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INTRODUCTION

INTRODUCTION
▸ The standard model is incomplete: dark sector, neutrino masses. 

▸ Finding signatures of beyond the standard model physics in 
quantum phenomena is one of the heralds of modern physics. 

▸ LHC is the energy frontier.

▸ Nuclear phenomena are a precision frontier:

▸ New techniques allow unprecedented experimental accuracy.

▸ Need an accompanying theoretical effort to analyze 
experimental results and pinpoint new physics. 

▸ It’s not a very rewarding job…
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INTRODUCTION

BSM EFFORTS USING NUCLEAR BETA DECAYS

▸ ”New Physics” searches using beta decays have been moving back and forth, from 
spectrum to correlation studies.

▸ Atomic traps acted as the catalyst for precision correlation studies, and many 
experiments have been constructed since ~2005.

▸ In the last couple of years, the seesaw seems to tilt towards precision spectrum 
studies again, based on theoretical expectations for the size of the effect.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
|⟨∥Ê J ∥⟩|2 + |⟨∥M̂ J ∥⟩|2

)

± q̂ ·
(
ν̂ − β⃗

)∑

J≥1

2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)

|⟨∥Ĉ J ∥⟩|2

− 2q̂ ·
(
ν̂ + β⃗

)
ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

Differential b decay rate
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than a precise determination of the β–ν correlation coefficient, 
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identifying systematic errors, a valuable feature for precision stud-
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ter nucleus masses, respectively, Q is the decay Q -value). The 
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final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√
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function).
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functions.
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Nuclear independent part

Momentum transfer 𝛽 = $
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, 𝛽 particle momentum to energy ratio 𝜈 neutrino momentum
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Allowed – Fermi/Gamow-Teller
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×(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠)
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
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k⃗ and direction β⃗ = k⃗
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'(ϵ) is a nuclear independent part, related to the electrostatic 
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the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],
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function).
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
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where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
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3
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)
, and b = 2 CT +C ′

T
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[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:
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With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 
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with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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∝ 𝐸A?B

Assuming V-A structure

We have similar expressions for Tensor and Scalar structures, and interferences.[Glick-Magid, Gazit, unpublished]
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:
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d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)
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∫
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L̂ J M(q) = i
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∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
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where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1
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[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me
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)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,
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) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
|⟨∥Ê J ∥⟩|2 + |⟨∥M̂ J ∥⟩|2

)

± q̂ ·
(
ν̂ − β⃗

)∑

J≥1

2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)

|⟨∥Ĉ J ∥⟩|2

− 2q̂ ·
(
ν̂ + β⃗

)
ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
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)(
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)]∑

J≥1

(
|⟨∥Ê J ∥⟩|2 + |⟨∥M̂ J ∥⟩|2

)

± q̂ ·
(
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)∑

J≥1

2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0
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(
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+
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(
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)
ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

∝ 𝑞?

∝ 𝑞?/3

∝ 𝑞?

∝ 𝐸A?B

Assuming V-A structure

We have similar expressions for Tensor and Scalar structures, and interferences.[Glick-Magid, Gazit, unpublished]
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e.g., allowed transitions

Fermi

Gamow-Teller

Correlation coefficient

Assumptions: vanishing momentum transfer (q=0).

Δ𝐽) = 0,1+
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e.g., allowed transitions Δ𝐽) = 0,1+

Assuming V+T structure

+
𝐶E F + 𝐶EG F

2 +

V+T
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e.g., allowed transitions

Caveats: 

a) Sensitive to combination of tensor couplings, with spectrum averaging of energy, thus 
in a specific nucleus – the sensitivity to BSM couplings is QUADRATIC… 

b) Spectrum, i.e., integration over angle, sensitive to Fierz term, i.e., insensitive 
to fully right handed couplings.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
|⟨∥Ê J ∥⟩|2 + |⟨∥M̂ J ∥⟩|2

)

± q̂ ·
(
ν̂ − β⃗

)∑

J≥1

2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)

|⟨∥Ĉ J ∥⟩|2

− 2q̂ ·
(
ν̂ + β⃗

)
ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,
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with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
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with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)
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where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
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The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
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T and CT − C ′
T is possible, allowing 
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Theory related systematic corrections In the derivation of Eq. (11), 
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terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.
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maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
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F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
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with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
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ical tensor operator Ô J , between the daughter and mother wave 
functions.
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viz. the Coulomb, electric, magnetic, and longitudinal operators:
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where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
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qR ≪ 1, further simplification is possible expanding in this small 
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(Gamow–Teller decays),

( ∝ (1 + b
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the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b
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)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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(
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. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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right handed case, which arises due to quadratic dependence on 
CT − C ′

T .
In addition to resolution effects, energy calibration effects may 

also play a role in the extraction of the spectrum. We performed 
the same analysis using an energy calibration offset of ±0.5%, no 
effect was observed for the extracted parameters. We note that 
energy calibration errors are significant when measuring endpoint 
energies, where the spectral shape is not parametrized. In the case 
of a measurement of the full spectrum, it is the resolution effects 
(which move events between energy bins in a non-trivial manner) 
that play an important role. We further note that since the end-
point energy does not depend on the exact shape of the spectrum 
an additional constraint may be imposed in the fitting procedure 
by using measured endpoint energies.

In conclusion, we have proposed the β-spectrum of unique 
first-forbidden decay as a novel probe for beyond the standard 
model couplings in the weak interaction. Analyzing possible sys-
tematic uncertainties demonstrates that such studies may surpass 
the accuracy level of correlation measurements in allowed β de-
cays, and, contrary to allowed β decays, enable simultaneous ex-
traction of exotic tensor couplings to both right and left handed 
neutrinos in an uncorrelated manner. Of course, the use of a dif-
ferent experiment to study BSM couplings allows the examination 
of systematic uncertainties in the experiments, particularly essen-
tial in precision studies of such minute effects. Our initial study 
shows that similar results are expected in other forbidden decays.

First-forbidden unique decays are abundant in nature [27], vary 
in Q -values, and are amenable for precision spectra measure-
ments, e.g., as studied in antineutrino mass effects on the endpoint 
of the first forbidden unique decay of 187Re [28,29], or in search 
for hints Lorentz violation in the decay rate [30]. Thus, our pre-
diction increases significantly the number of relevant experiments 
searching BSM effects, and in particular the dimension six tensor 
type corrections. One such potential measurement which may be 
carried out is the beta decay of 90Y, with an endpoint energy of 
∼ 2.3 MeV, and may be easily produced via the 90Zr(n,p) reaction 
in copious amounts.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
|⟨∥Ê J ∥⟩|2 + |⟨∥M̂ J ∥⟩|2

)

± q̂ ·
(
ν̂ − β⃗

)∑

J≥1

2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)

|⟨∥Ĉ J ∥⟩|2

− 2q̂ ·
(
ν̂ + β⃗

)
ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:
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= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,
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) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)
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]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′
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−
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
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∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫
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L̂ J M(q) = i
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∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me
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+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1
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1 − |CT |2+|C ′
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, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me
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)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
(
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. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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where the superscript A (V ) denotes multipole operators calcu-
lated with the axial-vector (polar-vector) symmetry contribution to 
the weak nuclear current. Ordering the multipoles by their qR de-
pendence, we see that L̂ A

2 is O(qR), while Ĉ A
2 , M̂ V

2 are suppressed 
by an additional factor of qR , which for relevant Q -values of a 
unique first-forbidden decay, i.e., Q ≈ 10 MeV, leads to a factor 
of 20. Moreover, as j J (ρ) ∼ ρ J

(2 J+1)!! (for ρ ≪ 1), we find an addi-
tional suppression factor of 5. An important aspect for estimating 
the neglected recoil corrections, originates in the fact that the nu-
clear weak current can be organized perturbatively using chiral 
effective field theory. We keep only leading and next-to leading or-
der. To this order, the weak probe interacts with a single nucleon, 
such that: J µ†(r) = ∑A

i=1 τ−
i

[
δµ0 J 0

i,1b − δµk Jk
i,1b

]
δ(r − ri), where 

τ− = 1
2 (τ x − iτ y) is the isospin lowering operator, that turns a 

neutron into a proton, has temporal and spatial parts in momen-
tum space:

J 0
i,1b(p2) = 1 − g A

P · σ i

2m
, (15)

Ji,1b(p2) = g A σ i + iκV
σ i × p

2m
, (16)

where P = pi + p′
i , g A ≈ 1.27 is the axial constant, and κV ≈ 4.70

is the nucleon magnetic moment. We notice that the polar-vector 
part of the charge operator and the axial-vector part of the cur-
rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
nuclear model.

A different source of theoretical corrections are radiative and 
relativistic corrections to the decay process. In allowed beta de-
cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
only sensitive to ratios of matrix elements. This is similar to the 
β asymmetry parameter in allowed β decay, where the radiative 
corrections are of the order of 10−4 [23,24]. Fully relativistic treat-
ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
sitivity to BSM physics we simulate a first forbidden unique energy 
spectrum (containing 10M events), using an endpoint energy of 
3.5 MeV. In order to account for experimental uncertainty in the β
energy measurement we introduce resolution effects of 20 keV to 
each of the simulated events. The theoretical β energy spectrum 
can be calculated from integration over all angles in Eq. (11), to 
obtain:

dwβ∓

dϵ
∝ +(ϵ)

(

2 + 4γ0
CT + C ′

T

C A

me

ϵ
+ β

5
(a2 − 1) tanh−1(a) + a

a2

×
(

1 − |CT |2 + |C ′
T |2

|C A |2

))

, (17)

where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
C ′

T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
T = 0, 

Fig. 1(a)), weak left handed coupling (CT /C A = C ′
T /C A = 0.005, 

Fig. 1(b)), and strong right handed coupling (CT /C A = −C ′
T /C A =

0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
since in that case b = 0. Also note the reduced sensitivity to the 

Fig. 1. 68% & 90% confidence intervals for the fits to the BSM couplings. See text for 
details. The bold dot indicates the values of the couplings in the simulation.
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and the weak magnetic current are sub-leading, suppressed by the 
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and can be easily calculated, albeit introduce a dependence on a 
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tive corrections to the spectrum shape are small, as the shape is 
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Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
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obtain:
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where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
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T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
T = 0, 

Fig. 1(a)), weak left handed coupling (CT /C A = C ′
T /C A = 0.005, 

Fig. 1(b)), and strong right handed coupling (CT /C A = −C ′
T /C A =

0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
since in that case b = 0. Also note the reduced sensitivity to the 

Fig. 1. 68% & 90% confidence intervals for the fits to the BSM couplings. See text for 
details. The bold dot indicates the values of the couplings in the simulation.
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2 , M̂ V

2 are suppressed 
by an additional factor of qR , which for relevant Q -values of a 
unique first-forbidden decay, i.e., Q ≈ 10 MeV, leads to a factor 
of 20. Moreover, as j J (ρ) ∼ ρ J

(2 J+1)!! (for ρ ≪ 1), we find an addi-
tional suppression factor of 5. An important aspect for estimating 
the neglected recoil corrections, originates in the fact that the nu-
clear weak current can be organized perturbatively using chiral 
effective field theory. We keep only leading and next-to leading or-
der. To this order, the weak probe interacts with a single nucleon, 
such that: J µ†(r) = ∑A

i=1 τ−
i

[
δµ0 J 0

i,1b − δµk Jk
i,1b

]
δ(r − ri), where 

τ− = 1
2 (τ x − iτ y) is the isospin lowering operator, that turns a 

neutron into a proton, has temporal and spatial parts in momen-
tum space:

J 0
i,1b(p2) = 1 − g A

P · σ i

2m
, (15)

Ji,1b(p2) = g A σ i + iκV
σ i × p

2m
, (16)

where P = pi + p′
i , g A ≈ 1.27 is the axial constant, and κV ≈ 4.70

is the nucleon magnetic moment. We notice that the polar-vector 
part of the charge operator and the axial-vector part of the cur-
rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
nuclear model.

A different source of theoretical corrections are radiative and 
relativistic corrections to the decay process. In allowed beta de-
cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
only sensitive to ratios of matrix elements. This is similar to the 
β asymmetry parameter in allowed β decay, where the radiative 
corrections are of the order of 10−4 [23,24]. Fully relativistic treat-
ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
sitivity to BSM physics we simulate a first forbidden unique energy 
spectrum (containing 10M events), using an endpoint energy of 
3.5 MeV. In order to account for experimental uncertainty in the β
energy measurement we introduce resolution effects of 20 keV to 
each of the simulated events. The theoretical β energy spectrum 
can be calculated from integration over all angles in Eq. (11), to 
obtain:

dwβ∓

dϵ
∝ +(ϵ)

(

2 + 4γ0
CT + C ′

T

C A

me

ϵ
+ β

5
(a2 − 1) tanh−1(a) + a

a2

×
(

1 − |CT |2 + |C ′
T |2

|C A |2

))

, (17)

where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
C ′

T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
T = 0, 

Fig. 1(a)), weak left handed coupling (CT /C A = C ′
T /C A = 0.005, 

Fig. 1(b)), and strong right handed coupling (CT /C A = −C ′
T /C A =

0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
since in that case b = 0. Also note the reduced sensitivity to the 

Fig. 1. 68% & 90% confidence intervals for the fits to the BSM couplings. See text for 
details. The bold dot indicates the values of the couplings in the simulation.

A. Glick-Magid et al. / Physics Letters B 767 (2017) 285–288 287

d5ωβ∓

d#k/4πd#ν/4πdϵ
= 2G2

π2

1
2 J i + 1

(ϵ0 − ϵ)2kϵ F ± (Z f ,ϵ)

×
{

5
2

[
1 + δ1 − 2

5
(1 + δν̂·β⃗)ν̂ · β⃗

+ 1
5

(
ν̂ · q̂

)(
β⃗ · q̂

)]
⟨∥L̂ A

2 ∥⟩2
}

, (12)

with

δ1 = 4
5

{

±
√

3
2

ν − k2

ϵ

q
ℜ⟨∥M̂ V

2 ∥⟩
⟨∥L̂ A

2 ∥⟩
− ν + k2

ϵ

q
ℜ⟨∥Ĉ A
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der. To this order, the weak probe interacts with a single nucleon, 
such that: J µ†(r) = ∑A

i=1 τ−
i

[
δµ0 J 0

i,1b − δµk Jk
i,1b

]
δ(r − ri), where 

τ− = 1
2 (τ x − iτ y) is the isospin lowering operator, that turns a 

neutron into a proton, has temporal and spatial parts in momen-
tum space:

J 0
i,1b(p2) = 1 − g A

P · σ i

2m
, (15)

Ji,1b(p2) = g A σ i + iκV
σ i × p

2m
, (16)

where P = pi + p′
i , g A ≈ 1.27 is the axial constant, and κV ≈ 4.70

is the nucleon magnetic moment. We notice that the polar-vector 
part of the charge operator and the axial-vector part of the cur-
rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
nuclear model.

A different source of theoretical corrections are radiative and 
relativistic corrections to the decay process. In allowed beta de-
cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
only sensitive to ratios of matrix elements. This is similar to the 
β asymmetry parameter in allowed β decay, where the radiative 
corrections are of the order of 10−4 [23,24]. Fully relativistic treat-
ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
sitivity to BSM physics we simulate a first forbidden unique energy 
spectrum (containing 10M events), using an endpoint energy of 
3.5 MeV. In order to account for experimental uncertainty in the β
energy measurement we introduce resolution effects of 20 keV to 
each of the simulated events. The theoretical β energy spectrum 
can be calculated from integration over all angles in Eq. (11), to 
obtain:

dwβ∓
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where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
C ′

T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
T = 0, 

Fig. 1(a)), weak left handed coupling (CT /C A = C ′
T /C A = 0.005, 

Fig. 1(b)), and strong right handed coupling (CT /C A = −C ′
T /C A =

0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
since in that case b = 0. Also note the reduced sensitivity to the 

Fig. 1. 68% & 90% confidence intervals for the fits to the BSM couplings. See text for 
details. The bold dot indicates the values of the couplings in the simulation.
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is the nucleon magnetic moment. We notice that the polar-vector 
part of the charge operator and the axial-vector part of the cur-
rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
nuclear model.

A different source of theoretical corrections are radiative and 
relativistic corrections to the decay process. In allowed beta de-
cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
only sensitive to ratios of matrix elements. This is similar to the 
β asymmetry parameter in allowed β decay, where the radiative 
corrections are of the order of 10−4 [23,24]. Fully relativistic treat-
ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
sitivity to BSM physics we simulate a first forbidden unique energy 
spectrum (containing 10M events), using an endpoint energy of 
3.5 MeV. In order to account for experimental uncertainty in the β
energy measurement we introduce resolution effects of 20 keV to 
each of the simulated events. The theoretical β energy spectrum 
can be calculated from integration over all angles in Eq. (11), to 
obtain:
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where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
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T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
T = 0, 

Fig. 1(a)), weak left handed coupling (CT /C A = C ′
T /C A = 0.005, 

Fig. 1(b)), and strong right handed coupling (CT /C A = −C ′
T /C A =

0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
since in that case b = 0. Also note the reduced sensitivity to the 
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(2 J+1)!! (for ρ ≪ 1), we find an addi-
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the neglected recoil corrections, originates in the fact that the nu-
clear weak current can be organized perturbatively using chiral 
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is the nucleon magnetic moment. We notice that the polar-vector 
part of the charge operator and the axial-vector part of the cur-
rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
nuclear model.

A different source of theoretical corrections are radiative and 
relativistic corrections to the decay process. In allowed beta de-
cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
only sensitive to ratios of matrix elements. This is similar to the 
β asymmetry parameter in allowed β decay, where the radiative 
corrections are of the order of 10−4 [23,24]. Fully relativistic treat-
ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
sitivity to BSM physics we simulate a first forbidden unique energy 
spectrum (containing 10M events), using an endpoint energy of 
3.5 MeV. In order to account for experimental uncertainty in the β
energy measurement we introduce resolution effects of 20 keV to 
each of the simulated events. The theoretical β energy spectrum 
can be calculated from integration over all angles in Eq. (11), to 
obtain:
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where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
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T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
T = 0, 

Fig. 1(a)), weak left handed coupling (CT /C A = C ′
T /C A = 0.005, 

Fig. 1(b)), and strong right handed coupling (CT /C A = −C ′
T /C A =

0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
since in that case b = 0. Also note the reduced sensitivity to the 

Fig. 1. 68% & 90% confidence intervals for the fits to the BSM couplings. See text for 
details. The bold dot indicates the values of the couplings in the simulation.

Unique possibility to separate between left and right-handed couplings!

Glick-Magid, DG, et al, Beta spectrum of unique first forbidden decays as a
novel test for fundamental symmetries, Phys. Lett. B767, 285 (2017)
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)
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]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
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L̂ J M(q) = i
q
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dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
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T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

∝ 𝑞?

∝ 𝑞?/3

∝ 𝑞?

≈
𝑱

𝑱 + 𝟏
�

𝑬M𝑱𝑴

𝑞𝑅
ℏ𝑐

≈ 0.005 − 0.1
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issues, which plague beta endpoint measurements. More impor-
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ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
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final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
|⟨∥Ê J ∥⟩|2 + |⟨∥M̂ J ∥⟩|2

)

± q̂ ·
(
ν̂ − β⃗

)∑

J≥1

2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)

|⟨∥Ĉ J ∥⟩|2

− 2q̂ ·
(
ν̂ + β⃗

)
ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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These are nuclear structure dependent corrections.

Needed accuracy of the calculation ≈ 10/O − 10/Q

This dictates the number of corrections needed to be calculated 
explicitly.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)
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(
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)
ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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In beta decays, shape corrections are few per-milles, thus the first
correction should be calculated explicitly to reach needed accuracy
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e.g., allowed transitions

Nuclear effects are important to pinpoint BSM effects:
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1

��� Ji
E

D
Jf

���L̂A
1

��� Ji
E ⌥ 2

p

2
✏� ⌫

q
Re

0

@C
⇤
V CA + C

0⇤
V C

0

A

|CA|
2 +

��C 0
A

��2

D
Jf

���M̂V
1

��� Ji
E

D
Jf

���L̂A
1

��� Ji
E

1

A

3

5

19 19

19 19

C
V
0 {L,E}

A
1

L
V
0 C

A
1 M

V
1



SHAPE CORRECTIONS

21

Unique first forbidden  Δ𝐽) = 2/

Pre-conditions for a precision prediction:

Need to know ratios to 10%.
What about currents?
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From QCD to nuclei 
Chiral EFT provides a systematic basis for nuclear forces 
and the coupling to external probes based on the Standard Model 

combined with powerful 
many-body methods can 
access nuclei 

How to systematically predict and assess uncertainties in 
reaction rates, from high energy theory to QCD to nuclei? 
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Many body calculation of nuclear structure

Nuclear interaction from QCD? Unified theory of nuclear reactions and 
structure? Many body strongly interacting problem.

Probe-nucleus interaction

Going from quark to nucleon demands solving QCD at low-energies.

probe-quark interaction

Unknown couplings, multiple possible channels. 

Ultraviolet physics

unknown high energy physics – a calculation for each candidate high energy theory is tedious 

How to systematically predict and assess uncertainties in 
reaction rates, from high energy theory to QCD to nuclei? 
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NEW PHYSICS SCALE

For the simplest BSM operator (n=2), a 3 TeV scale means 𝜖e, 𝜖ẽ ≈ 10/Q

𝑛 = 0	𝑓𝑜𝑟	𝑖 = 𝑉, 𝐴
𝑛 ≥ 2	𝑓𝑜𝑟	𝑖 ≠ 𝑉, 𝐴
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Taking a matrix element between nucleonic states:
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Taking a matrix element between nucleonic states:
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Taking a matrix element between nucleonic states:
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Axial, Scalar and Tensor Charges of the Nucleon from 2+1+1-flavor Lattice QCD
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(Dated: January 17, 2017)

We present results for the isovector axial, scalar and tensor charges gu�d
A , gu�d

S and gu�d
T of the

nucleon needed to probe the Standard Model and novel physics. The axial charge is a fundamen-
tal parameter describing the weak interactions of nucleons. The scalar and tensor charges probe
novel interactions at the TeV scale in neutron and nuclear �-decays, and the flavor-diagonal tensor
charges guT , g

d
T and gsT are needed to quantify the contribution of the quark electric dipole moment

(EDM) to the neutron EDM. The lattice-QCD calculations were done using nine ensembles of gauge
configurations generated by the MILC Collaboration using the highly improved staggered quarks
action with 2+1+1 dynamical flavors. These ensembles span three lattice spacings a ⇡ 0.06, 0.09
and 0.12 fm and light-quark masses corresponding to the pion masses M⇡ ⇡ 135, 225 and 315MeV.
High-statistics estimates on five ensembles using the all-mode-averaging method allow us to quan-
tify all systematic uncertainties and perform a simultaneous extrapolation in the lattice spacing,
lattice volume and light-quark masses for the connected contributions. Our final estimates, in the
MS scheme at 2GeV, of the isovector charges are gu�d

A = 1.195(33)(20), gu�d
S = 0.97(12)(6) and

gu�d
T = 0.987(51)(20). The first error includes statistical and all systematic uncertainties except
that due to the extrapolation Ansatz, which is given by the second error estimate. Combining
our estimate for gu�d

S with the di↵erence of light quarks masses (md � mu)
QCD = 2.67(35) MeV

given by the Flavor Lattice Average Group, we obtain (MN �MP )
QCD = 2.59(49) MeV. Estimates

of the connected part of the flavor-diagonal tensor charges of the proton are guT = 0.792(42) and
gdT = �0.194(14). Combining our new estimates with precision low-energy experiments, we present
updated constraints on novel scalar and tensor interactions, ✏S,T , at the TeV scale.

PACS numbers: 11.15.Ha, 12.38.Gc

Keywords: nucleon charges, lattice QCD, excited-state contamination, neutron EDM

I. INTRODUCTION

The nucleon axial charge gu�d

A
is an important parame-

ter that encapsulates the strength of weak interactions of
nucleons. It enters in many analyses of nucleon structure
and of the Standard Model (SM) and beyond-the-SM
(BSM) physics. For example, the rate of proton-proton
fusion, which is the first step in the thermonuclear reac-
tion chains that power low-mass hydrogen-burning stars
like the Sun, is sensitive to it. It impacts the extrac-
tion of Vud and tests of the unitarity of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, as well as the anal-
ysis of neutrinoless double-beta decay. At present, the
ratio of the axial to the vector charge, gA/gV , is best
determined from the experimental measurement of neu-
tron beta decay using polarized ultracold neutrons by the
UCNA Collaboration, 1.2756(30) [1], and by PERKEO
II, 1.2761+14

�17
[2]. Note that, in the SM, gV = 1 up to sec-

⇤
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‡
saul.cohen@gmail.com

§
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ond order corrections in isospin breaking [3, 4] as a result
of the conservation of the vector current. Using Vud de-
termined from superallowed nuclear beta decay or pion
decay in combination with the average neutron lifetime
measurement also gives a consistent value for gu�d

A
[5, 6].

Given the important role gu�d

A
plays in parametrizing the

structure and weak interactions of nucleons, and probing
signatures of new physics, it is important to calculate
it directly with O(1%) accuracy using lattice QCD and
eventually confront the theoretical prediction with exper-
imental measurements.

The isovector scalar and tensor charges of the nucleon,
combined with the helicity-flip parameters b and b⌫ in
the neutron decay distribution, probe novel scalar and
tensor interactions at the TeV scale [7]. To optimally
bound such scalar and tensor interactions using planned
measurements of these b and b⌫ parameters at the 10�3

precision level [8–10], requires the matrix elements of the
local scalar and tensor quark bilinear operators within
the nucleon state to be calculated with a precision of
10%–15% [7]. Future higher-precision measurements of
b and b⌫ would require correspondingly higher-precision
calculations of the matrix elements to place even more
stringent bounds on TeV-scale couplings. In a recent
work [11], we showed that lattice-QCD calculations have
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≈ 0.8 − 1.2

The 𝜖G𝑠 are small, not the nuclear charges!
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Many body calculation of nuclear structure

Nuclear interaction from QCD? Unified theory of nuclear reactions and 
structure? Many body strongly interacting problem.

Probe-nucleus interaction

Going from quark to nucleon demands solving QCD at low-energies.

probe-quark interaction

Unknown couplings, multiple possible channels. 

Ultraviolet physics

unknown high energy physics – a calculation for each candidate high energy theory is tedious 

How to systematically predict and assess uncertainties in 
reaction rates, from high energy theory to QCD to nuclei? 

Symmetries are dictated by fundamental QCD-probe interactions

Physics of the nucleus dictates structure of the operators. 

Fundamental physics dictates size of coupling constants.
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Couplings:

U(1): anapole,
E/M dipole

Scalar, Pseudo-scalar

Vector, Axial-vector

Tensor, Pseudo-tensor

�̅�𝜒 Ψ 𝑞[𝑞 Ψ
;�̅�𝛾]𝜒 Ψ 𝑞[𝛾]𝑞 Ψ

�̅�𝛾 𝜒 Ψ 𝑞[𝛾^𝑞 Ψ
�̅�𝛾 𝛾]𝜒 Ψ 𝑞[𝛾^𝛾]𝑞 Ψ

�̅�𝜎 `𝜒 Ψ 𝑞[𝜎^`𝑞 Ψ
�̅�𝜎 `𝛾]𝜒 Ψ 𝑞[𝜎^`𝑞 Ψ

Effective Lagrangians

𝑒. 𝑔. ,
𝜇
2
�̅�𝜎 `𝜒𝐹^`

Nuclear “current” of the same symmetry
Decoupled from probe physics!

Probe “current” of known 
Lorentz symmetry

Vector, Axial-vector�̅�𝛾 𝜒 Ψ 𝑞[𝛾^𝑞 Ψ
�̅�𝛾 𝛾]𝜒 Ψ 𝑞[𝛾^𝛾]𝑞 Ψ
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Nuclear scales

Beyond models: rigor and consistency in modern nuclear theory – p. 12

QCD scales Probe momentum

Chiral EFT: pions and nuclens

Q

Lbrk
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Nuclear scales

Beyond models: rigor and consistency in modern nuclear theory – p. 12

QCD scales Probe momentum EFT procedure for a specific phenomenon

characteristic momentum Q è
momentum scale in the nucleus
momentum scale of the probe

Lbre>>Q – a high momentum cutoff:
Identify viable d.o.f
Write most general Lagrangian
consistent with fund. symmetries.

Power counting: Find a systematic way to 
organize diagrams according to their 
contribution to the observable.

Weinberg’s Power Counting: Each Feynman 
diagram can be characterized by:

QCD is strongly interacting – things are not 
that simple.

Error assessment: order by order OR cutoff 
variation.

Q
Λ( )

ν

Q

Lbrk



NUCLEUS INTERACTION WITH A PROBE, EFT POINT OF VIEW:

Nuclear
current

Low energy QCD has (accidental) scale separation

EFT Lagrangian

Low energy EFT –
Cutoff Lbr>>Q dictates viable deg. of freedom

Wave 
functions

Nuclear 
potential

36

Nuclear Matrix Element 
of characteristic 

momentum Q

Nöther
current

Theoretical uncertainty quantification: 
Power Counting: systematic expansion 
RG invariance: cutoff variation
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Couplings:

U(1): anapole,
E/M dipole

Scalar, Pseudo-scalar

Vector, Axial-vector

Tensor, Pseudo-tensor

𝜋𝑁	𝜎	𝑡𝑒𝑟𝑚𝑠

𝑇ℎ𝑒	𝑤𝑒𝑎𝑘	𝑔𝑎𝑢𝑔𝑒!

𝑙𝑎𝑡𝑡𝑖𝑐𝑒

Nuclear currents

𝐽^xB
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Many body calculation of nuclear structure

Nuclear interaction from QCD? Unified theory of nuclear reactions and 
structure? Many body strongly interacting problem.

Probe-nucleus interaction

Going from quark to nucleon demands solving QCD at low-energies.

probe-quark interaction

Unknown couplings, multiple possible channels. 

Ultraviolet physics

unknown high energy physics – a calculation for each candidate high energy theory is tedious 

How to systematically predict and assess uncertainties in 
reaction rates, from high energy theory to QCD to nuclei? 

Symmetries are dictated by fundamental QCD-probe interactions

Physics of the nucleus dictates structure of the operators. 

Fundamental physics dictates size of coupling constants.

Coarse graining the probe-quark interaction down to probe nucleon and probe-nucleus interaction is 
accomplished viacEFT
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From Achim Schwenk
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From Achim Schwenk
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From Achim Schwenk



THE DECAY OF A MUONIC 3HE

‣ In order to probe the weak structure of the nucleon, one has 
to keep the nuclear effects under control.

3Hep+2n

3He(µ-,nµ) 3H

70%

3He(µ-,nµ) d+n

20%

3He(µ-,nµ) p+2n

10%

 

Capture  prob. ~ Z × y1S 0( )2
~

mµ

me

æ 

è 
ç 
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3

Z 4

aB
µ =


Zmµcα

=
me

mµ

~1/207


aB
e
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RESULTS
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G =
2G2Vud

2En
2
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G =1499(2)L (3)NM (5)t (6)RC =1499 ±16  Hz

 

GEXP =1496± 4Hz

DG, Phys. Lett. B666, 472 (2008), 



INDUCED TENSOR:
‣ From QCD sum rules: 

‣ Experimentally [Wilkinson, Nucl. Instr. Phys. Res. A 455, 
656 (2000)]:

‣ This work: 

 

gt
gA

= -0.0152(53)

 

gt
gA

< 0.36  at  90%

 

gt
gA

= -0.1(0.68)
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dJ µA =
igt
2MN

s µng5qn



INDUCED SCALAR (LIMITS CVC):
‣ Experimentally [Severijns et. al., RMP 78, 991 (2006)]:

‣ This work:  

gS = 0.01± 0.27

 

gS = -0.005± 0.04

45

 

dJ µV =
gS
mµ

qµ
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Many body calculation of nuclear structure

Nuclear interaction from QCD? Unified theory of nuclear reactions and 
structure? Many body strongly interacting problem.

Probe-nucleus interaction

Going from quark to nucleon demands solving QCD at low-energies.

probe-quark interaction

Unknown couplings, multiple possible channels. 

Ultraviolet physics

unknown high energy physics – a calculation for each candidate high energy theory is tedious 

How to systematically predict and assess uncertainties in 
reaction rates, from high energy theory to QCD to nuclei? 

Symmetries are dictated by fundamental QCD-probe interactions

Physics of the nucleus dictates structure of the operators. 

Fundamental physics dictates size of coupling constants.

Coarse graining the probe-quark interaction down to probe nucleon and probe-nucleus interaction is 
accomplished viacEFT

Many body methods can reach 2% absolute accuracy for light nuclei, 10% accuracy for heavy nuclei
ratios are known much better because of the small expansion parameter.
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6He:

Production	
Trap	in	EIBT
and	measure	
kinematics.

23Ne:

Production
Branching-Ratio	
Trap	in	MOT and	
measure	
kinematics



16Nà16O – NUCLEAR PHYSICS TEST CASE
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SARAF Phase I

@

Soreq Center – Israel

1. Different b-n correlation properties for GT and 
unique 1st forbidden – BSM test

2. Unique 1st forbidden spectrum – BSM test
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1

��� Ji
E

D
Jf

���L̂A
1

��� Ji
E ⌥ 2

p

2
⌫ �

k2

✏

q
Re

0

@C
⇤
V CA + C

0⇤
V C

0

A

|CA|
2 +

��C 0
A

��2

D
Jf

���M̂V
1

��� Ji
E

D
Jf

���L̂A
1

��� Ji
E

1

A

3

5

�
1+

�⌫ = 2

2

4✏+ ⌫

q
Re

D
Jf

���ĈA
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SUMMARY

SUMMARY
▸ Nuclear beta decays are an important front for “new physics” discoveries.

▸ New experiments will have 0.01-0.1% level precision.

▸ Important shape (and radiative) corrections that should be calculated, these are 
challenging calculations, but seem feasible:

▸ Worse case: we have great tests for the nuclear interactions.

▸ Best case: experimentalists are satisfied with theory

▸ An ongoing effort of the nuclear theory community:
ECT* workshop: 
“Precise beta decay calculations for searches for new physics”, April 8-12, 2019.
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