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Motivation

Beta decay has long been a perfect venue for precision test of SM as
well as search of BSM physics.

In order to extract definite conclusions from experiments, we need to
know the error budget in SM prediction. (e.g. talks by Ramsey-Musolf
and Hardy)

Super-allowed beta decays are powerful in the determination of the
CKM matrix element V4 neutron beta decay is less competitive for
V.4 but still powerful in probing new physics due to the existence of
extra structures:
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Future experiments in neutron beta decay are aiming for precision
level of 103-104 (see experimental talks), i.e. all higher-order
corrections up to order a/4n (on top of the LO contribution) should be
precisely determined before one can really make use of such results.



Radiative Corrections to Beta Decay

Classification of one-loop structures that contribute to beta decay:
1)  Three-current correlation diagrams
2)  Diagrams with three-boson vertex
3)  W-ybox diagram
4)  W-Z box diagrams
5) Diagrams with Higgs bosons
6)  Lepton-boson vertex corrections and self-energy diagrams

Current Algebra and Operator Product Expansion (OPE) are useful
tools to isolate O(Gga) contributions
Sirlin, Rev.Mod.Phys 50 (1978) 573 (and references therein)

Marciano and Sirlin, Phys.Rev.Lett. 56 (1985) 22
Marciano and Sirlin, Phys.Rev.Lett. 96 (2006) 032002

Effective Field Theory (EFT) as an alternative approach

Ando et al, Phys.Lett.B. 595 (2004) 250



Radiative Corrections to Beta Decay

SOP in the current algebra analysis:

1.  Use equal-time commutation relations to reduce the number of
currents in correlation functions.

30 (%), 34(x)] o0 =082 8, 3¢ (X)X - X')
3200, 3700)],_ o = 3 (05X -X)
38 (), 35 () oo = =2(5in? 6, 34 () + I£(X) )83 (K= X') + ST

2.  Count the number n of massive propagators. If n > 2 then the
contribution from IR region of the loop momentum is
negligible.

3. For two-current correlator contributions in UV region, perform

OPE to the current product. Effects of higher-order terms are
suppressed by inverse powers of myy.

4, One-current matrix element of the charged weak current is
proportional to the zeroth order amplitude.



Radiative Corrections to Beta Decay

. One example to demonstrate the steps. Consider the following diagram:

T (k)= j d*xe™* (N[T[3Z(x) 35 )] h)

4
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Radiative Corrections to Beta Decay

. One example to demonstrate the steps. Consider the following diagram:

14

T (k) = [ d“xe™*(

h)

hl
. i d*k 1 1
IM ~ u V K,q)T, 2 (k
7o e | G iy Ve R TG ()
. Since there are at least two heavy propagators, for small values of k the

integral is suppressed by (1/my)?* or more and can be neglected.



Radiative Corrections to Beta Decay

. One example to demonstrate the steps. Consider the following diagram:

14

h)

T (k) = [ d“xe™*(

hl
: i d*k 1 1
IM ~ u V K,)T, > (k
7o e | G iy Ve R TG ()
. For large values of k one could perform OPE to the hadronic tensor.

Examples of free-field OPE:

L (k) = 2| k? < h'|\J,, > + ... Corrections from
) g Perturbative QCD
k can be added
4 = 2 h' systematically
T(Z)/l(k) 2 ——CO0s” 4 < W >+ o




Radiative Corrections to Beta Decay

. One example to demonstrate the steps. Consider the following diagram:

14

h)

T (k) = [ d“xe™*(

: i d 4k 1 1
IM ~ u V K, T K
. The one-current matrix element is a constant and the remaining integral

over k can be carried out analytically.



Radiative Corrections to Beta Decay

. One example to demonstrate the steps. Consider the following diagram:

14

h)

T (k) = [ d“xe™*(

M~ g jd4k L - v (k, )T (k)
oo @y (g mg etV
. Combining with the three-current correlator contributions (see next

page), their effects are either finite or can be absorbed into the
renormalization of weak coupling constant. Both of them are
proportional to the zeroth order amplitude.
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Radiative Corrections to Beta Decay

. Three-current correlation diagrams:

v

e Jw =0quriciq,

J; =0qr"Qq
h h 1 .
J7 :Eq Ly Tsq —sIn HW‘]yﬂ
b=2Z,W,y
+l

T @ k) ~ [d“ye™ [d*xe"*(h

Current Algebra Reduction

(/\)

4
I dk 1 @ Té,(K) Jdye™ [d*xe"*(hT[- 3, (¥)(3;* (%), (0) + he)Th)

(27)" K2 —mZ ok,
Residual three-current correlator:

Two-current correlator: Contributions are of order O(G2)
Combine with other diagrams

»2(0) +h.c)]h)
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Radiative Corrections to Beta Decay

W-Z box diagrams:

T (k) ~ j d*xe™*(h

T[3;(x)34 O] h)

Two massive propagators = only UV region is important. OPE can be
performed and only the leading term is retained.

The contribution is proportional to the zeroth order amplitude
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Radiative Corrections to Beta Decay

Other less important RC diagrams:
. Diagrams with Higgs: effects are O(Gy2).

. Lepton-gauge vertex corrections and self-energy diagrams:
their effects are universal (i.e. same in hadron/lepton beta
decay) and also well-studied.

So far, all the O(Gpa) effects we studied can always be reduced to the
form of the zeroth order amplitude, either by current algebra or by
leading-order OPE. The former is interaction-independent, while the
latter 1s modified by perturbative QCD, which effects can be
systematically included.
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W-Gamma Box Diagram

W-y box diagram:

Current algebra + combining with the two-current term derived from
three-current correlator:

e, )
My = 2(|2g)emuw Ug 7" VLJ- {—2'< Ju, Q)] )

18,5, KT (K) =i [ d*xe™(

-3y, (0)] p)}

yu

Only one massive propagator. Both IR and UV region could give
O(Gpo) corrections.

Should combine with real emission diagrams to cancel IR divergenceia



W-Gamma Box Diagram

RC to the Fermi amplitude: most uncertainty comes from the V*A
current correlator:

22 4 o
boxE  —0€V, _ d’k k
(7:A) 4(27[)4 : ‘9lp6uueL7ﬂVM- k4 mv2v _kz

0)]h)

A” (k),

AP (k) = J‘d4xeik.x<h

The asymptotic correction can be obtained by OPE:

AP (k) = =22 S (e O )+

iM < F ZiMOF Z il Mz | LA 4 oc
(7:A) 47Z'|: mA AQ

The evaluation of the non-asymptotic contribution is a real challenge.
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W-Gamma Box Diagram

State-of-the-art study of box contribution:
mvzv Marciano and Sirlin, Phys.Rev.Lett. 96 (2006) 032002

. box, F __; 0,F ioo 2 2
II\/|(7;A) =1M 872"([dK K2+mv2v F(K)
1.  Short distance: leading OPE + perturbative QCD
F(Kz) _ 1 [1 O (Kz)m _C [as (Kz)m JZ _C3[as (K'Z)m JSI (15GGV)2 < K2 <0
K2 P 2 —

T V4 Assigned error: +0.0001

2. Intermediate distance: interpolating function

F(x?)— 1490 6855 4414 |(0.823c3eV)2 <x? < (L5GeV)*

+
2 2 2 2 2 2
KE+mS o kS emy kS +m

Assigned error: 100%

3. Long distance: Born contribution with nucleon EM and axial
current dipole FFs:

C,,. (neutron) ~ 0.829 ‘ 0<x* < (0.823GeV)*
Assigned error: 10%

So the aim is to study the intermediate-distance contributions better!




Dispersion Relation Approach

The aim is to extract the O(Gya) corrections in the box diagram. It is
therefore appropriate to set:

l,=1,=m,=m —-m =0
Crossing symmetry:

n(pn) — p(pp)e(le)v(lv) < n(pn)v(_lv) — p(pp)e(le)

Hence it 1s appropriate to study the “forward scattering” process:

n(py)v(l) = p(py)e(l)
and take /20 at the end.
Mandelstam variables: s=(p, +1)*,t=0,u=(p, —1)*=2m? —s
The only independent variable can be chosen as:
_ Py : _ S_mri

m,, 2m,,
Beta decay corresponds to v=0.

L
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Dispersion Relation Approach

. S- and u-channel singularities: ,,

1
K, e T

Branch cut:  s>mi =v>0 uzmy =s<my =>v<0

I
. (Unsubtracted) dispersion relation:

mu
® box -
M " (v +ig) 1 Idu' ImI\/! (u_+|g)
T v'-v—lig \

» Rev'

where

ImM " (v'+ig) = %(M X (0'+ig) — M > (U'—i&‘)




Dispersion Relation Approach

Discontinuity is obtained by placing the intermediate states on-shell:

S-channel: T.7(q) >W*”
L a5k (K,), o (> WD
K U-channel: T/ (-q) —-W*"(-q)

where:  W*(q) = J'd“xe‘q'X( Py ‘[J;‘(X), Jw (O)]‘ pN>

The dispersion representation reads:

ReM ™ (u) = —-3° Va [dvPr——2 ?dWZQTaXciQZL”V(I',q)x
1287°m,, 4 v' (0% -0%) kel A

o7 o7 W (@ -W,, () o, @+, ()]

Sl_mZ SI_WZ
Standard notation: W = p +0, Qrznax = ( N)S(. )

2
Lepton tensor:  L“"(I',q) = Z[ZI'” " -1"q" -1 g* —% g + ig"mﬁqal'ﬂj

19



Dispersion Relation Approach

. Discontinuity is obtained by placing the intermediate states on-shell:
S-channel: T4'(q) >W*"
L 24d5(K?)(k,) o (W =>WHD
k U -channel: T/ (—q) - -W*"(-q)

where:  W*(q) = J'd“xe‘q'X( Py ‘[J;‘(X), Jw (O)]‘ pN>

. The dispersion representation reads:
2V s’ Qmax
Re M " (v) = - W_|do dw? [dQ*L*(I',q) x
(v) 128”“] j jQ (I'.)

o oy e W@ -w, (—q))+u(vvw (@) +W,, ()

. Caveat: this approach could miss constant subtraction terms!

. Can be used to study the energy-dependence of the decay, but its
1mportance 1s questioned as it is usually E/m, -suppressed.

. Exceptions may occur if there is a new small energy scale in the

system. 20



Dispersion Relation Approach

Alternative approach: hybrid between loop integral and dispersion
relation of forward scattering amplitude.

- e’GeV,y ¢ d'q T y“a-pp'vy  my
e B 0

Write the forward Compton tensor in terms of “structure functions™

T (pyd) = (g, + 0 y7, 4 PuPug !
q pN q 2pN'q
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Dispersion Relation Approach

Alternative approach: hybrid between loop integral and dispersion
relation of forward scattering amplitude.

iM :_ezGFVud d4q UeLyﬂq'yyvva mW T
J2. Y (2n) q* q°—m,

(r)uv (CI)

For each structure function one can write down the dispersion
relation: _ 1%, ,ImT (v'+ie, Q°
Ti(u+|8,Q2):—jdu' 'I(U ?’Q )
T v'-v—ig

v=Py-q

The imaginary part can be obtained by optical theorem:

uvo uv
ImT/y ~W

W /4 Y W

; ! 22
It does not miss any constant term as we do know T, at low energy.



Dispersion Relation Approach

. Born contribution can be studied as illustration.
. EM and charged weak form factors:
(N, p3CO|N, p)=T(p' ){Fm Q%" +i zerilQ ) o’ (p— p')a}u(p) q*y° term not needed
F,' (Q%)

(N', p'|JyO[N, p) = u(p){FW(Q i W(p—p')a+GA(Q2)y”75+..}u(p)

N

. Resulting hadronic tensor:
W () ~W " (=q) = 226(W * —mg )@ (W,) x

U(pN)H (@i @) g ](y-vv+mN>(F1W(Q2)yV+i%avﬂqﬂ+GA(QZWSJ

2m,, N

[FW(Q) 5o Q) g +GA<Q2WS)(%W+mN>[F1n(Q ) i Zn(Q)a”“qaﬂu(pN)

2m,, My

23



Dispersion Relation Approach

. Pion production: W y
T + Woy
2 — : — -
Vv _ ~
. For electromagnetic pion production:
1
N e
sf ©o2
. I=0 and I=1 piece can be separated by choosing different isospin
configurations for initial/final states.
. Weak pion production could be probed in neutrino scattering. But poor
data.
. The vector part can be inferred from I=1 EM pion production. Axial

part may need modeling. Should make sure to have advantage over M-S modeling.

. For low energy pions, all these FFs can be studied using ChPT.
24



Dispersion Relation Approach

. DIS regime: o 4 ' )
v ('—'}') = jd xe?g'x<pj Py ‘[J“ (.1')_-. JIIT(O)]‘ n, p}»’)

can be related to flavor-diagonal tensors through isospin rotation:

T (x) Ty ()| n) = 2sin” 6, (p| T (x) T} (0)| )+ 2( p| T/ (0)T7(0)| p) — 2 (T3 (%)) T (0)] p)
Ty (x)JL(0)| ) ==2sin* 6. (n| T} (x) T} (0) 1) = 2(n|T 5 (x)T 2 (0)| )+ 2(n | Ty (X)(J 5 (0))| 1)

. The hadronic tensor:

(p
(p

. Thus they be in principle related to ordinary DIS (pure y-exchange),
PVDIS DIS (y—W interference) and neutrino DIS (pure W-exchange)

structure functions.

. At leading twist this should give identical result to Marciano-Sirlin at
UV regime through sum rules of structure functions.
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Brief Summary

Box diagram gives the largest theoretical uncertainty to the
radiative corrections in beta decay

Marciano + Sirlin: Current algebra+OPE. Intermediate state
contribution needs modeling and the estimated uncertainty is
100%

A dispersion relation approach allows a direct mapping
between the box diagram with experimental observables

Several 1ssues:

1. What are the available data, especially at moderate
energy scale

2.  How much modeling is needed, especially for V*A

3. How to systematically reconcile with and improve from
Marciano-Sirlin result

26
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