# CP VIOLATION IN $h \rightarrow \tau^+ \tau^-$

#### **Felix Yu**

#### **Johannes Gutenberg University, Mainz**

Roni Harnik, Adam Martin, Takemichi Okui, Reinard Primulando, FY Phys. Rev. D88 (2013) 076009 [arxiv: 1308.1094 [hep-ph]]

U. of Massachusetts, Amherst, Amherst Center for Fundamental Interactions The CP Nature of the Higgs Boson, May 2, 2015

# CP and the Higgs

- A natural place to test for CP violating phases is with Higgs physics
  - scalar-pseudoscalar admixture (e.g. scalar potential)
    - naïvely tested via rate suppression
  - couplings to gauge bosons (*e.g.* bosonic CPV)
    - for example, tested via acoplanarity measurement in h→ZZ<sup>\*</sup>→4l
  - couplings to fermions (e.g. fermionic CPV)
    - our work: test via  $h \rightarrow \tau^+ \tau^- \rightarrow (\rho^+ \nu) \ (\rho^- \nu) \rightarrow (\pi^+ \pi^0) \nu \ (\pi^- \pi^0) \nu$
- [Full UV models to connect any given CP phase to a baryogenesis mechanism is BTSOTW]

# CP and the Higgs

- A natural place to test for CP violating phases is with Higgs physics
  - scalar-pseudoscalar admixture (e.g. scalar potential)
    - naïvely tested via rate suppression
  - couplings to gauge bosons (*e.g.* bosonic CPV)
    - for example, tested via acoplanarity measurement in h→ZZ<sup>\*</sup>→4l
  - couplings to fermions (*e.g.* fermionic CPV)
    - our work: test via  $h \rightarrow \tau^+ \tau^- \rightarrow (\rho^+ \nu) (\rho^- \nu) \rightarrow (\pi^+ \pi^0) \nu (\pi^- \pi^0) \nu$
- [Full UV models to connect any given CP phase to a baryogenesis mechanism is BTSOTW]

## Outline

- Motivate new measurement in  $\tau^+\tau^-$  decay channel
- Sensitivity studies at colliders
  - Lepton collider prospects
  - First proposal for an LHC measurement
- Summary

## Testing "fermionic" CPV

- The BSM source of a CPV phase in SM Yukawa couplings can be distinct from possible phases in the scalar potential or pseudoscalar couplings to gauge bosons
  - Motivates CPV tests in fermionic couplings even if bosonic CPV coupling tests give null results
  - For example, new fermions which mix with SM fermions could introduce explicit phases in the Yukawa sector

## Testing "fermionic" CPV with Higgs

- The tau decay channel for the Higgs is the most promising system for direct measurement of fermionic CPV couplings
   M<sub>u</sub> = 126 GeV SMI
  - Top coupling only probed via loops or ttH (tH) production
  - Bottom quark polarizations generally washed out by QCD
  - Tau channel suffer from lost
     information via neutrinos (at hadron colliders), but still have an
     appreciable rate

| M <sub>H</sub> = 126 GeV | SM Br   |
|--------------------------|---------|
| bb                       | 56.1%   |
| WW*                      | 23.1%   |
| gg                       | 8.48%   |
| ττ                       | 6.16%   |
| ZZ*                      | 2.89%   |
| сс                       | 2.83%   |
| γγ                       | 0.228%  |
| Zγ                       | 0.162%  |
| μμ                       | 0.0214% |

## The $h \rightarrow \tau^+ \tau^-$ experimental status

 Both experiments have evidence and are actively searching in all τ decay modes ATLAS

 -σ(statistical) -σ(syst, excl. theory)
 Total un
 -σ(syst, excl. theory)
 -σ(syst, excl. theory)



| ATLAS                                                        |                                               | -σ <b>(</b> \$                                       | statis | tical)     |                   | Tota     | l unce | rtainty |
|--------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|--------|------------|-------------------|----------|--------|---------|
| m <sub>H</sub> = 125.36 GeV                                  |                                               | $-\sigma$ (syst. excl. theory)<br>$-\sigma$ (theory) |        |            | <b>±</b> 1        | ±1σ on μ |        |         |
| $\textbf{H} \rightarrow \tau \tau$                           | $\mu = 1.4^{+0.4}_{-0.4}$                     | + 0.3<br>- 0.3<br>+ 0.3<br>- 0.2<br>+ 0.1<br>- 0.1   |        | <b>⊤</b> T | - 1<br>- 1<br>- 1 |          |        |         |
| Boosted                                                      | $\mu=2.1^{+0.9}_{-0.8}$                       | + 0.5<br>- 0.5                                       |        |            |                   | -        |        |         |
| VBF                                                          | $\mu = 1.2^{+0.4}_{-0.4}$                     | + 0.3<br>- 0.3                                       |        |            | •                 |          |        |         |
| 7 TeV (Combined                                              | d) $\mu = 0.9^{+1.1}_{-1.1}$                  | + 0.8<br>- 0.8                                       | H      |            | -                 |          |        |         |
| 8 TeV (Combined                                              | d) $\mu = 1.5^{+0.5}_{-0.4}$                  | + 0.3<br>- 0.3                                       |        | F          | H-                |          |        |         |
| $\textbf{H} \rightarrow \tau_{\text{lep}} \tau_{\text{lep}}$ | $\mu = 2.0^{+1.0}_{-0.9}$                     | + 0.7<br>- 0.7<br>+ 0.6<br>- 0.5<br>+ 0.1<br>- 0.1   |        | F          |                   |          |        |         |
| Boosted                                                      | $\mu = 3.0^{+2.0}_{-1.7}$                     | + 1.4<br>- 1.3                                       |        |            |                   |          |        |         |
| VBF                                                          | $\mu = 1.7^{ {}^{+1.0}_{-0.9}}$               | + 0.8<br>- 0.8                                       |        | i i        |                   | •        |        |         |
| $\textbf{H} \rightarrow \tau_{\text{lep}} \tau_{\text{had}}$ | $\mu = 1.0^{+0.5}_{-0.5}$                     | + 0.4<br>- 0.3<br>+ 0.4<br>- 0.3<br>+ 0.1<br>- 0.1   |        |            |                   |          |        |         |
| Boosted                                                      | $\mu = 0.9^{_{+1.0}}_{_{-0.9}}$               | + 0.6<br>- 0.6                                       |        |            | 4                 |          |        |         |
| VBF                                                          | $\mu = 1.0^{+0.6}_{-0.5}$                     | + 0.5<br>- 0.4                                       | .      | H          | 1                 |          |        |         |
| $H  ightarrow 	au_{ m had} 	au_{ m had}$                     | $\mu = 2.0^{+0.9}_{-0.7}$                     | + 0.5<br>- 0.5<br>+ 0.8<br>- 0.5<br>+ 0.1<br>- 0.1   |        |            | H                 | +        |        |         |
| Boosted                                                      | $\mu=3.6^{+2.0}_{-1.6}$                       | + 1.0<br>- 0.9                                       |        |            |                   |          |        |         |
| VBF                                                          | $\mu = 1.4^{+0.9}_{-0.7}$                     | + 0.6<br>- 0.5                                       |        | -          | <u> </u>          |          |        |         |
|                                                              |                                               |                                                      | 0      |            | 2                 |          | 4      |         |
| vs = 7  TeV,<br>vs = 8  TeV,                                 | 4.5 fb <sup>-1</sup><br>20.3 fb <sup>-1</sup> |                                                      |        |            | Sign              | al st    | reng   | th (μ)  |

## A Tau Yukawa CPV phase

 From an effective field theory perspective, can readily generate a tau Yukawa phase via the addition of a dimension 6 operator

$$\mathcal{L}_{\text{eff}} \supset -\left(\alpha + \beta \frac{H^{\dagger} H}{\Lambda^2}\right) H \ell_{3\text{L}}^{\dagger} \tau_{\text{R}} + \text{c.c.}$$

- $-\alpha$  and  $\beta$  are generally complex
- After inserting Higgs vevs, use the  $\tau_R$  redefinition to get

$$\alpha + \beta \frac{v^2}{\Lambda^2} = y_{\tau}^{\rm SM} > 0 \,,$$

– Then, the Higgs coupling to taus is  $\,y_{ au}^{
m SM}$  +

Also see, e.g. Kearney, Pierce, Weiner [1207.7062]

$$\cdot 2\beta \frac{\sigma}{\Lambda^2}$$

2,2

## A Tau Yukawa CPV phase

 The new phase can thus be captured by considering the Lagrangian

$$\begin{aligned} \mathcal{L}_{\text{pheno}} \supset -m_{\tau} \, \bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}} \, h \bar{\tau} (\cos \Delta + \mathrm{i}\gamma_5 \sin \Delta) \tau \\ = -m_{\tau} \, \bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}} \, h \big( \tau_{\mathrm{L}}^{\dagger} (\cos \Delta + \mathrm{i} \sin \Delta) \tau_{\mathrm{R}} \\ + \mathrm{c.c.} \big) \,, \end{aligned}$$

- $-\Delta = 0$  is SM (CP-even)
- $-\Delta = \pi/2$  is pure CP-odd (and CP conserving)
- $-\Delta = \pm \pi/4$  is maximally CP-violating
- $-\Delta$  is currently unconstrained (see next)
- We will assume the  $y_{\tau}$  magnitude is SM strength

## EDM probe

eEDM probes currently leave Δ unconstrained



Brod, Haisch, Zupan [1310.1385]

# A CPV Observable

- We already lose information from missing neutrinos
  - Leptonic decays, though clean, lose even more information
- Need an intermediate vector (not scalar) in the tau decay: focus on the ρ vector meson
  - $-\operatorname{Br}(\tau^{\scriptscriptstyle +} \to \rho^{\scriptscriptstyle +} \, \nu) \approx 26\%$
  - $-\operatorname{Br}(\rho^+ \rightarrow \pi^+ \pi^0) \approx 100\%$



#### Extracting the phase in Higgs decays

- Tau Yukawa CPV is imprinted on the tau polarizations relative to each other
  - Tau polarizations then get imprinted on the v and  $\rho$ ,  $\rho$  polarization is imparted to the  $\pi$ s
- Simplest observable (appropriate for LHC) is  $\rho^+\rho^-$  acoplanarity angle
- New, better observable (appropriate for e<sup>+</sup>e<sup>-</sup> collider) is Θ

$$h \longrightarrow \tau^{-} \tau^{+}$$
  
$$\longrightarrow \rho^{-} \nu_{\tau} \rho^{+} \bar{\nu}_{\tau}$$
  
$$\longrightarrow \pi^{-} \pi^{0} \nu_{\tau} \pi^{+} \pi^{0} \bar{\nu}_{\tau} .$$

#### Matrix element calculation

 Will trace how the CP phase Δ appears in the squared matrix element by treating the Higgs decay as a sequence of on-shell 2-body decays

$$\mathcal{M}_{h\to\tau\tau} \propto \sum_{s,s'} \chi_{s,s'} \bar{u}_{\tau^-}^s \left( \cos \Delta + i\gamma_5 \sin \Delta \right) v_{\tau^+}^{s'}$$
$$\mathcal{M}_{\tau\to\rho\nu} \propto \left( \epsilon_{\rho^-}^* \right)_{\!\mu} \bar{u}_{\nu_\tau} \gamma^{\mu} P_{\mathrm{L}} u_{\tau^-}$$
$$\mathcal{M}_{\rho\to\pi\pi} \propto \epsilon_{\rho^-} \cdot \left( p_{\pi^-} - p_{\pi^0} \right)$$

• Together, gives

$$\mathcal{M}_{\text{full}} \propto \bar{u}_{\nu^{-}} (\not p_{\pi^{-}} - \not p_{\pi^{0-}}) P_{\text{L}} (\not p_{\tau^{-}} + m_{\tau}) \\ \times (\cos \Delta + i\gamma_5 \sin \Delta) \\ \times (-\not p_{\tau^{+}} + m_{\tau}) (\not p_{\pi^{+}} - \not p_{\pi^{0+}}) P_{\text{L}} v_{\nu^{+}}$$

13

Matrix element calculation assumptions

$$\mathcal{M}_{\text{full}} \propto \bar{u}_{\nu^{-}} (\not\!\!p_{\pi^{-}} - \not\!\!p_{\pi^{0-}}) P_{\text{L}} (\not\!\!p_{\tau^{-}} + m_{\tau}) \\ \times (\cos \Delta + \mathrm{i}\gamma_{5} \sin \Delta) \\ \times (-\not\!\!p_{\tau^{+}} + m_{\tau}) (\not\!\!p_{\pi^{+}} - \not\!\!p_{\pi^{0+}}) P_{\text{L}} v_{\nu^{+}}$$

- Neglect π<sup>0</sup> exchange (spatially separated; the τ's are boosted and back-to-back in the Higgs rest frame)
- All intermediate particles assumed on-shell
- Neglect  $\pi^{\pm}-\pi^{0}$  mass difference
- Obtain  $\mathcal{M}_{\text{full}} \propto \bar{u}_{\nu^{-}} \not q_{-} (e^{i\Delta} \not p_{\tau^{-}} e^{-i\Delta} \not p_{\tau^{+}}) \not q_{+} P_{\text{L}} v_{\nu^{+}}$ with  $q_{\pm} \equiv p_{\pi^{\pm}} - p_{\pi^{0\pm}}$

– Recall  $\rho_{\pm}$  polarization is generally aligned with  $q_{\pm}$ 

#### Calculating the Theta Variable

- Introduce the variable  $k_{\pm}^{\mu} \equiv y_{\pm} q_{\pm}^{\mu} + r p_{\nu^{\pm}}^{\mu}$ with coefficients  $y_{\pm} \equiv \frac{2q_{\pm} \cdot p_{\tau^{\pm}}}{m_{\tau}^2 + m_{\rho}^2} = \frac{q_{\pm} \cdot p_{\tau^{\pm}}}{p_{\rho^{\pm}} \cdot p_{\tau^{\pm}}},$  $r \equiv \frac{m_{\rho}^2 - 4m_{\pi}^2}{m^2 + m^2} \approx 0.14.$
- We then write the squared matrix element as  $|\mathcal{M}|^2 \propto P_{a,S} + P_{\Delta,S} + P_{\Delta,S} + P_{\Delta,S}$

where the most interesting piece is

$$P_{\Delta,S} \equiv -e^{2i\Delta} \left[ (k_{-} \cdot p_{\tau^{+}})(k_{+} \cdot p_{\tau^{-}}) - (p_{\tau^{-}} \cdot p_{\tau^{+}})(k_{-} \cdot k_{+}) - i\epsilon_{\mu\nu\rho\sigma} k_{-}^{\mu} p_{\tau^{-}}^{\nu} k_{+}^{\rho} p_{\tau^{+}}^{\sigma} \right].$$
(26)

#### Calculating the Theta Variable

$$P_{\Delta,S} \equiv -e^{2i\Delta} \left[ (k_{-} \cdot p_{\tau^{+}})(k_{+} \cdot p_{\tau^{-}}) - (p_{\tau^{-}} \cdot p_{\tau^{+}})(k_{-} \cdot k_{+}) - i\epsilon_{\mu\nu\rho\sigma} k_{-}^{\mu} p_{\tau^{-}}^{\nu} k_{+}^{\rho} p_{\tau^{+}}^{\sigma} \right].$$
(26)

We can define an antisymmetric 2<sup>nd</sup>-rank tensor

$$F_{\pm}^{\mu\nu} \equiv k_{\pm}^{\mu} p_{\tau^{\pm}}^{\nu} - k_{\pm}^{\nu} p_{\tau^{\pm}}^{\mu} = -F_{\pm}^{\nu\mu}$$
$$P_{\Delta,S} = e^{2i\Delta} \left( \frac{1}{2} F_{-\mu\nu} F_{+}^{\mu\nu} + \frac{i}{4} \epsilon_{\mu\nu\rho\sigma} F_{-}^{\mu\nu} F_{+}^{\rho\sigma} \right)$$

• Or, even better, identify "electric" and "magnetic" components  $E_{\pm}^{i} \equiv F_{\pm}^{i0}$ ,  $B_{\pm}^{i} \equiv -\frac{1}{2}\epsilon^{ijk}F_{\pm jk}$  $P_{\Delta,S} = -e^{2i\Delta} \left[ (\vec{E}_{-} + i\vec{B}_{-}) \cdot (\vec{E}_{+} + i\vec{B}_{+}) \right]$ 

#### Calculating the Theta Variable

$$F_{\pm}^{\mu\nu} \equiv k_{\pm}^{\mu} \, p_{\tau^{\pm}}^{\nu} - k_{\pm}^{\nu} \, p_{\tau^{\pm}}^{\mu} = -F_{\pm}^{\nu\mu}$$

• We can calculate

$$\vec{B}_{\pm} = \vec{p}_{\tau^{\pm}} \times \vec{k}_{\pm} = \vec{v}_{\tau^{\pm}} \times \vec{E}_{\pm}$$

- Specialize to Higgs rest frame (back-to-back taus)
  - $E_+B_+$  and  $E_-B_-$  planes are parallel
  - Motivate a new acoplanarity
     between E<sub>+</sub>v<sub>+</sub> and E<sub>-</sub>v<sub>-</sub> planes

$$P_{\Delta,S} = -2e^{i(2\Delta-\Theta)} \left| \vec{E}_{+} \right| \left| \vec{E}_{-} \right|$$
$$\Theta = \operatorname{sgn} \left[ \vec{v}_{\tau^{+}} \cdot (\vec{E}_{-} \times \vec{E}_{+}) \right] \operatorname{Arccos} \left[ \frac{\vec{E}_{+} \cdot \vec{E}_{-}}{\left| \vec{E}_{+} \right| \left| \vec{E}_{-} \right|} \right]$$



#### Ideal situation



## Ideal – compare to $\rho^+\rho^-$ acoplanarity<sup>\*</sup>



## Lepton collider possibilities

- We obviously cannot directly measure neutrino momenta
- At a lepton collider, have enough constraints to solve algebraically for neutrino momenta
  - Have two neutrino momenta solution sets
    - Both solutions give correct Higgs mass
    - Weight each solution by half an event
    - Necessarily require visible Z decay
    - Higgs events tagged via recoil mass



ILC TDR Volume 2

#### Lepton collider – reconstructed



#### Lepton collider – reconstructed



### Lepton collider possibilities

- For Vs = 250 GeV ILC, polarized beams, Zh production is about 0.30 pb
- With unpolarized beams (FCC-ee or CEPC), cross section is about 30% less
- ILC signal yield (using SM Br( $h \rightarrow \tau \tau$ ) and restricting to visible Z decays) is 990 events with 1 ab<sup>-1</sup> luminosity

$$\begin{array}{ll}
\sigma_{e^+e^- \to hZ} & 0.30 \text{ pb} \\
\text{Br}(h \to \tau^+ \tau^-) & 6.1\% \\
\text{Br}(\tau^- \to \pi^- \pi^0 \nu) & 26\% \\
\text{Br}(Z \to \text{visibles}) & 80\% \\
\hline
\text{N}_{\text{events}} & 990
\end{array}$$

#### Lepton collider possibilities

- For Vs = 250 GeV ILC, polarized beams, Zh production is about 0.30 pb
  - ILC signal yield (using SM Br(h  $\rightarrow \tau \tau$ ) and restricting to visible Z decays) is 990 events with 1 ab<sup>-1</sup>
  - Construct binned likelihood using a sinuisoidal fit to signal, determine sensitivity by variation of test  $\Delta$
- With 1  $ab^{-1}$  of ILC  $\sqrt{s}=250$  GeV, expect  $1\sigma$  discrimination of 4.4° (compared\* to 6° using  $\phi^*$ [albeit included backgrounds and detector effects])

$$L = \frac{\prod_{i=1}^{N} \operatorname{Pois} \left( B_i + S_i^{\Delta=0} | B_i + S_i^{\Delta=\delta} \right)}{\prod_{i=1}^{N} \operatorname{Pois} \left( B_i + S_i^{\Delta=0} | B_i + S_i^{\Delta=0} \right)}$$

## Luminosity scaling (without systematics)



ILC Luminosity,  $fb^{-1}$  CEPC or FCC-ee lum. is 30% smaller

## Luminosity scaling (without systematics)



## Lepton Collider Prospects

- Systematics will affect high luminosity estimates
- Expect some minor sensitivity losses from detector resolution
  - Z recoil mass with ee and  $\mu\mu$  resolution is highly superior to other channels

ILC (1 ab<sup>-1</sup>)

| $\sigma_{e^+e^- \rightarrow hZ}$                   | 0.30 pb |
|----------------------------------------------------|---------|
| $\operatorname{Br}(h \to \tau^+ \tau^-)$           | 6.1%    |
| $Br(\tau^- \to \pi^- \pi^0 \nu)$                   | 26%     |
| $\operatorname{Br}(Z \to \operatorname{visibles})$ | 80%     |
| $N_{\mathrm{events}}$                              | 990     |
| Accuracy                                           | 4.4°    |

| $FCCee/CEPC (1 ab^{-1})$ | FCCee/CEPC (5 $ab^{-1}$ ) | $FCCee/CEPC (10 ab^{-1})$ |
|--------------------------|---------------------------|---------------------------|
| 5.5°                     | $2.5^{\circ}$             | $1.7^{\circ}$             |
|                          |                           |                           |
|                          |                           |                           |
|                          |                           |                           |

FCCee/CEPC (ab<sup>-1</sup>)

# LHC prospects

- Consider h+j events ("boosted" τ<sub>had</sub>τ<sub>had</sub> sample)
- At the LHC, need to approximate neutrino momenta
  - Have (8-2-2-2=) 2 unknown four-momentum components
  - Will use collinear approximation for neutrino momenta
    - In this approximation, Θ is identical to ρρ acoplanarity angle
    - Other approximations considered tended to wash out or distort the sinuisoidal shape of the Θ distribution
  - First proposal to measure Δ at the LHC with prompt tau decays and kinematics

#### Ideal vs. Collinear approximation



### LHC14 simulation details

- Use MadGraph5 for h+j and Z+j events at LHC14
  - Mimic cuts for 1-jet, hadronic taus Higgs search category
  - Impose preselection of  $p_T(j) > 140$  GeV,  $|\eta(j)| < 2.5$
  - Normalize to MCFM NLO  $\sigma(h+j)=2.0 \text{ pb}, \sigma(Z+j)=420 \text{ pb}$
  - No pileup or detector simulation, aside from tau-tagging efficiencies
    - Pileup degrades primary vertex determination for charged pion tracks and adds ECAL deposits that reduce neutral pion resolution
    - Tracking and detector resolution will clearly smear the Θ distribution

## Yields for 3 ab<sup>-1</sup> LHC

- Signal region: MET > 40 GeV,  $p_T(\rho) > 45$  GeV,  $|\eta(\rho)| < 2.1$ ,  $m_{coll} > 120$  GeV
  - Inject an additional 10% contribution to (flat) Zj
     background to account for QCD multijets

|                                  | hj            | Zj      |
|----------------------------------|---------------|---------|
| Inclusive $\sigma$               | $2.0~{ m pb}$ | 420  pb |
| $Br(\tau^+\tau^- decay)$         | 6.1%          | 3.4%    |
| $Br(\tau^- \to \pi^- \pi^0 \nu)$ | 26%           | 26%     |
| Cut efficiency                   | 18%           | 0.24%   |
| $N_{\mathrm{events}}$            | 1100          | 1800    |

 $N_{events}$  for 3  $ab^{\text{-1}}$  with  $\tau\text{-tagging}$  50% efficiency

# Yields for 3 ab<sup>-1</sup> LHC

 Consider τ tagging efficiency benchmarks of 50% and 70%, use likelihood analysis testing different Δ

| $	au_h$ efficiency                | 50%                        | 70%                       |
|-----------------------------------|----------------------------|---------------------------|
| $3\sigma$                         | $L = 550 \text{ fb}^{-1}$  | $L = 300 {\rm ~fb}^{-1}$  |
| $5\sigma$                         | $L = 1500 \text{ fb}^{-1}$ | $L = 700 \text{ fb}^{-1}$ |
| $Accuracy(L = 3 \text{ ab}^{-1})$ | $11.5^{\circ}$             | $8.0^{\circ}$             |
|                                   |                            |                           |

- Discriminating pure scalar vs. pure pseudoscalar at 3σ requires 550 (300) fb<sup>-1</sup> with 50% (70%) τ tagging efficiency
- For 5σ, require 1500 (700) fb<sup>-1</sup> with 50% (70%) τ tagging efficiency
- Again, detector effects and pileup are neglected 32

## Luminosity scaling (without systematics)



#### Improving the measurement of the tau

#### Yukawa CP phase

- Consider including MET information for LHC analyses
  - -e.g. MELA-type likelihood incorporating signal hypotheses with different  $\Delta$
- Consider other tau decay modes or add decay vertex information
- Improve tau tagging efficiency
- Dedicated di-tau hadronic trigger
- Consider VBF production, Zh production
  - For VBF, 3 ab<sup>-1</sup>, expect 52k π<sup>+</sup>π<sup>0</sup>ν π<sup>-</sup>π<sup>0</sup>ν total events (no cuts)
    - S/B is about 0.4 from ATLAS 8 TeV BDT analysis

## Recent Delphes analysis\*

- Collinear approx. at LHC is likely a hard limit
- Angular resolution is negligibly (4%) degrades Θ
   distribution
- Energy resolution affects contamination from irreducible
   Z background





\*Askew, Jaiswal, Okui, Prosper, Sato [1501.03156]

#### Summary

- New CP phases are motivated from general baryogenesis arguments
- Have a new suite of measurements to perform in Higgs physics
  - Fermionic CP phases play a special role
  - Look forward to implementing this analysis in future
     Higgs studies
  - Can also consider prospects at FCC-hh and SPPC

| Colliders                          | LHC I        | HL-LHC        | ILC $(1 \text{ ab}^{-1})$ F | $CCee/CEPC (1 ab^{-1})$ | $FCCee/CEPC (5 ab^{-1})$ | FCCee/CEPC (10 $ab^{-1}$ ) |
|------------------------------------|--------------|---------------|-----------------------------|-------------------------|--------------------------|----------------------------|
| $\operatorname{Accuracy}(1\sigma)$ | $25^{\circ}$ | $8.0^{\circ}$ | 4.4°                        | $5.5^{\circ}$           | $2.5^{\circ}$            | $1.7^{\circ}$              |

## Motivating CPV tests

- Sakharov's three conditions for baryogenesis motivate searches for new sources of CP violation
  - Need B violation
  - Need C and CP violation
  - Need interactions to happen out of thermal equilibrium
- Our picture of baryogenesis is currently incomplete
  - SM EW baryogenesis is insufficient
  - Should probe for new sources of CPV

# CP and the Higgs

- A natural place to test for CP violating phases is with Higgs physics
  - scalar-pseudoscalar admixture (e.g. scalar potential)
    - naïvely tested via rate suppression
  - couplings to gauge bosons (*e.g.* bosonic CPV)
    - for example, tested via acoplanarity measurement in h→ZZ<sup>\*</sup>→4l
  - couplings to fermions (e.g. fermionic CPV)
    - our work: test via  $h \rightarrow \tau^+ \tau^- \rightarrow (\rho^+ \nu) \ (\rho^- \nu) \rightarrow (\pi^+ \pi^0) \nu \ (\pi^- \pi^0) \nu$
- [Full UV models to connect any given CP phase to a baryogenesis mechanism is BTSOTW]

## UV completion

$$\mathcal{L}_{\text{tree}} = \mathcal{L}_{\text{SM}-y_{\tau}} + |D\Phi|^2 - m_{\Phi}^2 |\Phi|^2 - \lambda_{\Phi} |\Phi|^4$$

$$- (yH\ell_{3\text{L}}^{\dagger}\tau_{\text{R}} + y'\Phi\ell_{3\text{L}}^{\dagger}\tau_{\text{R}} + \lambda'(\Phi^{\dagger}H)|H|^2 + \text{c.c.}), \qquad (A1)$$

$$\mathcal{L}_{\text{dim-6}} = \frac{|\lambda'|^2}{m_{\Phi}^2} |H|^6 + \left(\frac{\lambda' y'}{m_{\Phi}^2} |H|^2 H \ell_{3\text{L}}^{\dagger} \tau_{\text{R}} + \text{c.c.}\right).$$

## Yields for 3 ab<sup>-1</sup> LHC



41

#### Tau measurement details

 Method relies on reconstructing neutral and charged pions with good resolution and efficiency



CMS JINST 7, P01001 (2012) [arXiv:1109.6034 [physics.ins-det]]

# Measuring Higgs to TT

- Use SVFit to reconstruct  $m_{\tau\tau}$  (creates likelihood function based on observed kinematics)
  - Anticipating the CP phase measurement, focus on the fully hadronic analysis



43

# Measuring Higgs to TT

- Use SVFit to reconstruct  $m_{\tau\tau}$  (creates likelihood function based on observed kinematics)
  - Anticipating the CP phase measurement, focus on the fully hadronic analysis
     CMS Preliminary, √s=7-8 TeV, L=24.3 fb<sup>-1</sup>, H→ττ

| Process                   | 1-Jet      | VBF          |
|---------------------------|------------|--------------|
| $Z \rightarrow \tau \tau$ | $428\pm90$ | $47\pm28$    |
| QCD                       | $210\pm31$ | $61 \pm 10$  |
| EWK                       | $41 \pm 9$ | $4 \pm 1$    |
| tī                        | $29 \pm 6$ | $2\pm 2$     |
| Total Background          | $709\pm95$ | $114 \pm 30$ |
| $H \rightarrow \tau \tau$ | $9\pm4$    | $4\pm 2$     |
| Observed                  | 718        | 120          |

Signal Eff.

| $gg \rightarrow H$                       | $2.52 \cdot 10^{-4}$ | $4.99 \cdot 10^{-5}$ |
|------------------------------------------|----------------------|----------------------|
| $qq \rightarrow H$                       | $5.93 \cdot 10^{-4}$ | $1.20 \cdot 10^{-3}$ |
| $qq \rightarrow Ht\bar{t} \text{ or VH}$ | $9.13 \cdot 10^{-4}$ | $3.59 \cdot 10^{-5}$ |



CMS PAS-HIG-13-004

**Combined:**  $\mu = 1.1 \pm 0.4$ 

44

## ATLAS Update

Use BDT output to categorize events



# ATLAS Update

Use BDT output to categorize events



# ATLAS Update

- Focus on fully hadronic channel
  - Main backgrounds are still irreducible Z →ττ and QCD multijets

| Process/Category      | VBF             |                 |                 | Boosted         |                 |                 |
|-----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| BDT score bin edges   | 0.85-0.9        | 0.9-0.95        | 0.95-1.0        | 0.85-0.9        | 0.9-0.95        | 0.95-1.0        |
| ggF                   | $0.39 \pm 0.17$ | $0.35 \pm 0.16$ | $2.0 \pm 0.9$   | $2.2 \pm 0.8$   | $2.5 \pm 1.0$   | $2.3 \pm 0.9$   |
| VBF                   | $0.57 \pm 0.18$ | $0.72 \pm 0.22$ | $5.9 \pm 1.8$   | $0.55 \pm 0.17$ | $0.61 \pm 0.19$ | $0.57 \pm 0.17$ |
| WH                    | < 0.05          | < 0.05          | < 0.05          | $0.34 \pm 0.11$ | $0.40 \pm 0.12$ | $0.44 \pm 0.14$ |
| ZH                    | < 0.05          | < 0.05          | < 0.05          | $0.22 \pm 0.07$ | $0.22 \pm 0.07$ | $0.22 \pm 0.07$ |
| $Z \to \tau^+ \tau^-$ | $3.2 \pm 0.6$   | $3.4 \pm 0.7$   | $5.3 \pm 1.0$   | $15.7 \pm 1.7$  | $12.3 \pm 1.8$  | $9.7 \pm 1.6$   |
| Multijet              | $3.3 \pm 0.6$   | $2.9 \pm 0.6$   | $5.9 \pm 0.9$   | $5.2 \pm 0.6$   | $3.7 \pm 0.5$   | $1.40\pm0.22$   |
| Others                | $0.38 \pm 0.09$ | $0.49 \pm 0.12$ | $0.64 \pm 0.13$ | $1.49 \pm 0.27$ | $2.8 \pm 0.5$   | $0.07\pm0.02$   |
| Total Background      | $6.9 \pm 1.3$   | $6.8 \pm 1.3$   | $11.8 \pm 2.6$  | $22.4 \pm 2.5$  | $18.8 \pm 2.8$  | $11.2 \pm 1.9$  |
| Total Signal          | $0.97 \pm 0.29$ | $1.09 \pm 0.31$ | $8.0 \pm 2.2$   | $3.3 \pm 1.0$   | $3.8 \pm 1.2$   | $3.6 \pm 1.1$   |
| S/B                   | 0.14            | 0.16            | 0.67            | 0.15            | 0.2             | 0.32            |
| Data                  | 6               | 6               | 19              | 20              | 16              | 15              |

#### Tau measurement details

**Table 1**. Branching fractions of the dominant hadronic decays of the  $\tau$  lepton and the symbol and mass of any intermediate resonance [9]. The *h* stands for both  $\pi$  and *K*, but in this analysis the  $\pi$  mass is assigned to all charged particles. The table is symmetric under charge conjugation.

| Decay mode                                  | Resonance | Mass (MeV/ $c^2$ ) | Branching fraction (%) |
|---------------------------------------------|-----------|--------------------|------------------------|
| $	au^-  ightarrow h^-  u_	au$               |           |                    | 11.6%                  |
| $	au^-  ightarrow h^- \pi^0  u_	au$         | $ ho^-$   | 770                | 26.0%                  |
| $	au^-  ightarrow h^- \pi^0 \pi^0  u_	au$   | $a_1^-$   | 1200               | 9.5%                   |
| $	au^-  ightarrow h^- h^+ h^-  u_	au$       | $a_1^-$   | 1200               | 9.8%                   |
| $	au^-  ightarrow h^- h^+ h^- \pi^0  u_	au$ |           |                    | 4.8%                   |



CMS JINST 7, P01001 (2012) [arXiv:1109.6034 [physics.ins-det]]

#### Tau measurement details

**Table 4**. The MC predicted  $\tau_h$  misidentification rates and the measured data-to-MC ratios, integrated over the  $p_T$  and  $\eta$  phase space typical for the  $Z \rightarrow \tau \tau$  analysis.

| Algorithm     | QCD    |               | QCDµ   |                 | W + jets |               |
|---------------|--------|---------------|--------|-----------------|----------|---------------|
|               | MC (%) | Data/MC       | MC (%) | Data/MC         | MC (%)   | Data/MC       |
| HPS "loose"   | 1.0    | $1.00\pm0.04$ | 1.0    | $1.07\pm0.01$   | 1.5      | $0.99\pm0.04$ |
| HPS "medium"  | 0.4    | $1.02\pm0.06$ | 0.4    | $1.05\pm0.02$   | 0.6      | $1.04\pm0.06$ |
| HPS "tight"   | 0.2    | $0.94\pm0.09$ | 0.2    | $1.06\pm0.02$   | 0.3      | $1.08\pm0.09$ |
| TaNC "loose"  | 2.1    | $1.05\pm0.04$ | 1.9    | $1.12 \pm 0.01$ | 3.0      | $1.02\pm0.05$ |
| TaNC "medium" | 1.3    | $1.05\pm0.05$ | 0.9    | $1.08\pm0.02$   | 1.6      | $0.98\pm0.07$ |
| TaNC "tight"  | 0.5    | $0.98\pm0.07$ | 0.4    | $1.06\pm0.02$   | 0.8      | $0.95\pm0.09$ |