Lattice QCD Calculation of Nucleon Tensor Charge

T. Bhattacharya, V. Cirigliano, R. Gupta, H. Lin, B. Yoon

PNDME Collaboration

Los Alamos National Laboratory

Jan 22, 2015
Neutron EDM, Quark EDM and Tensor Charge

- Quark EDMs at dim=5

\[\mathcal{L} = -\frac{i}{2} \sum_{q=u,d,s} d_q \bar{q} \sigma_{\mu\nu} \gamma_5 q F^{\mu\nu} \]

- Neutron EDM from qEDMs

\[d_N = d_u g^{u,N}_T + d_d g^{d,N}_T + d_s g^{s,N}_T \]

- Hadronic part: nucleon tensor charge

\[\langle N| \bar{q} \sigma_{\mu\nu} q |N \rangle = g^{q,N}_T \bar{\psi}_N \sigma_{\mu\nu} \psi_N \]
Neutron EDM, Quark EDM and Tensor Charge

- $d_q \propto m_q$ in many models

\[d_q = y_q \delta_q; \quad \frac{y_u}{y_d} \approx \frac{1}{2}, \quad \frac{y_s}{y_d} \approx 20 \]

\[d_N = d_u \ g_{T}^{u,N} + d_d \ g_{T}^{d,N} + d_s \ g_{T}^{s,N} \]
\[= d_d \left[g_{T}^{d,N} + \frac{1}{2} \frac{\delta_u}{\delta_d} \ g_{T}^{u,N} + 20 \frac{\delta_s}{\delta_d} \ g_{T}^{s,N} \right] \]

\Rightarrow Precision determination of $g_{T}^{s,N}$ is important
Lattice QCD

- **Non-perturbative** approach to understand QCD
- Formulated on **discretized** Euclidean space-time
 - Hypercubic lattice
 - Lattice spacing “a”
 - Quark fields placed on sites
 - Gauge fields on the links between sites; U_μ
Physical Results from Unphysical Simulations

- **Finite Lattice Spacing**
 - Simulations at finite lattice spacings $a \approx 0.06, 0.09 \& 0.12$ fm
 \Rightarrow Extrapolate to continuum limit, $a = 0$

- **Heavy Pion Mass**
 - Lattice simulation:
 - Smaller quark mass \rightarrow Larger computational cost
 - Simulations at (heavy) pion masses $M_\pi \approx 130, 210 \& 310$ MeV
 \Rightarrow Extrapolate to physical pion mass, $M_\pi = M_\pi^{\text{phys}}$

- **Finite Volume**
 - Simulations at finite lattice volume
 $M_\pi L = 3.2 \sim 5.4$ ($L = 2.9 \sim 5.8$ fm)
 \Rightarrow Extrapolate to infinite volume, $M_\pi L = \infty$
MILC HISQ Lattices, $n_f = 2 + 1 + 1$

<table>
<thead>
<tr>
<th>ID</th>
<th>a (fm)</th>
<th>M_π (MeV)</th>
<th>$L^3 \times T$</th>
<th>$M_\pi L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a12m310</td>
<td>0.1207(11)</td>
<td>305.3(4)</td>
<td>$24^3 \times 64$</td>
<td>4.54</td>
</tr>
<tr>
<td>a12m220S</td>
<td>0.1202(12)</td>
<td>218.1(4)</td>
<td>$24^3 \times 64$</td>
<td>3.22</td>
</tr>
<tr>
<td>a12m220</td>
<td>0.1184(10)</td>
<td>216.9(2)</td>
<td>$32^3 \times 64$</td>
<td>4.29</td>
</tr>
<tr>
<td>a12m220L</td>
<td>0.1189(09)</td>
<td>217.0(2)</td>
<td>$40^3 \times 64$</td>
<td>5.36</td>
</tr>
<tr>
<td>a09m310</td>
<td>0.0888(08)</td>
<td>312.7(6)</td>
<td>$32^3 \times 96$</td>
<td>4.50</td>
</tr>
<tr>
<td>a09m220</td>
<td>0.0872(07)</td>
<td>220.3(2)</td>
<td>$48^3 \times 96$</td>
<td>4.71</td>
</tr>
<tr>
<td>a09m130</td>
<td>0.0871(06)</td>
<td>128.2(1)</td>
<td>$64^3 \times 96$</td>
<td>3.66</td>
</tr>
<tr>
<td>a06m310</td>
<td>0.0582(04)</td>
<td>319.3(5)</td>
<td>$48^3 \times 144$</td>
<td>4.51</td>
</tr>
<tr>
<td>a06m220</td>
<td>0.0578(04)</td>
<td>229.2(4)</td>
<td>$64^3 \times 144$</td>
<td>4.25</td>
</tr>
</tbody>
</table>

- Fermion discretization: Clover (valence) on HISQ (sea)
- HYP smearing – reduce discretization artifact
- $m_u = m_d$
Three-point Function Diagrams

\[\text{ME} \sim \langle N | \bar{q}_i \sigma_{\mu\nu} q_j | N \rangle \]

- Quark-line connected / disconnected diagrams
- Disconnected diagrams: complicated and expensive on lattice
Connected Quark Loop Contribution
Nucleon Charge on Lattice

- Nucleon tensor charge g_T^q is defined by
 \[\langle N | \bar{q} \sigma_{\mu\nu} q | N \rangle = g_T^q \bar{\psi}_N \sigma_{\mu\nu} \psi_N \]

- On lattice, g_T^q is extracted from ratio of 3-pt and 2-pt function
 \[\frac{C^{3\text{pt}}}{C^{2\text{pt}}} \rightarrow g_T^q \]
 - $C^{2\text{pt}} = \langle 0 | \chi(t_s) \bar{\chi}(0) | 0 \rangle$
 - $C^{3\text{pt}} = \langle 0 | \chi(t_s) \mathcal{O}(t_i) \bar{\chi}(0) | 0 \rangle$
 - χ: interpolating operator of proton

- χ introduces excited states of proton
Removing Excited States Contamination

- **Separating** proton sources far from each other
 \rightarrow small excited state effect, but **weak signal**

- Put operator reasonable range, remove excited state by fitting to

\[
C^{2pt}(t_{sep}) = A_1 e^{-M_0 t_{sep}} + A_2 e^{-M_1 t_{sep}}
\]
\[
C^{3pt}(t_{sep}, t_{ins}) = B_1 e^{-M_0 t_{sep}} + B_2 e^{-M_1 t_{sep}}
+ B_{12} \left[e^{-M_0 t_{ins}} e^{-M_1 (t_{sep} - t_{ins})} + e^{-M_1 t_{ins}} e^{-M_0 (t_{sep} - t_{ins})} \right]
\]
Removing Excited States Contamination (a12m310)

- Small excited state contamination (compared to g_A, g_S)
Removing Excited States Contamination (a09m310)

- Small excited state contamination (compared to g_A, g_S)
MILC HISQ Lattices, $n_f = 2 + 1 + 1$

<table>
<thead>
<tr>
<th>ID</th>
<th>α (fm)</th>
<th>M_π (MeV)</th>
<th>$L^3 \times T$</th>
<th>$M_\pi L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a12m310</td>
<td>0.1207(11)</td>
<td>305.3(4)</td>
<td>$24^3 \times 64$</td>
<td>4.54</td>
</tr>
<tr>
<td>a12m220S</td>
<td>0.1202(12)</td>
<td>218.1(4)</td>
<td>$24^3 \times 64$</td>
<td>3.22</td>
</tr>
<tr>
<td>a12m220</td>
<td>0.1184(10)</td>
<td>216.9(2)</td>
<td>$32^3 \times 64$</td>
<td>4.29</td>
</tr>
<tr>
<td>a12m220L</td>
<td>0.1189(09)</td>
<td>217.0(2)</td>
<td>$40^3 \times 64$</td>
<td>5.36</td>
</tr>
<tr>
<td>a09m310</td>
<td>0.0888(08)</td>
<td>312.7(6)</td>
<td>$32^3 \times 96$</td>
<td>4.50</td>
</tr>
<tr>
<td>a09m220</td>
<td>0.0872(07)</td>
<td>220.3(2)</td>
<td>$48^3 \times 96$</td>
<td>4.71</td>
</tr>
<tr>
<td>a09m130</td>
<td>0.0871(06)</td>
<td>128.2(1)</td>
<td>$64^3 \times 96$</td>
<td>3.66</td>
</tr>
<tr>
<td>a06m310</td>
<td>0.0582(04)</td>
<td>319.3(5)</td>
<td>$48^3 \times 144$</td>
<td>4.51</td>
</tr>
<tr>
<td>a06m220</td>
<td>0.0578(04)</td>
<td>229.2(4)</td>
<td>$64^3 \times 144$</td>
<td>4.25</td>
</tr>
</tbody>
</table>
Renormalization of Bilinear Operators $\bar{q}\sigma_{\mu\nu}q$

- Lattice results \Rightarrow $\overline{\text{MS}}$ scheme at 2GeV

- Non-perturbative renormalization using RI-sMOM scheme

- Calculate ratio Z_T/Z_V : reduce lattice artifact

- Renormalized Tensor Charge :

\[
g_{T}^{\text{renorm}} = \frac{Z_T}{Z_V} \times \frac{g_{T}^{\text{bare}}}{g_{V}^{\text{bare}}} \tag{Use \(Z_V g_{V}^{u-d} = 1\)}
\]

<table>
<thead>
<tr>
<th>a (fm)</th>
<th>Z_T/Z_V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>1.01(3)</td>
</tr>
<tr>
<td>0.09</td>
<td>1.05(3)</td>
</tr>
<tr>
<td>0.06</td>
<td>1.07(4)</td>
</tr>
</tbody>
</table>
Simultaneous extrapolation of \((a, M_\pi, M_\pi L)\)

\[
g_T(a, M_\pi, L) = c_1 + c_2 a + c_3 M_\pi^2 + c_4 e^{-M_\pi L}
\]

Lattice Spacing \(a \rightarrow 0\)

Pion Mass \(M_\pi \rightarrow M_\pi^{\text{phys}}\)

Lattice Volume \(M_\pi L \rightarrow \infty\)

Preliminary!

- **Orange:** \(a=0.12\);
- **Green:** \(a=0.09\);
- **Blue:** \(a=0.06\) fm

- Square: 310 MeV
- Diamond: 220 MeV
- Circle: 130 MeV
Simultaneous extrapolation of \((a, M_\pi, M_\pi L)\)

\[g_T(a, M_\pi, L) = c_1 + c_2 a + c_3 M_\pi^2 + c_4 e^{-M_\pi L} \]

Lattice Spacing \(a \to 0\)

Pion Mass \(M_\pi \to M_\pi^{phys}\)

Lattice Volume \(M_\pi L \to \infty\)

Preliminary!

Orange: \(a=0.12\); Green: \(a=0.09\); Blue: \(a=0.06\) fm

\(\square=310; \quad \blacklozenge=220; \quad \bigcirc=130\) MeV
Disconnected Quark Loop Contribution
Disconnected Contribution to the Nucleon Charges

Disconnected part of the ratio of 3pt func to 2pt func

\[
\left[\frac{C^{3\text{pt}}}{C^{2\text{pt}}} \right]^{\text{disc}} = -\frac{\langle C^{2\text{pt}}(t_s) \sum_x \text{Tr}[M^{-1}(t_i, x; t_i, x)\sigma_{\mu\nu}] \rangle}{\langle C^{2\text{pt}}(t_s) \rangle}
\]

- \(M \) : Dirac operator
- \(\text{Tr}[M^{-1}(t_i, x; t_i, x)\sigma_{\mu\nu}] \) : disconnected quark loop
Difficulties in Disconnected Diagram Calculation

\[
\left[\frac{C^{3\text{pt}}}{C^{2\text{pt}}} \right]^{\text{disc}} = - \frac{\langle C^{2\text{pt}}(t_s) \sum_x \text{Tr}[M^{-1}(t_i, x; t_i, x) \sigma_{\mu\nu}] \rangle}{\langle C^{2\text{pt}}(t_s) \rangle}
\]

- Connected calculation needs only point–to–all propagators
 Disconnected quark loop needs all–x–to–all propagators
 \(\Rightarrow \) Computationally \(L^3 \) times more expensive; need new technique
- Noisy signal \(\Rightarrow \) Need more statistics
Improvement & Error Reduction Techniques

- Multigrid Solver [Osborn, et al., 2010; Babich, et al., 2010]

- All-Mode Averaging (AMA) for Two-point Correlators [Blum, Izubuchi and Shintani, 2013]

- Hopping Parameter Expansion (HPE) [Thron, et al., 1998; McNeile and Michael, 2001]

- Truncated Solver Method (TSM) [Bali, Collins and Schäfer, 2007]

- Dilution [Bernardson, et al., 1994; Viehoff, et al., 1998]
Improved Estimator of Two-point Function

\[
C_{2pt, \text{imp}} = \frac{1}{N_{\text{LP}}} \sum_{i=1}^{N_{\text{LP}}} C_{\text{LP}}^{2pt}(x_i) + \frac{1}{N_{\text{HP}}} \sum_{j=1}^{N_{\text{HP}}} \left[C_{\text{HP}}^{2pt}(x_j) - C_{\text{LP}}^{2pt}(x_j) \right]
\]

- All-mode averaging (AMA) [Blum, Izubuchi and Shintani, 2013] with Multigrid solver for Clover in Chroma [Osborn, et al., 2010]
- Exploiting translation symmetry & small fluctuation of low-modes
- “LP” term is cheap low-precision estimate
- “HP” (high-precision) correction term
- Systematic error ⇒ Statistical error
- \(N_{\text{LP}} \gg N_{\text{HP}}\) brings computational gain (e.g., \(N_{\text{LP}} = 60, N_{\text{HP}} = 4\))
Truncated Solver Method (TSM)

\[
M_E^{-1} = \frac{1}{N_{LP}} \sum_{i=1}^{N_{LP}} |s_i\rangle_{LP} \langle \eta_i | + \frac{1}{N_{HP}} \sum_{i=N_{LP}+1}^{N_{LP}+N_{HP}} \left(|s_i\rangle_{HP} - |s_i\rangle_{LP} \right) \langle \eta_i |
\]

- **Stochastic estimate of** \(M^{-1} \) [Bali, Collins and Schäfer, 2007]
 - Do calculate exact \(M^{-1} \), but estimate with reasonable error
 - Computational cost: \(\frac{1}{100} \sim \frac{1}{10000} \) of exact calculation
- **Same form as AMA**
 - \(C^{2pt} \longrightarrow M^{-1} \)
 - Sum over source positions
 \(\longrightarrow \) Sum over random noise sources
- \(|\eta_i\rangle\) : complex random noise vector
- \(|s_i\rangle\) : solution vector; \(M|s_i\rangle = |\eta_i\rangle \)
Removing Excited States Contamination

- Interpolating operator introduces excited state contamination
- Remove excited state by fitting to

\[
C^{2\text{pt}}(t_{\text{sep}}) = A_1 e^{-M_0 t_{\text{sep}}} + A_2 e^{-M_1 t_{\text{sep}}}
\]

\[
C^{3\text{pt}}(t_{\text{sep}}, t_{\text{ins}}) = B_1 e^{-M_0 t_{\text{sep}}} + B_2 e^{-M_1 t_{\text{sep}}}
\]

\[
+ B_{12} \left[e^{-M_0 t_{\text{ins}}} e^{-M_1 (t_{\text{sep}}-t_{\text{ins}})} + e^{-M_1 t_{\text{ins}}} e^{-M_0 (t_{\text{sep}}-t_{\text{ins}})} \right]
\]
Removing Excited States Contamination \((a_{12m310}, s)\)

![Graph showing the effect of removing excited states contamination](image)

- \(g_{T, \text{disc}} \) values for different \(t_{\text{sep}}\) values:
 - \(t_{\text{sep}} = 8\)
 - \(t_{\text{sep}} = 9\)
 - \(t_{\text{sep}} = 10\)
 - \(t_{\text{sep}} = 11\)
 - \(t_{\text{sep}} = 12\)

- The graph illustrates the extrapolation of \(g_{T, \text{disc}}\) with respect to \(t - t_{\text{sep}}/2\).

- The shaded area represents the range of \(g_{T, \text{disc}}\) values.

- The data points are shown with error bars, indicating the uncertainty in the measurements.

- The graph includes a symbol representing the excited state contamination effect, labeled \(s\).
Proton Tensor Charge: Connected / Disconnected

- Connected Contribution

\[
\begin{align*}
g_T^u & = 0.788(64) \\
g_T^d & = -0.223(25) \\
g_T^{u-d} & = 1.020(75) \\
g_T^{u+d} & = 0.567(62)
\end{align*}
\]

- Disconnected Contribution

<table>
<thead>
<tr>
<th>Ens</th>
<th>(g_T^l)</th>
<th>(g_T^s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a12m310</td>
<td>-0.0122(24)</td>
<td>-0.0027(24)</td>
</tr>
<tr>
<td>a12m220</td>
<td>-0.0030(46)</td>
<td>-0.0009(32)</td>
</tr>
<tr>
<td>a09m310</td>
<td>-0.0052(19)</td>
<td>-0.0001(25)</td>
</tr>
<tr>
<td>a09m220</td>
<td>—</td>
<td>-0.0022(69)</td>
</tr>
<tr>
<td>a06m310</td>
<td>-0.0051(94)</td>
<td>-0.0037(60)</td>
</tr>
</tbody>
</table>

- \(g_T^l,\text{disc}\) is tiny compared to the connected contributions
 \(\Rightarrow\) Take maximum value as systematic error

- No connected diagrams for \(g_T^s\) \(\Rightarrow\) Extrapolate to physical point
Simultaneous extrapolation of g_T^s in (a, M_{π})

$g_T^s = 0.002(11)$
Results
Lattice Results of Nucleon Tensor Charge

Preliminary!

- **Proton Tensor Charge** ($\mu^{\overline{MS}} = 2$ GeV)

 \[
 g_T^u = 0.79(7) \\
 g_T^d = -0.22(3) \\
 g_T^{u-d} = 1.02(8) \\
 g_T^{u+d} = 0.57(6) \\
 g_T^s = -0.002(11)
 \]

- **Neutron Tensor Charge**

 In isospin limit ($m_u = m_d$), $u \leftrightarrow d$ from proton g_T
Proton Tensor Charge

- This study ($\mu^{\text{MS}} = 2 \text{ GeV}$)

$$
\begin{align*}
 g_T^u &= 0.79(7), & g_T^d &= -0.22(3) \\
 g_T^{u-d} &= 1.02(8), & g_T^{u+d} &= 0.57(6)
\end{align*}
$$

- Lattice QCD estimates for g_T^{u-d}

[LHPC, ETMC, RQCD, PNDME]
Proton Tensor Charge

- This study

\[|g_T^{l,\text{disc}}| \leq 0.0122, \quad g_T^{s,\text{disc}} = 0.002(11) \]

- Lattice, Abdel-Rehim, et al., 2014,
 \(a = 0.082 \text{ fm}, \; M_\pi = 370 \text{ MeV}, \) Twisted mass

\[g_T^{l,\text{disc}} = 0.0008(7) \]

- Lattice, S. Meinel, et al., 2014,
 \(a = 0.11 \text{ fm}, \; M_\pi = 317 \text{ MeV}, \) Clover

![Graph showing the relationship between 2g_T^{l,\text{disc}}, t/a, and N_{\text{Hadamard}} = 128]
Proton Tensor Charge

- This study

\[g_u^T = 0.79(7), \quad g_d^T = -0.22(3) \quad (\mu_{\text{MS}} = 2 \text{ GeV}) \]

- Quark model

\[g_u^T = \frac{4}{3}, \quad g_d^T = -\frac{1}{3} \]

- Dyson-Schwinger [Pitschmann, et al., 2014]

\[g_u^T = 0.55(8), \quad g_d^T = -0.11(2) \quad (\zeta_2 = 2 \text{ GeV}) \]

- Experiments (HERMES and COMPASS)

\[g_u^T = 0.57(21), \quad g_d^T = -0.18(33) \quad (Q^2 = 1.0 \text{ GeV}^2) \]

[Bacchetta, et al., JHEP 2013]

\[g_u^T = 0.39_{-0.12}^{+0.18}, \quad g_d^T = -0.25_{-0.10}^{+0.30} \quad (Q^2 = 0.8 \text{ GeV}^2) \]

[Anselmino, et al., PRD 2013]
qEDM and Tensor Charge

\[d_N = d_u \ g_{T}^{u,N} + d_d \ g_{T}^{d,N} + d_s \ g_{T}^{s,N} \]

- Known parameters

\[|d_N| < 2.9 \times 10^{-26} e \text{ cm (90\% C.L.)} \]

\[g_{T}^{u,N} = -0.22(3) \]

\[g_{T}^{d,N} = 0.79(7) \]

\[g_{T}^{s,N} = -0.002(11) \]

⇒ Place constraints on \(d_q \)
qEDM Constraints

- 90% C.L. parameter space of d_u and d_d, assuming $g_T^s = 0$
qEDM Constraints

\[d_N = d_u \, g_{T}^{u,N} + d_d \, g_{T}^{d,N} + d_s \, g_{T}^{s,N} \]

\[g_{T}^{u,N} = -0.223(28), \quad g_{T}^{d,N} = 0.788(68), \quad g_{T}^{s,N} = -0.002(11) \]

- Since \(g_{T}^{s} = 0 \) within error, cannot give constraints on \(d_s \)
Conclusion

- Presented first lattice QCD calculation of nucleon tensor charge including all systematics (a, M_π, $M_\pi L$, disconnected diagrams)
- Constrained qEDMs by the results combined with experiment
- Need more study on g_T^s to constrain d_s