Testing CVC and CKM unitarity via superallowed nuclear β decay

J.C. Hardy
Cyclotron Institute
Texas A&M University
SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

\[ft = \frac{K}{G_v^2} <\tau>^2 \]

- f = statistical rate function: $f(Z, Q_{EC})$
- t = partial half-life: $f(t_{1/2}, BR)$
- G_v = vector coupling constant
- $<\tau>$ = Fermi matrix element

EXPERIMENT
SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ f_t = \frac{K}{G_v^2 \langle \tau \rangle^2} $$

- f_t = statistical rate function: $f(Z, Q_{EC})$
- t = partial half-life: $f(t_{1/2}, BR)$
- G_v = vector coupling constant
- $\langle \tau \rangle$ = Fermi matrix element

INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS

$$ \mathcal{F} t = f_t (1 + \delta'_R) [1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)} $$
SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ft = \frac{K}{G_v^2 <\tau>^2}$$

- $f = \text{statistical rate function: } f(Z, Q_{EC})$
- $t = \text{partial half-life: } f(t_{1/2}, \text{BR})$
- $G_v = \text{vector coupling constant}$
- $<\tau> = \text{Fermi matrix element}$

INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS

$$\mathcal{F}t = ft \left(1 + \delta'_R\right) \left[1 - (\delta_C - \delta_{NS})\right] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

- $f(Z, Q_{EC}) \sim 1.5\%$
- $f(\text{nuclear structure}) \sim 0.3-1.5\%$
- $f(\text{interaction}) \sim 2.4\%$
SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ft = \frac{K}{G_v^2 <\tau>^2}$$

- f = statistical rate function: $f(Z, Q_{EC})$
- t = partial half-life: $f(t_{1/2}, BR)$
- G_v = vector coupling constant
- $<\tau>$ = Fermi matrix element

INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS

$$\mathcal{F}t = ft (1 + \delta_R') [1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

- $f(Z, Q_{EC})$ ~1.5%
- $f(\text{nuclear structure})$ 0.3-1.5%
- $f(\text{interaction})$ ~2.4%

THEORETICAL UNCERTAINTIES 0.05 – 0.10%
1. Radiative corrections

\[\delta'_R = \frac{\alpha}{2\pi} [g(E_m) + \delta_2 + \delta_3 + \ldots] \]
\[\Delta_R = \frac{\alpha}{2\pi} [4 \ln(m_z/m_p) + \ln(m_p/m_A) + 2C_{\text{Born}} + \ldots] \]

2. Isospin symmetry-breaking corrections

\[\delta_C \quad \text{Charge-dependent mismatch between parent and daughter analog states (members of the same isospin triplet).} \]
\[\delta_C = \delta_{C1} + \delta_{C2} \]

Difference in configuration mixing between parent and daughter.

- Shell-model calculation with well-established 2-body matrix elements.
- Charge dependence tuned to known single-particle energies and to measured IMME coefficients.
- Results also adjusted to measured non-analog \(0^+\) state energies.

0.01 – 0.3 %

Mismatch in radial wave function between parent and daughter.

- Full-parentage Saxon-Woods wave function also matched to known binding energy and charge radius from electron scattering.
- Compared with Hartree-Fock calculation matched to known binding energy.
- Core states included based on measured spectroscopic factors.

0.4 – 1.5 %
WHAT CAN WE LEARN?
WHAT CAN WE LEARN?

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{F}t = ft (1 + \delta'_R)[1 - (\delta_c - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$
WHAT CAN WE LEARN?

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{F}t = ft (1 + \delta'_R)[1 - (\delta_c - \delta_{NS})] = \frac{K}{2G_v^2(1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate the correction terms

Test for presence of a Scalar current

$\mathcal{F}t$ values constant
WHAT CAN WE LEARN?

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

\[\mathcal{F}_t = ft (1 + \delta_R') [1 - (\delta_c - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)} \]

FROM MANY TRANSITIONS

- Test Conservation of the Vector current (CVC)
- Validate the correction terms
- Test for presence of a Scalar current

WITH CVC VERIFIED

\[\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{u_d} & V_{u_s} & V_{u_b} \\ V_{c_d} & V_{c_s} & V_{c_b} \\ V_{t_d} & V_{t_s} & V_{t_b} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \]

Obtain precise value of $G_v^2 (1 + \Delta_R)$

Determine $V_{u_d}^2$

$V_{u_d}^2 = G_v^2 / G_\mu^2$
WHAT CAN WE LEARN?

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

\[\mathcal{F}t = ft (1 + \delta'_R)[1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)} \]

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validates the correction terms

Test for presence of a Scalar current

WITH CVC VERIFIED

\[\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \]

Obtain precise value of $G_v^2(1 + \Delta_R)$

Determine V_{ud}^2

Test CKM unitarity

\[V_{ud}^2 = \frac{G_v^2}{G_\mu^2} \]

\[V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1 \]
WHAT CAN WE LEARN?

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{F} t = ft (1 + \delta'_R)[1 - (\delta_c - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate the correction terms

Test for presence of a Scalar current

WITH CVC VERIFIED

Obtain precise value of $G_v^2 (1 + \Delta_R)$

Determine V_{ud}

Test Conservation of the Vector current (CVC)

weak eigenstates

mass eigenstates

Cabibbo Kobayashi Maskawa (CKM) matrix

Only possible if prior conditions satisfied

$V_{ud} + V_{us} + V_{ub} = 1$
8 cases with \(ft \)-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.

~220 individual measurements with compatible precision

\[
ft = ft (1 + \delta_R') \left[1 - (\delta_c - \delta_{NS}) \right] = \frac{K}{2G_v^2 (1 + \Delta_R)}
\]
WORLD DATA FOR $0^+ \rightarrow 0^+$ DECAY, 2014

8 cases with ft-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.

~220 individual measurements with compatible precision

$\mathcal{F}t = ft \left(1 + \delta_R' \right) \left[1 - \left(\delta_C - \delta_{NS} \right) \right] = \frac{K}{2G_v^2 \left(1 + \Delta_r \right)}$
WORLD DATA FOR $0^+ \rightarrow 0^+$ DECAY, 2014

- 8 cases with ft-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.
- ~220 individual measurements with compatible precision

\[
\mathcal{F}_t = ft (1 + \delta_R') [1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}
\]
WORLD DATA FOR $0^+ \rightarrow 0^+$ DECAY, 2014

- 8 cases with ft-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.
- ~220 individual measurements with compatible precision

$ft = ft \left(1 + \delta_R'\right) \left[1 - (\delta_C - \delta_{NS})\right] = \frac{K}{2G_v^2 (1 + \Delta_R)}$

Hardy & Towner
New survey (2014) [PRC 79, 055502 (2009)]
TESTS OF δ_c CALCULATIONS

A. Agreement with CVC:

T values have been calculated with different models for δ_c, then tested for consistency. Normalized χ^2 and confidence levels are shown.

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2/N</th>
<th>CL(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-SW</td>
<td>1.37</td>
<td>17</td>
</tr>
</tbody>
</table>

$\chi^2 = 1.37$
A. Agreement with CVC:

t values have been calculated with different models for δ_c, then tested for consistency. Normalized χ^2 and confidence levels are shown.

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2/N</th>
<th>CL(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-SW</td>
<td>1.37</td>
<td>17</td>
</tr>
<tr>
<td>SM-HF</td>
<td>6.38</td>
<td>0</td>
</tr>
</tbody>
</table>

$\chi^2 = 1.37$

$\chi^2 = 6.38$
A. Agreement with CVC:

\mathcal{F}_t values have been calculated with different models for δ_c, then tested for consistency. Normalized χ^2 and confidence levels are shown.

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2/N</th>
<th>CL(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-SW</td>
<td>1.37</td>
<td>17</td>
</tr>
<tr>
<td>SM-HF</td>
<td>6.38</td>
<td>0</td>
</tr>
<tr>
<td>DFT</td>
<td>4.26</td>
<td>0</td>
</tr>
</tbody>
</table>

$\chi^2 = 1.37$

$\chi^2 = 6.38$
A. Agreement with CVC:

\(\mathcal{F} \) values have been calculated with different models for \(\delta_c \), then tested for consistency. Normalized \(\chi^2 \) and confidence levels are shown.

<table>
<thead>
<tr>
<th>Model</th>
<th>(\chi^2/N)</th>
<th>CL(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-SW</td>
<td>1.37</td>
<td>17</td>
</tr>
<tr>
<td>SM-HF</td>
<td>6.38</td>
<td>0</td>
</tr>
<tr>
<td>DFT</td>
<td>4.26</td>
<td>0</td>
</tr>
<tr>
<td>RHF-RPA</td>
<td>4.91</td>
<td>0</td>
</tr>
<tr>
<td>RH-RPA</td>
<td>3.68</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\chi^2 = 1.37 \]

\[\chi^2 = 4.26 \]

\[\chi^2 = 6.38 \]
B. Measurements of mirror superallowed transitions:
B. Measurements of mirror superallowed transitions:

\[t = ft (1 + \delta_R') [1 - (\delta_C - \delta_{NS})] \]

\[\frac{ft_A}{ft_B} = \frac{(1 + \delta^B_R)[1 - (\delta^B_C - \delta^B_{NS})]}{(1 + \delta^A_R)[1 - (\delta^A_C - \delta^A_{NS})]} = 1 + (\delta^B_R - \delta^A_R) + (\delta^B_{NS} - \delta^A_{NS}) - (\delta^B_C - \delta^A_C) \]
B. Measurements of mirror superallowed transitions:

\[t = ft \left(1 + \delta'_{R}\right)\left[1 - (\delta_{C} - \delta_{NS})\right] \]

\[\frac{ft_{A}}{ft_{B}} = \frac{(1 + \delta'^{B}_{R})\left[1 - (\delta^{B}_{C} - \delta^{B}_{NS})\right]}{(1 + \delta'^{A}_{R})\left[1 - (\delta^{A}_{C} - \delta^{A}_{NS})\right]} \]

\[= 1 + (\delta'^{B}_{R} - \delta'^{A}_{R}) + (\delta^{B}_{NS} - \delta^{A}_{NS}) - (\delta^{B}_{C} - \delta^{A}_{C}) \]
ACCESSIBLE MIRROR PAIRS OF SUPERALLOWED DECAYS

NUMBER OF PROTONS, Z

NUMBER OF NEUTRONS, N

\[\frac{Q}{E_{\text{EC}}} = 6612 \]

\[\frac{Q}{E_{\text{EC}}} = 6044 \]

\[0^+; 1 \]

\[t_{1/2} \]

\[Q_{\text{EC}} \]

\[1^0 \text{C} \]
ACCESSIBLE MIRROR PAIRS OF SUPERALLOWED DECAYS

\[^{38}\text{Ca}_{18}, Q_{\text{EC}} = 6612 \]

\[^{38}\text{Ar}_{20}, Q_{\text{EC}} = 6044 \]

\[^{74}\text{Rb} \]

\[^{10}\text{C} \]

\[\text{Number of Protons, } Z \]

\[20 \]

\[30 \]

\[40 \]

\[10 \]

\[\text{Number of Neutrons, } N \]

\[20 \ 30 \ 40 \ 50 \ 60 \]

\[38 \]

\[18 \]

\[^{38}\text{K}_{19}, Q_{\text{EC}} = 6044 \]

\[^{38}\text{Ar}_{20}, 99.97\% \]

\[^{38}\text{Ca}_{18}, 444 \text{ ms} \]

\[^{74}\text{Rb}, t_{1/2}, Q_{\text{EC}} \]

\[^{10}\text{C}, 924 \text{ ms} \]

\[^{38}\text{K}_{19}, 1.0\% \]

\[^{3978}, 0.1\% \]

\[^{3341}, 0.3\% \]

\[^{1698}, 19.5\% \]

\[^{458}, 2.8\% \]

\[^{130}, 77.3\% \]

\[^{0}, 924 \text{ ms} \]

\[^{10}\text{C} \]

\[^{38}\text{Ar}_{20}, 99.97\% \]

\[^{38}\text{Ca}_{18}, 0.1\% \]

\[^{444}, 444 \text{ ms} \]

\[^{6612}, Q_{\text{EC}} \]

\[^{6044}, Q_{\text{EC}} \]

\[^{0\uparrow1}, 100\% \]

\[^{0\uparrow1}, 1\% \]

\[^{1\uparrow0}, 1\% \]

\[^{0\uparrow1}, 0.1\% \]

\[^{0\uparrow1}, 3\% \]

\[^{77.3\%}, 924 \text{ ms} \]

\[^{2.8\%}, 444 \text{ ms} \]

\[^{19.5\%}, 77.3\% \]

\[^{0.3\%}, 2.8\% \]

\[^{458}, 130 \]

\[^{1698}, 1698 \]

\[^{3341}, 3341 \]

\[^{3978}, 3978 \]

\[^{10}\text{C} \]

\[^{18}\text{Ar}_{20} \]
PRECISION DECAY MEASUREMENTS AT TAMU

Momentum Achromat Recoil Separator (MARS)

\[^{1}H(^{39}K, 2n)^{38}Ca \]

\(^{39}K \) beam (1170 MeV)

H\(_{2}\) gas target

Shielding

99.7% pure \(^{38}Ca\)

Thin scintillator and Al degraders

25,000 atoms/s
PRÉCISION DECAY MEASUREMENTS AT TAMU

Momentum Achromat Recoil Separator (MARS)

$^1\text{H}(^{39}\text{K}, 2\text{n})^{38}\text{Ca}$

^{39}K beam (1170 MeV)

H_2 gas target

4π proportional gas detector

Shielding

Precise decay measurements at TAMU
Momentum Achromat Recoil Separator (MARS)

1H(3K, 2n)38Ca

3K beam (1170 MeV)

H$_2$ gas target

Shielding

HPGe detector calibrated for efficiency to ± 0.2%
BETA-DECAY BRANCHING OF 38Ca

Energy (keV)

Counts per channel

15 cm

Precisely efficiency calibrated

1-mm-thick plastic scintillator

38Ca

$Q_{EC} = 6612$

1000 2000 3000 4000

10 100 1000 10000

3978 $1^+,0$ 0.1%
3341 $1^+,0$ 0.3%
1698 $1^+,0$ 19.5%
458 $1^+,0$ 2.8%
130 $0^+,1$ 77.3%
0 $3^+,0$

38K

38Ca

38Ca

38Ca
B. Measurements of mirror superallowed transitions:

\[\mathcal{f}t = ft \left(1 + \delta'_R \right) \left[1 - (\delta_C - \delta_{NS}) \right] \]

\[\frac{ft_A}{ft_B} = \frac{(1 + \delta'_B) \left[1 - (\delta_C^B - \delta_{NS}^B) \right]}{(1 + \delta'_A) \left[1 - (\delta_C^A - \delta_{NS}^A) \right]} \]

\[= 1 + (\delta_R^B - \delta_R^A) + (\delta_{NS}^B - \delta_{NS}^A) - (\delta_C^B - \delta_C^A) \]
RESULTS FROM $0^+ \rightarrow 0^+$ DECAY

FROM A SINGLE TRANSITION

Experimentally

determine $G_V^2 (1 + \Delta_R)$

\[\mathcal{F}t = ft (1 + \delta'_R) [1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_V^2 (1 + \Delta_R)} \]

FROM MANY TRANSITIONS

Test Conservation of
the Vector current (CVC)
RESULTS FROM 0⁺→0⁺ DECAY

FROM A SINGLE TRANSITION

Experimentally determine $G_V^2(1 + \Delta_R)$

$$\tau = ft \left(1 + \delta_R^2\right) \left[1 - (\delta_C - \delta_{NS})\right] = \frac{K}{2G_V^2(1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

G_V constant to ± 0.013%

G_{V(1+\Delta_R)^{1/2}}/(hc)^3 = 1.14958(15) \times 10^{-5} \text{ GeV}^2$

$\chi^2/\nu = 0.6$
RESULTS FROM $0^+ \rightarrow 0^+$ DECAY

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{F}t = ft (1 + \delta_R^I)[1 - (\delta_c - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validate correction terms

G_v constant to $\pm 0.013\%$
RESULTS FROM $0^+ \rightarrow 0^+$ DECAY

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{F}t = ft (1 + \delta_R')[1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validate correction terms

G_v constant to ± 0.013%
FROM A SINGLE TRANSITION

Experimentally determine \(G_V^2 (1 + \Delta_R) \)

\[\mathcal{F} t = ft (1 + \delta_R') \left[1 - (\delta_C - \delta_{NS}) \right] = \frac{K}{2G_V^2 (1 + \Delta_R)} \]

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validate correction terms

\(G_V \) constant to \(\pm 0.013\% \)

RESULTS FROM \(0^+ \rightarrow 0^+ \) DECAY

<table>
<thead>
<tr>
<th>Model</th>
<th>(\chi^2/N)</th>
<th>CL(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-SW</td>
<td>1.37</td>
<td>17</td>
</tr>
<tr>
<td>SM-HF</td>
<td>6.38</td>
<td>0</td>
</tr>
<tr>
<td>DFT</td>
<td>4.26</td>
<td>0</td>
</tr>
<tr>
<td>RHF-RPA</td>
<td>4.91</td>
<td>0</td>
</tr>
<tr>
<td>RH-RPA</td>
<td>3.68</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\frac{ft^{38m\text{Ca}}}{ft^{38m\text{K}}} = 1.004 \\
\frac{ft^{38m\text{Ca}}}{ft^{38m\text{K}}} = 1.006
\]

\(A \) of mirror pairs
RESULTS FROM $0^+ \rightarrow 0^+$ DECAY

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{F}t = ft (1 + \delta'_R)(1 - (\delta_C - \delta_{NS})) = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validate correction terms ✔
Test for Scalar current

G_v constant to ± 0.013%
RESULTS FROM $0^+ \rightarrow 0^+$ DECAY

FROM A SINGLE TRANSITION

$$\mathcal{F} t = ft (1 + \delta'_R) [1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

Experimentally determine $G_v^2 (1 + \Delta_R)$

FROM MANY TRANSITIONS

- Test Conservation of the Vector current (CVC)
- Validate correction terms
- Test for Scalar current

G_v constant to $\pm 0.013\%$

Limit, $C_s/C_v = 0.0014$ (13)

![Graph](image-url)
FROM A SINGLE TRANSITION

Experimentally determine \(G_V^2 (1 + \Delta_R) \)

\[
\mathcal{F} t = ft (1 + \delta_R') [1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_V^2 (1 + \Delta_R)}
\]

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate correction terms

Test for Scalar current

\(G_V \) constant to \(\pm 0.013\% \)

Limit, \(C_s/C_V = 0.0014 \) (13)

RESULTS FROM \(0^+ \rightarrow 0^+ \) DECAY
RESULTS FROM $0^+ \to 0^+$ DECAY

FROM A SINGLE TRANSITION

Experimentally determine $G_V^2 (1 + \Delta_R)$

$$\mathcal{F}_t = ft (1 + \delta'_R)[1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_V^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validate correction terms
Test for Scalar current

G$_V$ constant to ± 0.013%

limit, C$_s$/C$_V$ = 0.0014 (13)

WITH CVC VERIFIED

Obtain precise value of $G_V^2 (1 + \Delta_R)$

Determine V_{ud}^2

$$V_{ud}^2 = G_V^2/G_{\mu}^2 = 0.94900 \pm 0.00042$$

© 2013-2023 Peter J. Mohr and B. N. Taylor, eds. of CODATA, with the assistance of William A. Millman, and the National Institute of Standards and Technology. All rights reserved.

The Cabibbo-Kobayashi-Maskawa matrix is a representation of the weak interactions in the Standard Model of particle physics. It describes how the mass eigenstates (u, d, s, c, b) are related to the weak eigenstates (d', s', b').
RESULTS FROM $0^+ \to 0^+$ DECAY

FROM A SINGLE TRANSITION

Experimentally determine $G_V^2 (1 + \Delta_R)$

\[\mathcal{F} t = ft (1 + \delta'_{R}) [1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_V^2 (1 + \Delta_R)} \]

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validate correction terms
Test for Scalar current

G_V constant to $\pm 0.013\%$

limit, $C_s/C_V = 0.0014 (13)$

WITH CVC VERIFIED

Obtain precise value of $G_V^2 (1 + \Delta_R)$
Determine V_{ud}^2

\[V_{ud}^2 = \frac{G_V^2}{G_{\mu}^2} = 0.94900 \pm 0.00042 \]

RESULTS FROM $0^+ \to 0^+$ DECAY

1990 2000 2010

0.975 0.974 0.973

V_{ud}

weak eigenstates
mass eigenstates

Cabibbo-Kobayashi-Maskawa matrix
FROM A SINGLE TRANSITION

Experimentally determine $G_V^2 (1 + \Delta_R)$

$$\mathcal{F} t = ft (1 + \delta_R') \left[1 - (\delta_C - \delta_{NS}) \right] = \frac{K}{2G_V^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validate correction terms
Test for Scalar current

G_V constant to $\pm 0.013\%$

limit, $C_s/C_V = 0.0014$ (13)

WITH CVC VERIFIED

Obtain precise value of $G_V^2 (1 + \Delta_R)$

Determine V_{ud}^2

$$V_{ud}^2 = \frac{G_V^2}{G_{\mu}^2} = 0.94900 \pm 0.00042$$

Test CKM unitarity

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 0.99992 \pm 0.00048$$
CURRENT STATUS OF CKM UNITARITY

\[V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 0.99992 \pm 0.00048 \]

- \(V_{ud}^2 \): nuclear decays, muon decay
 - 0.94900 ± 0.00042
- \(V_{us}^2 \): kaon decays
 - 0.05090 ± 0.00022
- \(V_{ub}^2 \): B decays
 - 0.00002 ± 0.00001
CURRENT STATUS OF CKM UNITARITY

\[V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 0.99992 \pm 0.00048 \]

- \(V_{ud}^2 \): Nuclear decays
 - Muon decay
 - Nuclear decays
 - Neutron nuclear mirrors
 - Pion

- \(V_{us}^2 \): Kaon decays
 - B decays

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon decay</td>
<td>0.94900 ± 0.00042</td>
</tr>
<tr>
<td>Kaon decays</td>
<td>0.05090 ± 0.00022</td>
</tr>
<tr>
<td>B decays</td>
<td>0.00002 ± 0.00001</td>
</tr>
</tbody>
</table>

\[V_{ud} = 0.97417 \pm 0.00021 \]
Kaon decay yields two independent determinations of V_{us}:

1) Semi-leptonic $K \rightarrow \pi \ell \nu_\ell$ decay ($K_{\ell3}$) yields $|V_{us}|$.

2) Pure leptonic decays $K^+ \rightarrow \mu^+\nu_\mu$ and $\pi^+ \rightarrow \mu^+\nu_\mu$ together yield $|V_{us}| / |V_{ud}|$.

Both require lattice calculations of form factors to obtain their result. Until March 2014 these gave highly consistent results for $|V_{us}|$.
Kaon decay yields two independent determinations of V_{us}:

1) Semi-leptonic $K \rightarrow \pi \ell \nu_\ell$ decay ($K_{\ell 3}$) yields $|V_{us}|$.

2) Pure leptonic decays $K^+ \rightarrow \mu^+\nu_\mu$ and $\pi^+ \rightarrow \mu^+\nu_\mu$ together yield $|V_{us}| / |V_{ud}|$.

Both require lattice calculations of form factors to obtain their result. Until March 2014 these gave highly consistent results for $|V_{us}|$.

BUT, Bazavov et al. [PRL 112, 112001 (2014)] produced a new lattice calculation of the form factor used for $K_{\ell 3}$ decays.

Their new result for $|V_{us}|$ is inconsistent with the $|V_{us}| / |V_{ud}|$ result and, when combined with the superallowed result for $|V_{ud}|$, leads to a unitarity sum over two standard deviations below 1.

Stay tuned ...
THE PATH FORWARD
THE PATH FORWARD

1. Improving V_{ud} and CKM Unitarity

- Improve the calculation of the “inner” radiative correction Δ_R.

Currently $\Delta_R = 2.361(38)\%$

1. Improving V_{ud} and CKM Unitarity

- Improve the calculation of the “inner” radiative correction Δ_R.

Currently $\Delta_R = 2.361(38) \%$

- Potentially improve nuclear correction by completing the pairs of mirror superallowed decays with $A \leq 42$.

$^{38}\text{Ca done}$

H.I. Park et al., PRL 112, 102502 (2014)

$^{26}\text{Si, }^{34}\text{Ar and }^{42}\text{Ti remain}$
1. Improving V_{ud} and CKM Unitarity

- Improve the calculation of the “inner” radiative correction Δ_R.
 - Currently $\Delta_R = 2.361(38)\%$

- Potentially improve nuclear correction by completing the pairs of mirror superallowed decays with $A \leq 42$.
 - ^{38}Ca done
 - H.I. Park et al., PRL 112, 102502 (2014)
 - ^{26}Si, ^{34}Ar and ^{42}Ti remain

- If theory improves, broadly improve all experimental ff values
2. Search for scalar current

- Tighten uncertainties on the ft values for ^{10}C and ^{14}O

$C_s/C_v = 0.0014 \pm 0.002$

$\text{limit, } C_s/C_v = 0.0014 \pm 0.002$

Require (order of priority):
- ^{10}C branching ratio
- ^{14}O branching ratio
- $^{14}\text{O} Q_{EC}$ value
- ^{10}C half-life
3. Expand the number of transitions

- Potential FRIB measurements
- Complete more pairs of mirror superallowed transitions: 46Cr, 50Fe, 54Ni ...

Tests δ_c, δ_{NS} calculations in $f_{7/2}$ shell nuclei
3. Expand the number of transitions

- Potential FRIB measurements
- Complete more pairs of mirror superallowed transitions: ^{46}Cr, ^{50}Fe, ^{54}Ni ...
- Add new heavy $T_z = 0$ superallowed emitters: ^{66}As, ^{70}Br, ^{78}Y ...

Tests δ_c, δ_{NS} calculations in $f_{7/2}$ shell nuclei

Probably most useful for studying isospin mixing

Challenges:
- Complex decays (Pandemonium effect)
- Need spectroscopic data to constrain structure model
- Need $T_z = -1$ masses to determine IMME coefficients
1. Analysis of superallowed $0^+ \rightarrow 0^+$ nuclear β decay is shown to confirm CVC and thus yield $V_{ud} = 0.97417(21)$.

2. The three other experimental methods for determining V_{ud} yield consistent results, but are less precise by a factor of 8 or more.

3. The current value for V_{ud}, when combined with V_{us} and V_{ub}, satisfies CKM unitarity to 0.05%.
1. Analysis of superallowed $0^+ \rightarrow 0^+$ nuclear β decay is shown to confirm CVC and thus yield $V_{ud} = 0.97417(21)$.

2. The three other experimental methods for determining V_{ud} yield consistent results, but are less precise by a factor of 8 or more.

3. The current value for V_{ud}, when combined with V_{us} and V_{ub}, satisfies CKM unitarity to 0.05%.

4. The largest contribution to the V_{ud} uncertainty is from the inner radiative correction. Improving it is the highest priority requirement if uncertainty is to be reduced.

5. Isospin symmetry-breaking corrections in nuclei are the second largest contributor to V_{ud} uncertainty. These may be improved by studying mirror superallowed transitions and by improving all experimental ft values.

6. Potential FRIB experiments can expand the number of superallowed transitions and be useful for studying isospin mixing.