 - Tree-level operator (Yukawa) vs. loop-induced
 - How to include rate effects
- Targets for CPV sensitivity optimal experimental probes ("flavored" CPV)

Summary

- New CP phases are motivated from general baryogenesis arguments
- Each measured Higgs coupling can be a test bed for CPV
 - No tree-level CPV expected in any Higgs coupling
 - h→ττ is a promising first channel to study at HL-LHC and future colliders
 - Post-(pre?-)discovery model building needed to connect directly CP phases to EW baryogenesis

h→ττ at Colliders	LHC	HL-LHC	ee unpolarized (5 ab ⁻¹)
Accuracy (1σ)	25°	8.0°	2.5°
Accuracy (2σ)	34°	11.5°	3.9°

Alonso, Jenkins, Manohar, Trott [1312.2014]

Felix Yu – CPV in Higgs Physics

	$1: X^{3}$	2:1	H^6	$3: H^4 D^2$			5 :	$5:\psi^2H^3+{\rm h.c.}$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H (1	$(H^{\dagger}H)^3$	$Q_{H\Box}$	(H^{\dagger})	$H)\Box(H^{\dagger}H)$	I)	Q_{eH}	$(H^\dagger H)(\bar{l}_p e_r H)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	·		Q_{HD}	$Q_{HD} = (H^{\dagger}D_{\mu}H)^{*} (H^{\dagger}D_{\mu}$		$D_{\mu}H$	Q_{uH}	$(H^\dagger H)(\bar{q}_p u_r \widetilde{H})$	
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$									
$4: X^2 H^2$		6	$6:\psi^2 XH + \text{h.c.}$			$7:\psi^2H^2D$				
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r)$	$(\tau) \tau^I H$	$W^{I}_{\mu u}$	$Q_{Hl}^{(1)}$		$(H^{\dagger}i\overleftarrow{l}$	$\vec{D}_{\mu}H)(\bar{l}_p\gamma^{\mu}l_r)$	
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu})$	$e_r)HB$	$B_{\mu u}$	$Q_{Hl}^{(3)}$		$(H^{\dagger}i\overleftarrow{D}$	${}^{I}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$^{A}u_{r})\widetilde{H}$	$G^A_{\mu\nu}$	Q_{He}		$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{O}_{\mu}H)(\overline{e}_p\gamma^{\mu}e_r)$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r$	$(\tau)\tau^{I}\widetilde{H}$	$W^{I}_{\mu\nu}$	$Q_{Hq}^{(1)}$		$(H^{\dagger}i\overleftarrow{I}$	$\vec{D}_{\mu}H)(\bar{q}_p\gamma^{\mu}q_r)$	
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u)$	$(u_r)\widetilde{H}H$	$B_{\mu u}$	$Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$^{A}d_{r})H$	$G^A_{\mu\nu}$	Q_{Hu}		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$		
Q_{HWI}	$_{3} H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r)$	$(\tau) \tau^{I} H$	$W^{I}_{\mu\nu}$	Q_{Hd}		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{H\widetilde{W}I}$	$_{3} H^{\dagger}\tau^{I}H \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} \sigma^{\mu\nu}$	$(d_r)HE$	$B_{\mu u}$	Q_{Hud} +	h.c.	$i(\widetilde{H}^{\dagger}L$	$(\bar{u}_p \gamma^\mu d_r)$	
	$8:(\bar{L}L)(\bar{L}L)$		$8:(\bar{R})$	$(\bar{R}R)(\bar{R}R)$	R)		8:	$(\bar{L}L)(\bar{R}H)$	<i>?</i>)	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p\gamma$	$\gamma_{\mu}e_{r})(\bar{e}$	$\bar{e}_s \gamma^\mu e_t)$	Q_{le}	($(\bar{l}_p \gamma_\mu l_r)(\bar{e}$	$(s_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$		Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$		$_{s}\gamma^{\mu}u_{t})$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$		Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$				
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p\gamma$	$(\mu e_r)(\bar{u}$	$(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	($\bar{q}_p \gamma_\mu q_r)(\bar{e}$	$\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p\gamma$	$\gamma_{\mu}e_{r})(a$	$\bar{l}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	($\bar{q}_p \gamma_\mu q_r)(\bar{\imath}$	$u_s \gamma^\mu u_t$)	
		$Q_{ud}^{(1)}$	$(\bar{u}_p\gamma$	$(a_{\mu}u_r)(a_{\mu}u_r)$	$\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p\gamma)$	$_{\mu}T^{A}q_{r})(\bar{\imath}$	$\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T$	$(a^A u_r)(a^A u_r)$	$\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	($\bar{q}_p \gamma_\mu q_r)(\dot{c}$	$\bar{l}_s \gamma^\mu d_t)$	
						$Q_{qd}^{(8)}$	$(\bar{q}_p\gamma)$	$q_{\mu}T^{A}q_{r})(d$	$\bar{l}_s \gamma^\mu T^A d_t)$	
	$8:(\bar{L}R)($	$\bar{R}L) + h.$	с.	8:	$(\bar{L}R)(\bar{L}R)$	+ h.c.				
	Q_{ledq} $(\bar{l}$	$(\bar{d}_s q_t)$	$_{j})$ $Q_{q}^{(}$	1) uqd	$(\bar{q}_p^j u_r)\epsilon$	$_{jk}(\bar{q}_s^k d_t)$				
			$Q_q^{(i)}$	$^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_j$	$_{jk}(\bar{q}_s^k T^A d_t$)			
			$Q_l^{(}$	(1) equ	$(\bar{l}_p^j e_r) \epsilon_j$	$_{ik}(\bar{q}_s^k u_t)$				
			Q_l^0	(3) equ	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_j$	$_{jk}(\bar{q}_s^k\sigma^{\mu\nu}u_t)$	t)			

CPV at dimension 6

Ideal – compare to $\rho^+\rho^-$ acoplanarity^{*}

