
Theory overview on rare eta decays

Jose L. Goity Hampton/JLab

calorimeter -flight

targe

photon beam

diamond wafer

Hadronic Probes of Fundamental Symmetries Joint ACFI-Jefferson Lab Workshop March 6-8, 2014 UMass Amherst Jefferson Lab

forward drift chambers central drift

chamber

superconducting magnet

Motivation

Main motivation for the workshop The JEF proposal submitted to JLab Hall D (talk by Liping Gan)

Physics of the proposal

- accurate measurement of $\eta \xrightarrow{} \pi^0 \gamma \gamma$
- improve bounds on $\eta \to \pi^0 \pi^0$ and $\eta \to \gamma \gamma \gamma$

One objective of the workshop is to learn more about the possibilities of searching for BSM effects in the $\,\eta\,{\rm decays}$

 η has been and is investigated in precision experiments at several facilities

The special role of the η

- Self conjugate 0^{-+} meson
- Is a Goldstone Boson despite being a little overweight
- Mostly an octet, but mixes with the η'
- The decays $\eta
 ightarrow 3\pi\,$ give access to $rac{m_u-m_d}{m_s}$
- Chiral anomaly in $\eta \to \gamma \gamma$, ...

Can we ask more from η ?

Outline

- $\eta \to \pi^0 \gamma \gamma$: generalities
- other QED mediated decays $\eta
 ightarrow \pi^0 \mu^+ \mu^-$, $\eta
 ightarrow \mu^+ \mu^-$
- BSM with η
- Discussion of the two pertinent decays $\ \eta
 ightarrow \pi\pi \ \eta
 ightarrow 3\gamma$
- Possible points of discussion

The decay
$$\eta
ightarrow \pi^0 \gamma \gamma$$

 $\Gamma^{\rm Exp} = 0.35 \pm 0.07 \,\,{\rm eV}$ Has changed significantly over time

Challenge for ChPT

Ametller et al ('91)

- No tree level contributions up to $\mathcal{O}(p^4)$ Finite contributions to 1-loop $\mathcal{O}(p^4)$
- I-loop contributions are very small
- Dominant contributions are NLO in ChPT.
- Must be estimated using models Window into $\mathcal{O}(p^6)$ ChPT

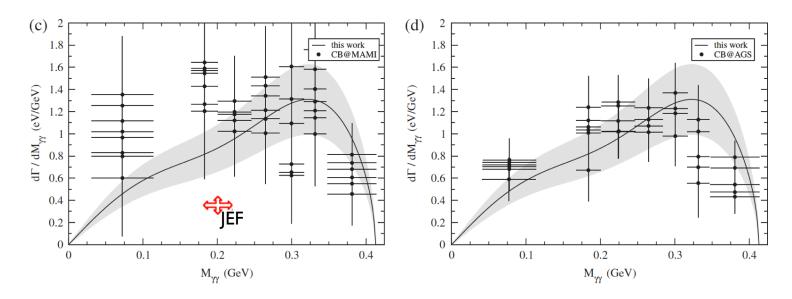
$$\gamma\gamma \to \eta\pi^0 \neq \gamma\gamma \to \pi^0\pi^0$$

$$M = \alpha \ \omega_1 \omega_2 \ \vec{\epsilon_1} \cdot \vec{\epsilon_2} + \beta \ (\vec{\epsilon_1} \times \vec{k_1}) \cdot (\vec{\epsilon_2} \times \vec{k_2})$$

 $lpha,\ eta$ functions of meson masses, $M_{\gamma\gamma},\ \omega_1+\omega_2$

Only known meson decay that proceeds through polarizability pathway one-loop contributions

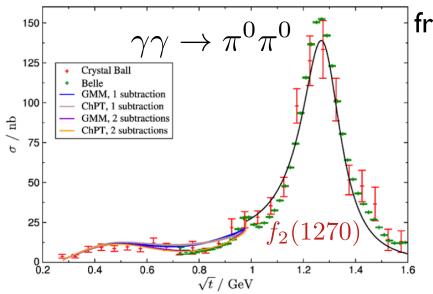
$$\Gamma^{1-loop} = 3.9 \times 10^{-3} \text{ eV}$$


Estimation of dominant contributions

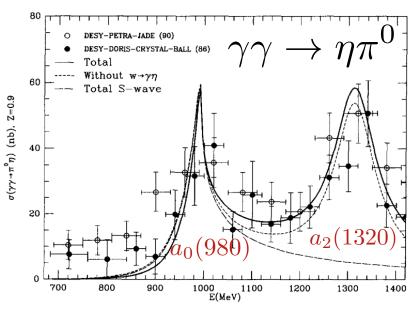
Ametller et al; Ko; Oset et al; Piccioto; Ng & Peters

Resonance dominance models ω, ρ, a_0, a_2 $-\frac{\eta}{\rho, \omega}$

Important constraints from spectrum

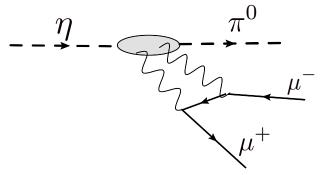

from Oset et al

Left to do


- More accurate measurement of the spectrum JEF proposal (Liping's talk)
- Possible improvement of predictions?
- Possible future access from Lattice QCD?

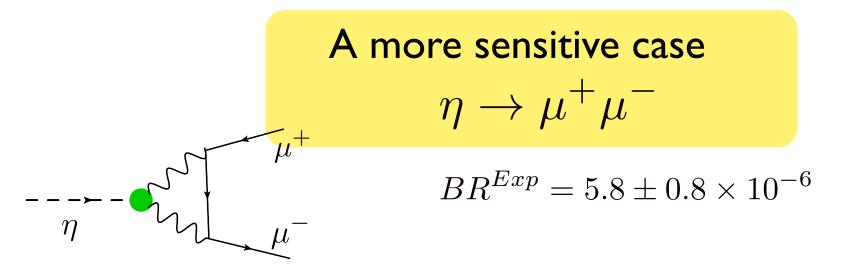
Pion E polarizabilities studied in LQCD: Detmold et al: still large errors Possible interesting point of discussion in workshop....

from Hoferichter et al


Could it be improved?

The expert's review: Hans Bijnens' talk

 $\eta \to \pi^0 \mu^+ \mu^-$


Current Exp bound $\Gamma_{PDG}(\eta \to \pi^0 \mu^+ \mu^-) < 6.5 \ meV$

Calculation by Ng & Peters $\Gamma(\eta \rightarrow \pi^0 \mu^+ \mu^-) \sim .6 \pm .3 \mu eV$

Any useful bound on new physics? e.g: heavy scalar

Bound @ EM contribution $M_S > \sqrt{\epsilon g_{qS} g_{\ell S}} \times 130 \text{ GeV}$ Bound from μ (g - 2) $M_S > g_{\ell S} \times 240 \text{ GeV}$ $g_{qS}, g_{\ell S}$ are likely to be very small

Theoretically understood at the level of the experimental error: e.g. Luke et al.

Bound for a heavy pseudoscalar mass?

 BSM Physics

The case for it

- Hierarchy problem
- quark and lepton masses
- Family problem, or who ordered them?
- Mechanism to explain $\bar{\theta}_{QCD} \sim 0$: axion?
- BAU
- Dark matter is out there

Many models motivated by these facts: SUSY, SUGRA, string theory phenomenology, extra dimensions, technicolor, dark matter models, ...

Effective Theory for BSM Physics

$$\mathcal{L}(M_W) = \mathcal{L}_{SM} + \mathcal{L}_5 + \mathcal{L}_6 + \cdots$$

$$\mathcal{L}_n = \frac{1}{\Lambda_{NP}^{n-4}} \sum_i C_i^{(n)} O_i^{(n)}$$

$$Composite operators respect$$
SM gauge symmetries

$$\mathcal{L}(\Lambda_{QCD}) = \mathcal{L}_{QCD} + \mathcal{L}_{QED} + \mathcal{L}_{Weak} + \mathcal{L}_{BSM}$$

Bases of composite operators up to dim 6 Grzadkowski et al

For sensitivity to BSM physics the structure of operators is key; some hadronic matrix elements need to be estimated and at some point evaluated using LQCD... already possible for known nonleptonic decays

Dim 6 Operators Operators not giving FCNC (MFV models) Array of fields in family multiplets Q_L , U_R , D_R , L_L , ℓ_R , ν_R $U(N_f)^6$ symmetry group

 $U(N_f)^6 \times SU_c(3) \times SU_L(2) \times U_Y(1)$ singlet operators will not give FCNC

Operators built with products of bilinears of the most general forms:

$$\bar{Q}_L \gamma_\mu \lambda_c T_f Q_L , \quad \bar{U}_R \gamma_\mu \lambda_c U_R , \quad \bar{D}_R \gamma_\mu \lambda_c U_R , \cdots$$

 λ_c color matrices; T_f flavor matrices

Only permitted the combinations with quarks and leptons:

 $ar{Q}_L\gamma_\mu Q_L\;ar{L}_L\gamma_\mu L_L$ and other flavor and chirality combinations

Effects of these operators are non observable in FCNC decays; "observable" in the purely leptonic decays of the η , ... but Z^0 also contributes !...

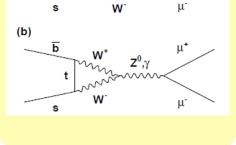
I think this is important point of discussion

Search strategy for NP; look at quantities which

- Vanish at tree level in the SM
- Are calculable (finite) at I-loop level in SM

EW precision observables fixed by EW symmetry
FCNC (GIM)
CPV
B, L violation
EDMs
(g-2)s
etc

Low energy SM tests and searches BSM

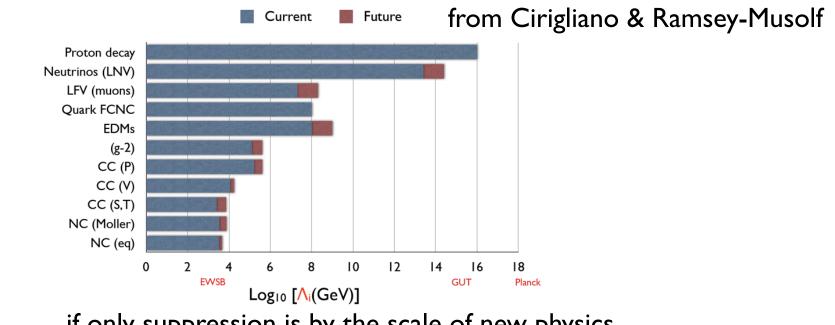


 $K^0 \to \mu^+ \mu^-$: GIM $B - \bar{B}$ mixing : t quark

The newest test of FCNC $B_s \rightarrow \mu^+ \mu^-$

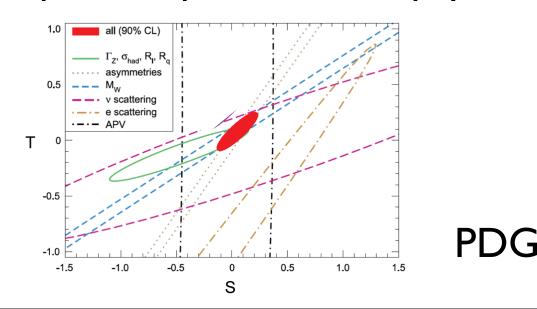
Very suppressed and reliably calculable in SM Buras et al

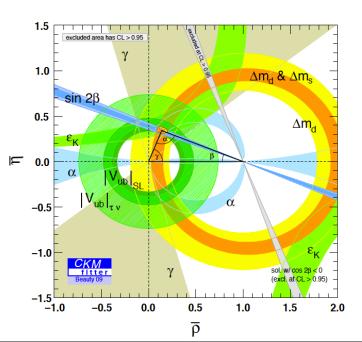
$$\mathcal{B}(B_s \to \mu^+ \mu^-)^{\text{SM}} = (3.23 \pm 0.15 \pm 0.23_{F_{B_s}}) \times 10^{-9}$$



W

Measured by LHCb $\overline{\mathcal{B}}^{exp} = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$ Constrains MSSM Isidori et al. Tight constraints on extra scalar particles


Future


$$\frac{\mathcal{B}(B_s \to \tau^+ \tau^-)^{\text{SM}}}{\mathcal{B}(B_s \to \mu^+ \mu^-)^{\text{SM}}} = 215$$

... if only suppression is by the scale of new physics

Example with precision EW physics

Symmetry tests with η decays

Mode	Branching Ratio	Symmetry Highlight
$\pi^0 2\gamma$	$(2.7 \pm 0.5) \times 10^{-4}$	$\chi PTh, \mathcal{O}(p^6)$
$\pi^0\pi^0$	$< 3.5 \times 10^{-4}$	CP, P
$4\pi^0$	$< 6.9 \times 10^{-7}$	CP, P
$\pi^+\pi^-$	$<1.3\times10^{-5}$	CP, P
4γ	$<2.8\times10^{-4}$	suppressed (< 10^{-11})
$\pi^0\gamma$	$< 9 \times 10^{-5}$	C, L
3γ	$< 1.6 \times 10^{-5}$	С
$2\pi^0\gamma$	$< 5 \times 10^{-4}$	С
$3\pi^0\gamma$	$< 6 \times 10^{-5}$	С
$\pi^0 e^+ e^-$	$< 4 \times 10^{-5}$	С
e^+e^-	$<2.7\times10^{-5}$	helicity suppressed

- $\pi^0, \ \eta, \ \eta'$ are the only self conjugated light mesons
- Test sources for FC non violating physics
- Most sensitive to SM C violation
- SM CPV is very suppressed
- Main disadvantage: short lifetimes
- Bounds on BSM physics of various kinds

$\eta \to \pi \pi$ CP violating; current bound $BR_{Exp}(\eta \rightarrow \pi \pi) < 10^{-5}$ EW contribution

Flavor conserving CP violation: requires second order weak interaction

calculation: Jarlskog & Shabalin $BR_{EW}(\eta \rightarrow \pi\pi) \sim 10^{-27}$

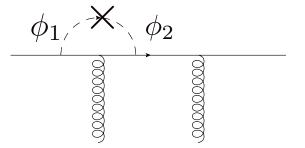
θ_{QCD} contribution

$$\Gamma_{\theta}(\eta \to \pi\pi) = \frac{\mid g_{\theta} \mid^2}{16\pi M_{\eta}} \sqrt{1 - 4\frac{M_{\pi}^2}{M_{\eta}^2}}$$

$$g_{\theta} = -\theta \frac{M_{\pi}^2}{\sqrt{8}F_{\pi}} (\cos \theta_{\eta - \eta'} - \sqrt{2}\sin \theta_{\eta - \eta'})$$

$$\Gamma_{\theta}(\eta \to \pi\pi) \sim 100 \,\theta^2 \,\mathrm{keV}$$

n EDM $\theta < 1.5 \times 10^{-10}$ Guo & Meissner


 $BR_{\theta} < 1.6 \times 10^{-18}$

BSM physics:

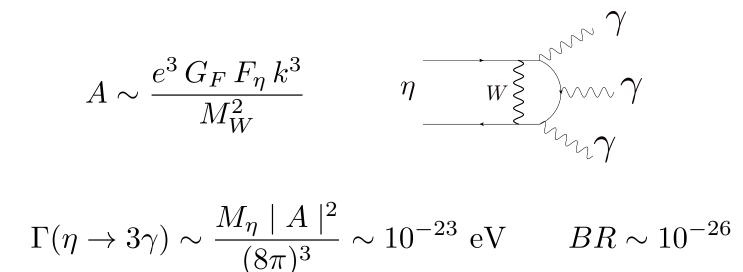
What is needed for a possibly observable effect?

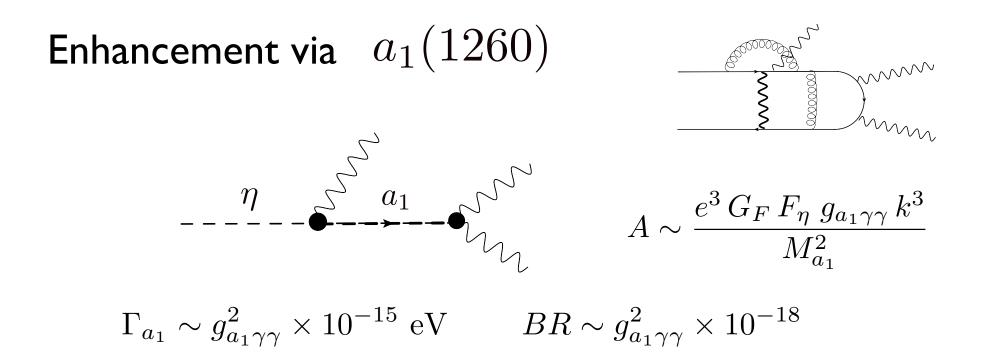
A 12 orders of magnitude enhancement: Spontaneous CP violation

Estimate in Weinberg's model

Order of magnitude estimate by Jarlskog & Shabalin

$$BR_{SCPV}(\eta \to \pi\pi) \sim 10^{-15}$$


A question for the workshop:


Is there any other model BSM that could give even larger contributions?

$\eta o \gamma \gamma \gamma$

CP conserving mode $H_{eff} = g_{\eta 3\gamma} \eta F_{\mu\nu} F^{\nu\rho} F_{\rho}^{\mu}$ In SM need for one W in Feynman diagram Back of the envelope order of magnitude estimate

Loop contribution estimate: only short distances Dicus

Expect CPV $\eta \to 3\gamma\,$ to be significantly smaller

Q: is $\eta \rightarrow 3\gamma$ a good place to look for new physics? what new physics could a $BR > 10^{-6}$ constrain? A point of discussion which seems interesting.

Possible points for discussion

- What possible non FC NP could be constrained with eta decays?. Any specific models?
- Update on experimental BRs achievable in present and proposed experiments.
- QCD physics: impact the JEF experiment would have for understanding $\eta \to \pi^0 \gamma \gamma$
- Other decays not addressed: anomalous $\eta \to \pi^+ \pi^- \gamma$ CV in $\eta \to \pi^0 \mu^+ \mu^- @ O(\alpha)$
- lepton family violation $\eta \to \mu^+ e^- \& \mu^- e^+$