PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS

Felix Yu
Johannes Gutenberg University, Mainz

U. of Massachusetts, Amherst, Amherst Center for Fundamental Interactions
The CP Nature of the Higgs Boson, May 1, 2015
CP Violation – Motivated and Required

• Sakharov’s three conditions for baryogenesis motivate searches for new sources of CP violation
 – Need B violation
 – Need C and CP violation
 – Need interactions to happen out of thermal equilibrium

• Our picture of baryogenesis is embarrassingly incomplete
 – SM EW baryogenesis is insufficient
 – Strongly motivates new sources of CPV
A natural place to test for CP violating phases is with Higgs physics: distinct NP sources

- scalar-pseudoscalar admixture (e.g. scalar potential)
 - naïvely tested via rate suppression

- couplings to gauge bosons (e.g. bosonic CPV)
 - for example, tested via acoplanarity measurement in \(h \to ZZ^* \to 4l \)

- couplings to fermions (e.g. fermionic CPV)
 - tomorrow: test via \(h \to \tau^+ \tau^- \to (\rho^+\nu) (\rho^-\nu) \to (\pi^+\pi^0)\nu (\pi^-\pi^0)\nu \)

Throughout, will focus on spin-0 Higgs

- ATLAS and CMS (see talk by Whitbeck and e.g. CMS [1411.3441]) have excluded other spin possibilities
Current Higgs proportionality measurements

- These rate measurements only tell half of the story
 - Must also test phases (and higher order moments via Higgs EFT)

ATLAS-CONF-2015-007
CMS [1412.8662]
CP and the Higgs

- Precision Higgs physics is a central tenet of the LHC/HL-LHC program
 - Much effort is justifiably concentrated on coupling extractions
 - In order to be sensitive to deviation δ, should measure to $\delta/3$ or $\delta/5$ precision
 - Motivates a dedicated Higgs factory (ILC, FCCee, CEPC)
- Will summarize available CPV study prospects at future machines
 - Inherently different levels of rigor
 - Emphasize how different machines enable new search channels and tests of Higgs couplings
 - Also complementary to indirect tests (EDMs)
Machines

- e^+e^- collider
 - ILC: Linear collider has polarized beams, much less instantaneous luminosity
 - FCC-ee, CEPC: Circular collider has unpolarized beams, much better instantaneous luminosity

- pp collider
 - LHC & HL-LHC, FCC-hh, SPPC

- (Muon collider)
- (γγ collider)
Outline

• Studied channels
 – ZZ, WW (A. Whitbeck)
 – gg (M. Dolan)
 – Zγ (M. Farina)
 – ττ (FY)

• The unlikely/impossible SM decay channels (w/o a unique collider)
 – ee, μμ, γγ, qq (q = u, d, s, c)

• Prospective channels
 – bb, tt (T. Liu)

• Open questions and summary
Basic CPV collider phenomenology

• NP CPV sources generally affect inclusive rates
 – Normalized differential distributions fold out rate information (by construction)
 – Need to have rates (=inclusive distributions=integrated luminosity) before asymmetry variables or differential distributions are meaningful

• Canonical observables
 – triple product of 3-vectors – CP-odd, T-odd combination
 • \(p_1 \cdot (p_2 \times p_3) \)
 – angular distributions – uses decays of polarized intermediate particles
 • acoplanarity in \(h \rightarrow ZZ^* \rightarrow 4 \) leptons
Testing CPV in Higgs decays to (electroweak) gauge bosons

- For ZZ*, measure acoplanarity angle Φ (angle between Z_1 and Z_2 decay planes)
- Golden channel
 - everything measureable, can reconstruct the Higgs rest frame and appropriate decay planes
Testing CPV in Higgs decays to ZZ*

Final state observables

- Four-vectors of the final state particles give access to boson decay planes and to the tensor structure.
- Easier in ZZ* → 4l case, harder in WW → lvlv case.
- Reasonable target: 10% CP-odd admixture corresponds to f_{CP} < 10^{-5} in VV decays. (Snowmass)
Testing CPV in Higgs production

- VBF production
 - CP even is pure $W_{\mu\nu}W^{\mu\nu}$
 - CP odd is pure $W_{\mu\nu}\tilde{W}^{\mu\nu}$
 - Shape is influenced by VBF cuts
Testing CPV in Higgs production

• VH Production is equivalent physics to decay because of crossing symmetry
 – More sensitive to momentum form factors
 – Use ZH production, Z to leptons, Higgs to bottoms

Anderson, et. al. [1309.4819]
Testing CPV in Higgs production

• VH Production is equivalent physics to decay because of crossing symmetry
 – At lepton collider

Anderson, et. al. [1309.4819]
Testing CPV in Higgs production

- LHC ZH production

Red: SM
Blue: pseudoscalar
Green: \(f_{a3} = 0.5, \phi_{a3} = 0 \)
Magenta: \(f_{a3} = 0.5, \phi_{a3} = \pi/2 \)

Anderson, et. al. [1309.4819]
CPV in HVV interactions

- Build kinematic discriminant and extrapolate sensitivity
 - Extrapolation will be systematics limited
 - Form factors in production also change kinematics (interpretation is not model independent)

Anderson, et. al. [1309.4819]
Other channels and representative work

• $Z\gamma, Z \rightarrow l^+l^-$ (M. Farina and collaborators, 1503.06470)
 – Take advantage of interference between continuum background and signal from gluon initiated events

• gg (M. Dolan and collaborators, 1406.3322)
 – Use associated jets for angular analysis

• $\tau\tau$ (FY and collaborators, 1308.1094)
 – At LHC or other proton machines, reconstruct acoplanarity from rho meson decays
 – At lepton colliders, can fully reconstruct Higgs rest frame and neutrino momenta (up to two-fold ambiguity)

 • See also Berge, et. al. [1308.2674] and refs. therein
Other channels

- $\gamma\gamma$ (F. Bishara, *et. al.*, 1312.2955)
 - Require converted photons (detector material) and angular resolution on leptonic opening angles
Other channels

• $\gamma\gamma$ (F. Bishara, et. al., 1312.2955)

 – Require converted photons (detector material) and angular resolution on leptonic opening angles

<table>
<thead>
<tr>
<th>\sqrt{s}</th>
<th>\mathcal{L} [fb$^{-1}$]</th>
<th>$\sigma \times \text{BR}(h \rightarrow \gamma\gamma)$ [fb]</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>20</td>
<td>47</td>
<td>0.24</td>
</tr>
<tr>
<td>14</td>
<td>3000</td>
<td>125</td>
<td>94</td>
</tr>
<tr>
<td>33</td>
<td>3000</td>
<td>444</td>
<td>333</td>
</tr>
<tr>
<td>100</td>
<td>3000</td>
<td>1875</td>
<td>1406</td>
</tr>
</tbody>
</table>

Table 1. Expected number of events after the application of S or T cuts with $\theta_{\ell\ell} > 10^{-4}$ to obtain $\langle B \rangle/\langle A \rangle \sim 20\%$. The Higgs production cross section includes the gluon fusion and VBF channels only and is taken from [55].

 – Would be trivial (!) at $\gamma\gamma$ collider
Other channels

• $\mu\mu$
 – Not possible in Higgs decay
 – Polarize beams at muon collider

• ee
 – Not possible in Higgs decay
 – Polarize beams at electron collider, push energy resolution to $R = 0.01\%$ or less
First generation couplings

- **s-channel Higgs production**
 - Unique opportunity for measurement close to SM sensitivity
 - Highly challenging; $\sigma(\text{ee} \rightarrow \text{H}) = 1.6 \text{ fb}$; 7 Higgs decay channels studied

Preliminary Results

$L = 10 \text{ ab}^{-1}$

$k_e < 2.2$ at 3σ

- **Work in progress**
 - How large are loop induced corrections? How large are BSM effects?
 - Do we need an energy scan to find the Higgs?
 - How much luminosity will be available for this measurement? By how much is the luminosity reduced by monochromators?
 - Can polarization increase sensitivity?
Other channels

- $\mu\mu$
 - Not possible in Higgs decay
 - Polarize beams at muon collider
- ee
 - Not possible in Higgs decay
 - Polarize beams at electron collider, push energy resolution to $R = 0.01\%$ or less
- qq ($q = u, d, s, c$)
 - Only recent work addressed extracting second generation Yukawas from $h \rightarrow J/\Psi \gamma$
 - See Kagan, et. al. (1406.1722), Grossman, et. al. (1501.06569)
 - Needs full luminosity HL-LHC
 - No study of CPV prospects in these decays
 - May have complementarity with meson CPV probes
Other channels

- **bb**
 - Without 2HDM $\tan \beta$ enhancement, could only use Higgs decay and not bbH production
 - Some work in progress by Yevgeny Kats and collaborators about how bottom spin is retained in hadronization and subsequent decay
 - See Y. Kats, “b polarization as a probe of new physics”, 2nd NPKI Workshop, Physics from Run 2 of the LHC
 - Would require dedicated analysis for constructing appropriate CPV observable in bb decay channel
Other channels

- \(tt \) (see talk by T. Liu)
 - Independent measurement from \(gg \) production, \(\gamma Z \) and \(\gamma\gamma \) decay
 - Probed via \(ttH \) production
 - EDM constraints require non-trivial flavor construction if we have positive signal in \(ttH \) and null results in EDM

Brod, Haisch, Zupan [1310.1385]
ttH production – pp collider
$t\bar{t}H$ production – (high energy) e^+e^- collider

Moortgat-Pick (ed.), et. al. ILC physics study, 1504.01726
ttH production at lepton collider

- Need to capture top polarization
- No modern complete pheno studies

FIG. 3: The top quark polarization in the process $e^+e^- \rightarrow t\bar{t}\Phi$ for a scalar and a pseudoscalar Higgs boson as a function of \sqrt{s} for two masses $M_\Phi = 120$ and 150 GeV (left) and with unpolarized and polarized e^\pm beams as a function of the parameter b at $\sqrt{s} = 800$ GeV for $M_\Phi = 120$ GeV (right).

Dev, et. al. [0707.2878]
ttH production at lepton collider

- Sensitivity to pseudoscalar coupling

![Graph showing sensitivity to pseudoscalar coupling](image)

FIG. 4: The sensitivity of the cross section (left) and the top quark polarization (right) on the parameter b for $M_\Phi = 120$ at $\sqrt{s} = 800$ with $\mathcal{L} = 500$ fb$^{-1}$.

Dev, et. al. [0707.2878]
Open issues

• Post-discovery: what Lagrangian CPV source is responsible in the case of a positive measurement?

• Targets for CPV sensitivity
 – Tree-level operator (Yukawa) vs. loop-induced
 – How to include rate effects

• Precision Higgs physics NP models
 – Real coefficients induce unitarity violation in scattering
 • Imply a NP scale for UV completion
 – Imaginary coefficients – any guiding principle for size of effects?
Summary

• New CP phases are motivated from general baryogenesis arguments
• Many physics studies are needed to motivate the physics case of future machines
• Each measured Higgs coupling can be a test bed for CPV
 – New dimension 4 couplings (for example, FV couplings) are also possible and immediately go beyond SM
CPV in HVV interactions

• Comparison for e^+e^- and pp

<table>
<thead>
<tr>
<th>collider energy</th>
<th>\mathcal{L}</th>
<th>$H \rightarrow VV^*$</th>
<th>$V^* \rightarrow VH$</th>
<th>$V^V^ \rightarrow H$</th>
<th>$gg \rightarrow H$</th>
<th>$H \rightarrow Z\gamma$</th>
<th>$\gamma \gamma \rightarrow H$</th>
<th>$H \rightarrow \gamma\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>14000 300</td>
<td>0.18 0.06</td>
<td>6×10^{-4}</td>
<td>4×10^{-4}</td>
<td>18×10^{-4}</td>
<td>– 0.50</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>pp</td>
<td>14000 3000</td>
<td>0.06 0.02</td>
<td>3.7×10^{-4}</td>
<td>1.2×10^{-4}</td>
<td>4.1×10^{-4}</td>
<td>0.50 0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e^+e^-</td>
<td>250 250</td>
<td>✓</td>
<td>21×10^{-4}</td>
<td>7×10^{-4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e^+e^-</td>
<td>350 350</td>
<td>✓</td>
<td>3.4×10^{-4}</td>
<td>1.1×10^{-4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e^+e^-</td>
<td>500 500</td>
<td>✓</td>
<td>11×10^{-5}</td>
<td>4×10^{-5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e^+e^-</td>
<td>1000 1000</td>
<td>✓</td>
<td>20×10^{-6}</td>
<td>8×10^{-6}</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>125</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Anderson, et. al. [1309.4819]