PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS

Felix Yu Johannes Gutenberg University, Mainz

U. of Massachusetts, Amherst, Amherst Center for Fundamental Interactions The CP Nature of the Higgs Boson, May 1, 2015

CP Violation – Motivated and Required

- Sakharov's three conditions for baryogenesis motivate searches for new sources of CP violation
 - Need B violation
 - Need C and CP violation
 - Need interactions to happen out of thermal equilibrium
- Our picture of baryogenesis is embarrassingly incomplete
 - SM EW baryogenesis is insufficient
 - Strongly motivates new sources of CPV

CP and the Higgs

- A natural place to test for CP violating phases is with Higgs physics: distinct NP sources
 - scalar-pseudoscalar admixture (e.g. scalar potential)
 - naïvely tested via rate suppression
 - couplings to gauge bosons (*e.g.* bosonic CPV)
 - for example, tested via acoplanarity measurement in $h \rightarrow ZZ^* \rightarrow 4I$
 - couplings to fermions (e.g. fermionic CPV)
 - tomorrow: test via $h \rightarrow \tau^+ \tau^- \rightarrow (\rho^+ \nu) \ (\rho^- \nu) \rightarrow (\pi^+ \pi^0) \nu \ (\pi^- \pi^0) \nu$
- Throughout, will focus on spin-0 Higgs
 - ATLAS and CMS (see talk by Whitbeck and *e.g.* CMS [1411.3441]) have excluded other spin possibilities

Current Higgs proportionality measurements

- These rate measurements only tell half of the story
 - Must also test **phases** (and **higher order moments v**ia Higgs EFT) CMS [1412.8662]

4

CP and the Higgs

- Precision Higgs physics is a central tenet of the LHC/HL-LHC program
 - Much effort is justifiably concentrated on coupling extractions
 - In order to be sensitive to deviation $\delta,$ should measure to $\delta/3$ or $\delta/5$ precision
 - Motivates a dedicated Higgs factory (ILC, FCCee, CEPC)
- Will summarize available CPV study prospects at future machines
 - Inherently different levels of rigor
 - Emphasize how different machines enable new search channels and tests of Higgs couplings
 - Also complementary to indirect tests (EDMs)

Machines

- e⁺e⁻ collider
 - ILC: Linear collider has polarized beams, much less instantaneous luminosity
 - FCC-ee, CEPC: Circular collider has unpolarized beams, much better instantaneous luminosity
- pp collider
 - LHC & HL-LHC, FCC-hh, SPPC
- (Muon collider)
- (γγ collider)

Outline

- Studied channels
 - ZZ, WW (A. Whitbeck)
 - gg (M. Dolan)
 - Zγ (M. Farina)
 - ττ (FY)
- The unlikely/impossible SM decay channels (w/o a unique collider)
 - $-ee, \mu\mu, \gamma\gamma, qq (q = u, d, s, c)$
- Prospective channels
 - bb, tt (T. Liu)
- Open questions and summary

Basic CPV collider phenomenology

- NP CPV sources generally affect inclusive rates
 - Normalized differential distributions fold out rate information (by construction)
 - Need to have rates (=inclusive distributions=integrated luminosity) before asymmetry variables or differential distributions are meaningful
- Canonical observables
 - triple product of 3-vectors CP-odd, T-odd combination
 - $\mathbf{p}_1 \cdot (\mathbf{p}_2 \times \mathbf{p}_3)$
 - angular distributions uses decays of polarized intermediate particles
 - acoplanarity in $h \rightarrow ZZ^* \rightarrow 4$ leptons

Testing CPV in Higgs decays to

- (electroweak) gauge bosons
- For ZZ^{*}, measure acoplanarity angle Φ (angle between Z₁ and Z₂ decay planes)
- Golden channel
 - everything
 measureable, can
 reconstruct the
 Higgs rest frame
 and appropriate
 decay planes

Testing CPV in Higgs decays to ZZ*

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Final state observables

- Four-vectors of the final state particles give access to boson decay planes and to the tensor structure.
- Easier in $ZZ^* \rightarrow 4I$ case, harder in $WW \rightarrow IvIv$ case.
- Reasonable target: 10% CP-odd admixture corresponds to f_{CP} < 10⁻⁵ in VV decays. (Snowmass)

pp->H->ZZ->4I MH=125 GeV Spin=0 E=8 TeV

Slide from K. Prokofiev, HKUST IAS Program on the Future of High Energy Physics 2015

- VBF production
 - CP even is pure $W_{\mu\nu}W^{\mu\nu}$
 - CP odd is pure $W_{\mu\nu}\widetilde{W}^{\mu\nu}$
 - Shape is influenced by VBF cuts

- VH Production is equivalent physics to decay because of crossing symmetry
 - More sensitive to momentum form factors
 - Use ZH production, Z to leptons, Higgs to bottoms

Anderson, et. al. [1309.4819]

- VH Production is equivalent physics to decay because of crossing symmetry
 - At lepton collider

Red: SM Blue: pseudoscalar Green: $f_{a3} = 0.5$, $\phi_{a3} = 0$ Magenta: $f_{a3} = 0.5$, $\phi_{a3} = \pi/2$ 13

Anderson, et. al. [1309.4819]

• LHC ZH production 0.15

Anderson, et. al. [1309.4819]

CPV in HVV interactions

- Build kinematic discriminant and extrapolate sensitivity
 - Extrapolation will be systematics limited
 - Form factors in production also change kinematics (interpretation is not model independent)

Circles: HVV decay Triangles: VH production Squares: VBF production

Other channels and representative work

- $Z\gamma$, $Z \rightarrow |+|^-$ (M. Farina and collaborators, 1503.06470)
 - Take advantage of interference between continuum background and signal from gluon initiated events
- gg (M. Dolan and collaborators, 1406.3322)
 Use associated jets for angular analysis
- ττ (FY and collaborators, 1308.1094)
 - At LHC or other proton machines, reconstruct acoplanarity from rho meson decays
 - At lepton colliders, can fully reconstruct Higgs rest frame and neutrino momenta (up to two-fold ambiguity)
 - See also Berge, et. al. [1308.2674] and refs. therein

- γγ (F. Bishara, et. al., 1312.2955)
 - Require converted photons (detector material) and angular resolution on leptonic opening angles

- γγ (F. Bishara, et. al., 1312.2955)
 - Require converted photons (detector material) and angular resolution on leptonic opening angles

\sqrt{s}	$\mathcal{L} \text{ [fb}^{-1} \text{]}$	$\sigma \times \mathrm{BR}(h \to \gamma \gamma)$ [fb]	Events
8	20	47	0.24
14	3000	125	94
33	3000	444	333
100	3000	1875	1406

Table 1. Expected number of events after the application of S or T cuts with $\theta_{\ell\ell} > 10^{-4}$ to obtain $\langle \mathcal{B} \rangle / \langle \mathcal{A} \rangle \sim 20\%$. The Higgs production cross section includes the gluon fusion and VBF channels only and is taken from [55].

- Would be trivial (!) at γγ collider

- μμ
 - Not possible in Higgs decay
 - Polarize beams at muon collider
- ee
 - Not possible in Higgs decay
 - Polarize beams at electron collider, push energy resolution to R = 0.01% or less

First generation couplings

s-channel Higgs production

- Unique opportunity for measurement close to SM sensitivity
- Highly challenging; $\sigma(ee \rightarrow H) = 1.6$ fb; 7 Higgs decay channels studied

Work in progress

- How large are loop induced corrections? How large are BSM effects?
- Do we need an energy scan to find the Higgs?
- How much luminosity will be available for this measurement? By how much is the luminosity reduced by monochromators?
- Can polarization increase sensitivity?₂₀ Slide from M. Klute, FCC Week 2015

- μμ
 - Not possible in Higgs decay
 - Polarize beams at muon collider
- ee
 - Not possible in Higgs decay
 - Polarize beams at electron collider, push energy resolution to R = 0.01% or less
- qq (q = u, d, s, c)
 - Only recent work addressed extracting second generation Yukawas from h ${\rightarrow}$ J/W γ
 - See Kagan, et. al. (1406.1722), Grossman, et. al. (1501.06569)
 - Needs full luminosity HL-LHC
 - No study of CPV prospects in these decays
 - May have complentarity with meson CPV probes

• bb

- Without 2HDM tan β enhancement, could only use Higgs decay and not bbH production
- Some work in progress by Yevgeny Kats and collaborators about how bottom spin is retained in hadronization and subsequent decay
 - See Y. Kats, "b polarization as a probe of new physics", 2nd NPKI Workshop, Physics from Run 2 of the LHC
- Would require dedicated analysis for constructing appropriate CPV observable in bb decay channel

- tt (see talk by T. Liu)
 - Independent
 measurement from gg
 production, γZ and γγ
 decay
 - Probed via ttH production
 - EDM constraints require non-trivial flavor
 construction if we have
 positive signal in ttH and
 null results in EDM

ttH production – pp collider

24

ttH production – (high energy) e^+e^- collider

Moortgat-Pick (ed.), et. al. ILC physics study, 1504.01726

ttH production at lepton collider

- Need to capture top polarization
- No modern complete pheno studies

FIG. 3: The top quark polarization in the process $e^+e^- \rightarrow t\bar{t}\Phi$ for a scalar and a pseudoscalar Higgs boson as a function of \sqrt{s} for two masses $M_{\Phi} = 120$ and 150 GeV (left) and with unpolarized and polarized e^{\pm} beams as a function of the parameter b at $\sqrt{s} = 800$ GeV for $M_{\Phi} = 120$ GeV (right).

Dev, et. al. [0707.2878]

ttH production at lepton collider

• Sensitivity to pseudoscalar coupling

FIG. 4: The sensitivity of the cross section (left) and the top quark polarization (right) on the parameter b for $M_{\Phi} = 120$ at $\sqrt{s} = 800$ with $\mathcal{L} = 500$ fb⁻¹.

$$g_{\Phi tt} = -i\frac{e}{s_W}\frac{m_t}{2M_W}(a+ib\gamma_5)$$

Dev, et. al. [0707.2878]

Open issues

- Post-discovery: what Lagrangian CPV source is responsible in the case of a positive measurement?
- Targets for CPV sensitivity
 - Tree-level operator (Yukawa) vs. loop-induced
 - How to include rate effects
- Precision Higgs physics NP models
 - Real coefficients induce unitarity violation in scattering
 - Imply a NP scale for UV completion
 - Imaginary coefficients any guiding principle for size of effects?

Summary

- New CP phases are motivated from general baryogenesis arguments
- Many physics studies are needed to motivate the physics case of future machines
- Each measured Higgs coupling can be a test bed for CPV
 - New dimension 4 couplings (for example, FV couplings) are also possible and immediately go beyond SM

CPV in HVV interactions

• Comparison for e⁺e⁻ and pp

TABLE III: List of f_{CP} values in HVV couplings expected to be observed with 3σ significance and the corresponding uncertainties δf_{CP} for several collider scenarios, with the exception of $V^* \to VH$ mode at pp 300 fb⁻¹ where the simulated measurement does not quite reach 3σ . Numerical estimates are given for the effective couplings Hgg, $H\gamma\gamma$, $HZ\gamma$, HZZ/HWW, assuming custodial Z/W symmetry and using HZZ couplings as the reference. The \checkmark mark indicates that a measurement is in principle possible but is not covered in this study.

			HZZ/HWW						H_{2}	gg	$HZ\gamma$	$HZ\gamma$ $H\gamma\gamma$	
collider	energy	\mathcal{L}	$H \rightarrow$	VV^*	$V^* \to VH$		$V^*V^* \to H$		<i>gg</i> –	$\rightarrow H$	$H \to Z \gamma$	$\gamma\gamma \to H$	$H \to \gamma \gamma$
	${\rm GeV}$	fb^{-1}	f_{CP}	δf_{CP}	f_{CP}	δf_{CP}	f_{CP}	δf_{CP}	f_{CP}	δf_{CP}			
pp	14000	300	0.18	0.06	6×10^{-4}	4×10^{-4}	18×10^{-4}	7×10^{-4}	_	0.50			
pp	14000	3000	0.06	0.02	3.7×10^{-4}	1.2×10^{-4}	4.1×10^{-4}	1.3×10^{-4}	0.50	0.16	\checkmark		\checkmark
e^+e^-	250	250	,	\checkmark	21×10^{-4}	7×10^{-4}		(
e^+e^-	350	350		\checkmark	3.4×10^{-4}	1.1×10^{-4}		(
e^+e^-	500	500	,	\checkmark	11×10^{-5}	4×10^{-5}		(
e^+e^-	1000	1000	,	\checkmark	20×10^{-6}	8×10^{-6}		(
$\gamma\gamma$	125		,	\checkmark								\checkmark	