Lattice QCD Calculation of Nucleon Tensor Charge

T. Bhattacharya, V. Cirigliano, R. Gupta, H. Lin, B. Yoon

PNDME Collaboration

Los Alamos National Laboratory

Jan 22, 2015

Neutron EDM, Quark EDM and Tensor Charge

• Quark EDMs at dim=5

$$\mathcal{L} = -\frac{i}{2} \sum_{q=u,d,s} \mathbf{d}_q \; \bar{q} \sigma_{\mu\nu} \gamma_5 q F^{\mu\nu}$$

Neutron EDM from qEDMs

$$d_N = d_u g_T^{u,N} + d_d g_T^{d,N} + d_s g_T^{s,N}$$

• Hadronic part: nucleon tensor charge

$$\langle N \mid \bar{q}\sigma_{\mu\nu}q \mid N \rangle = g_T^{q,N} \ \bar{\psi}_N \sigma_{\mu\nu}\psi_N$$

Neutron EDM, Quark EDM and Tensor Charge

• $d_q \propto m_q$ in many models

$$d_q = y_q \delta_q; \qquad \frac{y_u}{y_d} \approx \frac{1}{2}, \qquad \frac{y_s}{y_d} \approx 20$$

$$d_{N} = d_{u} g_{T}^{u,N} + d_{d} g_{T}^{d,N} + d_{s} g_{T}^{s,N}$$

= $d_{d} \left[g_{T}^{d,N} + \frac{1}{2} \frac{\delta_{u}}{\delta_{d}} g_{T}^{u,N} + 20 \frac{\delta_{s}}{\delta_{d}} g_{T}^{s,N} \right]$

 \Rightarrow Precision determination of $g_T^{s,N}$ is important

Lattice QCD

- Non-perturbative approach to understand QCD
- Formulated on discretized Euclidean space-time
 - Hypercubic lattice
 - Lattice spacing "a"
 - Quark fields placed on sites
 - Gauge fields on the links between sites; U_{μ}

Physical Results from Unphysical Simulations

Finite Lattice Spacing

– Simulations at finite lattice spacings $a\approx 0.06, 0.09$ & $0.12~{\rm fm}$

 \Rightarrow Extrapolate to continuum limit, a = 0

Heavy Pion Mass

- Lattice simulation: Smaller quark mass \longrightarrow Larger computational cost
- Simulations at (heavy) pion masses $M_{\pi} \approx 130, 210$ & 310 MeV
- \Rightarrow Extrapolate to physical pion mass, $M_{\pi} = M_{\pi}^{\text{phys}}$

Finite Volume

- Simulations at finite lattice volume

 $M_{\pi}L = 3.2 \sim 5.4 \ (L = 2.9 \sim 5.8 \ {\rm fm})$

 \Rightarrow Extrapolate to infinite volume, $M_{\pi}L = \infty$

MILC HISQ Lattices, $n_f = 2 + 1 + 1$

ID	a (fm)	M_{π} (MeV)	$L^3 \times T$	$M_{\pi}L$
a12m310	0.1207(11)	305.3(4)	$24^3 \times 64$	4.54
a12m220S	0.1202(12)	218.1(4)	$24^3 \times 64$	3.22
a12m220	0.1184(10)	216.9(2)	$32^3 \times 64$	4.29
a12m220L	0.1189(09)	217.0(2)	$40^3 \times 64$	5.36
a09m310	0.0888(08)	312.7(6)	$32^3 \times 96$	4.50
a09m220	0.0872(07)	220.3(2)	$48^3 \times 96$	4.71
a09m130	0.0871(06)	128.2(1)	$64^3 \times 96$	3.66
a06m310	0.0582(04)	319.3(5)	$48^3 \times 144$	4.51
a06m220	0.0578(04)	229.2(4)	$64^3 \times 144$	4.25

- Fermion discretization : Clover (valence) on HISQ (sea)
- HYP smearing reduce discretization artifact

•
$$m_u = m_d$$

Three-point Function Diagrams

- Quark-line connected / disconnected diagrams
- Disconnected diagrams : complicated and expensive on lattice

Connected Quark Loop Contribution

Nucleon Charge on Lattice

• Nucleon tensor charge g_T^q is defined by

$$\langle N \mid \bar{q}\sigma_{\mu\nu}q \mid N \rangle = g_T^q \ \bar{\psi}_N \sigma_{\mu\nu}\psi_N$$

• On lattice, g_T^q is extracted from ratio of 3-pt and 2-pt function

 $C^{\operatorname{3pt}}/C^{\operatorname{2pt}} \longrightarrow g_{\Gamma}^{q}$

 $-C^{\mathsf{2pt}} = \langle 0 | \ \chi(t_{\mathsf{s}}) \ \overline{\chi}(0) \ | 0 \rangle, \quad C^{\mathsf{3pt}} = \langle 0 | \ \chi(t_{\mathsf{s}}) \ \mathcal{O}(t_{\mathsf{i}}) \ \overline{\chi}(0) \ | 0 \rangle$

- $-\chi$: interpolating operator of proton
- χ introduces **excited states** of proton

Removing Excited States Contamination

- Separating proton sources far from each other
 → small excited state effect, but weak signal
- Put operator reasonable range, remove excited state by fitting to

$$\begin{split} C^{2\text{pt}}(t_{\text{sep}}) &= A_1 e^{-M_0 t_{\text{sep}}} + A_2 e^{-M_1 t_{\text{sep}}} \\ C^{3\text{pt}}(t_{\text{sep}}, t_{\text{ins}}) &= B_1 e^{-M_0 t_{\text{sep}}} + B_2 e^{-M_1 t_{\text{sep}}} \\ &+ B_{12} \left[e^{-M_0 t_{\text{ins}}} e^{-M_1 (t_{\text{sep}} - t_{\text{ins}})} + e^{-M_1 t_{\text{ins}}} e^{-M_0 (t_{\text{sep}} - t_{\text{ins}})} \right] \end{split}$$

Removing Excited States Contamination (a12m310)

• Small excited state contamination (compared to g_A , g_S)

Removing Excited States Contamination (a09m310)

• Small excited state contamination (compared to g_A , g_S)

MILC HISQ Lattices, $n_f = 2 + 1 + 1$

ID	a (fm)	M_{π} (MeV)	$L^3 \times T$	$M_{\pi}L$
a12m310	0.1207(11)	305.3(4)	$24^3 \times 64$	4.54
a12m220S	0.1202(12)	218.1(4)	$24^3 \times 64$	3.22
a12m220	0.1184(10)	216.9(2)	$32^3 \times 64$	4.29
a12m220L	0.1189(09)	217.0(2)	$40^3 \times 64$	5.36
a09m310	0.0888(08)	312.7(6)	$32^3 \times 96$	4.50
a09m220	0.0872(07)	220.3(2)	$48^3 \times 96$	4.71
a09m130	0.0871(06)	128.2(1)	$64^3 \times 96$	3.66
a06m310	0.0582(04)	319.3(5)	$48^3 \times 144$	4.51
a06m220	0.0578(04)	229.2(4)	$64^3 \times 144$	4.25

Renormalization of Bilinear Operators $\overline{q}\sigma_{\mu\nu}q$

- Lattice results $\Longrightarrow \overline{\text{MS}}$ scheme at 2GeV
- Non-perturbative renormalization using RI-sMOM scheme
- Calculate ratio Z_T/Z_V : reduce lattice artifact
- Renormalized Tensor Charge :

Simultaneous extrapolation of $(a, M_{\pi}, M_{\pi}L)$

 $g_T(a, M_{\pi}, L) = c_1 + c_2 a + c_3 M_{\pi}^2 + c_4 e^{-M_{\pi}L}$

Simultaneous extrapolation of $(a, M_{\pi}, M_{\pi}L)$

 $g_T(a, M_\pi, L) = c_1 + c_2 a + c_3 M_\pi^2 + c_4 e^{-M_\pi L}$

16/36

Disconnected Quark Loop Contribution

Disconnected Contribution to the Nucleon Charges

Disconnected part of the ratio of 3pt func to 2pt func

$$\left[\frac{C^{2\mathsf{pt}}}{C^{2\mathsf{pt}}}\right]^{\mathsf{disc}} = -\frac{\langle C^{2\mathsf{pt}}(t_{\mathsf{S}}) \sum_{\mathbf{x}} \operatorname{Tr}[M^{-1}(t_{\mathsf{i}}, \mathbf{x}; t_{\mathsf{i}}, \mathbf{x})\sigma_{\mu\nu}] \rangle}{\langle C^{2\mathsf{pt}}(t_{\mathsf{S}}) \rangle}$$

- M: Dirac operator
- $\operatorname{Tr}[M^{-1}(t_{\mathrm{i}},\mathbf{x};t_{\mathrm{i}},\mathbf{x})\sigma_{\mu\nu}]$: disconnected quark loop

Difficulties in Disconnected Diagram Calculation

$$\left[\frac{C^{3\text{pt}}}{C^{2\text{pt}}}\right]^{\text{disc}} = -\frac{\langle C^{2\text{pt}}(t_{\text{s}}) \sum_{\mathbf{x}} \text{Tr}[M^{-1}(t_{\text{i}}, \mathbf{x}; t_{\text{i}}, \mathbf{x})\sigma_{\mu\nu}] \rangle}{\langle C^{2\text{pt}}(t_{\text{s}}) \rangle}$$

- Connected calculation needs only point-to-all propagators
 Disconnected quark loop needs all-x-to-all propagators
 ⇒ Computationally L³ times more expensive; need new technique
- Noisy signal \Rightarrow Need more statistics

Improvement & Error Reduction Techniques

- Multigrid Solver [Osborn, et al., 2010; Babich, et al., 2010]
- All-Mode Averaging (AMA) for Two-point Correlators
 [Blum, Izubuchi and Shintani, 2013]
- Hopping Parameter Expansion (HPE)
 [Thron, et al., 1998; McNeile and Michael , 2001]
- Truncated Solver Method (TSM) [Bali, Collins and Schäfer, 2007]
- Dilution [Bernardson, et al., 1994; Viehoff, et al., 1998]

Improved Estimator of Two-point Function

- All-mode averaging (AMA) [Blum, Izubuchi and Shintani, 2013] with Multigrid solver for Clover in Chroma [Osborn, et al., 2010]
- Exploiting translation symmetry & small fluctuation of low-modes
- "LP" term is cheap low-precision estimate
- "HP" (high-precision) correction term Systematic error ⇒ Statistical error

• $N_{\text{LP}} \gg N_{\text{HP}}$ brings computational gain (e.g., N_{LP} = 60, N_{HP} = 4)

Truncated Solver Method (TSM)

- Stochastic estimate of M⁻¹ [Bali, Collins and Schäfer, 2007]
 - Do calculate exact M^{-1} , but estimate with reasonable error
 - Computational cost : $\frac{1}{100} \sim \frac{1}{10000}$ of exact calculation
- Same form as AMA
 - $C^{\operatorname{2pt}} \longrightarrow M^{-1}$
 - Sum over source positions
 - \longrightarrow Sum over random noise sources
- $|\eta_i
 angle$: complex random noise vector
- $|s_i\rangle$: solution vector; $M|s_i\rangle = |\eta_i\rangle$

Removing Excited States Contamination

- Interpolating operator introduces excited state contamination
- Remove excited state by fitting to

$$\begin{split} C^{\text{2pt}}(t_{\text{sep}}) &= A_1 e^{-M_0 t_{\text{sep}}} + A_2 e^{-M_1 t_{\text{sep}}} \\ C^{\text{3pt}}(t_{\text{sep}}, t_{\text{ins}}) &= B_1 e^{-M_0 t_{\text{sep}}} + B_2 e^{-M_1 t_{\text{sep}}} \\ &+ B_{12} \left[e^{-M_0 t_{\text{ins}}} e^{-M_1 (t_{\text{sep}} - t_{\text{ins}})} + e^{-M_1 t_{\text{ins}}} e^{-M_0 (t_{\text{sep}} - t_{\text{ins}})} \right] \end{split}$$

Removing Excited States Contamination (a12m310, *l*)

Removing Excited States Contamination (a12m310, s)

Proton Tensor Charge : Connected / Disconnected

Connected Contribution

$$g_T^u$$
 g_T^d g_T^{u-d} g_T^{u+d}
0.788(64) -0.223(25) 1.020(75) 0.567(62)

Disconnected Contribution

Ens	g_T^l	g_T^s
a12m310	-0.0122(24)	-0.0027(24)
a12m220	-0.0030(46)	-0.0009(32)
a09m310	-0.0052(19)	-0.0001(25)
a09m220		-0.0022(69)
a06m310	-0.0051(94)	-0.0037(60)

- $-g_T^{l,\text{disc}}$ is tiny compared to the connected contributions \Rightarrow Take maximum value as systematic error
- No connected diagrams for $g_T^s \Rightarrow$ Extrapolate to physical point

Simultaneous extrapolation of g_T^s in (a, M_{π})

 $g_T^s = 0.002(11)$

Results

Lattice Results of Nucleon Tensor Charge

Preliminary!

• Proton Tensor Charge ($\mu^{\overline{MS}} = 2 \, \text{GeV}$)

g_T^u	=	0.79(7)
g_T^d	=	-0.22(3)
g_T^{u-d}	=	1.02(8)
g_T^{u+d}	=	0.57(6)
g_T^s	=	-0.002(11)

Neutron Tensor Charge

In isospin limit ($m_u = m_d$), $u \leftrightarrow d$ from proton g_T

Proton Tensor Charge

• This study
$$(\mu^{\overline{\text{MS}}} = 2 \,\text{GeV})$$

$$g_T^u = 0.79(7),$$
 $g_T^d = -0.22(3)$
 $g_T^{u-d} = 1.02(8)$ $g_T^{u+d} = 0.57(6)$

• Lattice QCD estimates for g_T^{u-d}

[LHPC, ETMC, RQCD, PNDME]

Proton Tensor Charge

• This study

$$|g_T^{l,{\rm disc}}| \le 0.0122, \qquad g_T^{s,{\rm disc}} = 0.002(11)$$

- Lattice, Abdel-Rehim, *et al.*, 2014, $a = 0.082 \text{ fm}, M_{\pi} = 370 \text{ MeV}, \text{Twisted mass}$ $g_T^{l,\text{disc}} = 0.0008(7)$
- Lattice, S. Meinel, *et al.*, 2014, $a = 0.11 \text{ fm}, M_{\pi} = 317 \text{ MeV}, \text{ Clover}$

Proton Tensor Charge

This study

$$g_T^u = 0.79(7), \qquad g_T^d = -0.22(3) \qquad (\mu^{MS} = 2 \,\text{GeV})$$

- Quark model $g^u_T = \frac{4}{3}, \qquad g^d_T = -\frac{1}{3}$
- Dyson-Schwinger [Pitschmann, et al., 2014]

$$g_T^u = 0.55(8), \qquad g_T^d = -0.11(2) \qquad (\zeta_2 = 2 \,\mathrm{GeV})$$

Experiments (HERMES and COMPASS)

$$\begin{split} g^u_T &= 0.57(21), \qquad g^d_T = -0.18(33) \qquad (Q^2 = 1.0\,{\rm GeV}^2) \\ & \mbox{[Bacchetta, et al., JHEP 2013]} \\ g^u_T &= 0.39^{+0.18}_{-0.12}, \qquad g^d_T = -0.25^{+0.30}_{-0.10} \qquad (Q^2 = 0.8\,{\rm GeV}^2) \\ & \mbox{[Anselmino, et al., PRD 2013]} \end{split}$$

qEDM and Tensor Charge

$$d_N = d_u \ g_T^{u,N} + d_d \ g_T^{d,N} + d_s \ g_T^{s,N}$$

Known parameters

$$\begin{split} |d_N| &< 2.9 \times 10^{-26} e \text{ cm (90\% C.L.)} & \text{[Baker, et al., PRL 2006]} \\ g_T^{u,N} &= -0.22(3) \\ g_T^{d,N} &= & 0.79(7) \\ g_T^{s,N} &= -0.002(11) \end{split}$$

 \Rightarrow Place constraints on d_q

qEDM Constraints

• 90% C.L. parameter space of d_u and d_d , assuming $g_T^s = 0$

qEDM Constraints

$$d_N = d_u g_T^{u,N} + d_d g_T^{d,N} + d_s g_T^{s,N}$$

$$g_T^{u,N} = -0.223(28), \quad g_T^{d,N} = 0.788(68), \quad g_T^{s,N} = -0.002(11)$$

• Since $g_T^s = 0$ within error, cannot give constraints on d_s

Conclusion

- Presented first lattice QCD calculation of nucleon tensor charge including all systematics (a, M_π, M_πL, disconnected diagrams)
- · Constrained qEDMs by the results combined with experiment
- Need more study on g_T^s to constrain d_s