Investigation of 0vββ with Bolometers: CUORE and Beyond

Karsten Heeger Yale University

December 15, 2015

Neutrinoless Double Beta Decay: $\mathbf{0}\nu\beta\beta$

2v mode: conventional 2^{nd} order process in nuclear physics

$$\Gamma_{2\nu} = G_{2\nu} \mid M_{2\nu} \mid^2$$

G are phase space factors

 0_v mode: hypothetical process only if $M_v \neq 0$ AND $v = \overline{v}$

$$\Gamma_{0\nu} = G_{0\nu} \mid M_{0\nu} \mid^2 \left\langle m_{\beta\beta} \right\rangle^2$$

 $G_{0_{\rm V}}\sim Q^5$

$0\nu\beta\beta$ would imply

- lepton number non-conservation

N

- Majorana nature of neutrinos

 $0\nu\beta\beta$ may allow us to determine - effective neutrino mass

Search for 0vßß - Observable Signature

$$T_{1/2}^{0\nu}$$
 sensitivity $\propto a \cdot \epsilon \sqrt{\frac{M \cdot t}{b \cdot \delta E}}$

0vββ source with high isotopic abundance

Detector with high detection efficiency good energy resolution low-background

Experiment

long exposure time large total mass of isotope

- *a* = source isotopic abundance
- ϵ = detection efficiency
- M =total mass
 - t = exposure time
 - b = background rate at 0νββ energy
- δE = energy resolution

Nuclear Structure in Double Beta Decay

Nuclear structure connects experimental rates to parameters of interaction, requires mechanism dependent nuclear matrix elements.

range of T_{1/2} depending on nuclear matrix element

Example: ¹³⁰Te

Q(¹³⁰Te)=2527 keV, good Q-value above Compton edge of 2615 keV line High natural abundance

Karsten Heeger, Yale University

Isotopes and Sensitivity to <m_{νββ}>

Isotopes have comparable sensitivities in terms of rate per unit mass

Ref: Robertson MPL A28, 2013, 1350021 arXiv:1301.1323

CUORE Experimental Approach

Use as calorimeter to watch for events of energy $E=Q_{\beta\beta}$

Bolometric Search with ¹³⁰Te

 $^{130}\text{Te} \rightarrow ^{130}\text{Xe} + 2e^{-}$ Q = (2527.518 +/- 0.013) keV

CUORE Experimental Approach

Use as calorimeter to watch for events of energy $E=Q_{\beta\beta}$

Bolometric Search with ¹³⁰Te

 $^{130}\text{Te} \rightarrow ^{130}\text{Xe} + 2e^{-}$ Q = (2527.518 +/- 0.013) keV

single hit, monochromatic event

in about 87% of all cases the two electrons from are fully contained within single source crystal

TeO₂ Bolometers for 0vββ Search

- ^{130}Te is a good $0\nu\beta\beta$ source
 - high isotopic abundance
 - high Q-value
- TeO₂ bolometer provides excellent energy resolution (0.2% at Q-value)

For E = 1 MeV: $\Delta T = E/C \approx 0.1 \text{ mK}$ Signal size: 1 mV Time constant: $\tau = C/G = 0.5 \text{ s}$ Energy resolution: ~ 5 keV at 2.5 MeV

TeO₂ Bolometer - A Success Story

CUORE 0vßß Search

 $T_{1/2}^{0\nu\beta\beta} > 4.0 \times 10^{24} \text{ y (90\% C.L.)}$

 $m_{\beta\beta} < 50 - 130 \text{ meV}$

CUORE at LNGS

Gran Sasso National Laboratory

Average depth ~ 3600 m.w.e.

 $\begin{array}{l} \mu: 3 \ x \ 10^{\text{-8}} \ \mu/\text{s/cm}^2 \\ n < 10 \ \text{MeV}: 4 \ x \ 10^{\text{-6}} \ n/\text{s/cm}^2 \\ \gamma < 3 \ \text{MeV}: 0.73 \ \gamma/\text{s/cm}^2 \end{array}$

CUORE Hut

CUORE

Cryogenic Underground Observatory for Rare Events

- 988 TeO₂ crystals run as a bolometer array
 - 5x5x5 cm³ crystal, 750 g each
 - 19 Towers; 13 floors; 4 modules per floor
 - -741 kg total; 206 kg 130Te
 - 10^{27 130}Te nuclei

- Excellent energy resolution of bolometers
- New pulse tube dilution refrigerator and cryostat
- Radio-pure material and clean assembly to achieve low background at region of interest (ROI)

CUORE: An ultrapure TeO₂ Crystal Array

Bulk activity 90% C.L. upper limits:

8.4 · 10⁻⁷ Bq/kg (²³²Th), 6.7 · 10⁻⁷ Bq/kg (²³⁸U), 3.3 · 10⁻⁶ Bq/kg (²¹⁰Po) **Surface activity** 90% C.L. upper limits:

2 · 10⁻⁹ Bq/cm² (²³²Th), 1 · 10⁻⁸ Bq/cm² (²³⁸U), 1 · 10⁻⁶ Bq/cm² (²¹⁰Po)

- Crystal holder design optimized to reduce passive surfaces (Cu) facing the crystals
- Developed ultra-cleaning process for all Cu components:
 - Tumbling
 - Electropolishing
 - Chemical etching
 - Magnetron plasma etching
- Benchmarked in dedicated bolometer run at LNGS
 - Residual ²³²Th / ²³⁸U surface contamination of Cu: $< 7 \cdot 10^{-8}$ Bq/ cm²
- Validated by CUORE-0
- All parts stored underground, under nitrogen after cleaning

Τ1

Т3

Physics data

Calibration data

Karsten Heeger, Yale University

Calibration

Energy Resolution

- Energy resolution is evaluated for each bolometer and dataset by fitting the 2615 keV peak from ²⁰⁸TI in the calibration data.
- The obtained resolution is < 5 keV, which is the CUORE goal.

- Calibration performance is tested by measuring residuals (i.e., reconstructed energy true energy) in the physics data
- The measured single-gamma energy scale uncertainty is 0.1 keV

CUORE-0 Background Measurement

- γ background (from ²³²Th) was not reduced since the cryostat remained the same.
- γ background (from ²³⁸U chain) was reduced by a factor of 2.5 due to better radon control.
- a background from copper surface and crystal surface was reduced by a factor of 6.5 thanks to the new detector surface treatment.
- Demonstrate CUORE sensitivity goal is within reach.

	Background rate [counts/keV/kg/y]		signal eff. [%]
	0vββ region	a region (excl. peak)	(detector+cuts)
Cuoricino	0.169 ± 0.006	0.110 ± 0.001	82.8±1.1
CUORE-0	0.058 ± 0.011	0.016 ± 0.001	81.3±0.6

- Simultaneous unbinned extended ML fit to range [2470,2570] keV
- Fit function has 3 components:
 - Calibration-derived lineshape modeling posited fixed at 2527.5 keV
 - Calibration-derived lineshape modeling Co peak floated around 2505 keV
 - Continuum background

Fitted background: 0.058 ± 0.004 (stat.) ± 0.002 (syst.) counts/keV/kg/yr Best-fit decay rate: $\Gamma^{0\nu\beta\beta}(^{130}\text{Te}) = 0.01 \pm 0.12$ (stat.) ± 0.01 (syst.) $\times 10^{-24}$ yr⁻¹

Unblinded Spectrum & Fit

No evidence for $0\nu\beta\beta$ of ¹³⁰Te found

 $\Gamma^{0\nu\beta\beta}$ (¹³⁰Te) < 0.25 × 10⁻²⁴ yr⁻¹ (90% C.L., statistics only)

 $T_{1/2^{0\nu\beta\beta}}(^{130}\text{Te}) > 2.7 \times 10^{24} \text{ yr} (90\% \text{ C.L., statistics only})$

CUORE-0 result combined with Cuoricino result from 19.75 kg-yr of ¹³⁰Te exposure yields the Bayesian lower limit: $T_{1/2}^{0\nu\beta\beta}(^{130}\text{Te}) > 4.0 \times 10^{24} \text{ yr} (90\% \text{ C.L., stat.+sys.})$

Karsten Heeger, Yale University

Limits on Effective Majorana Mass

Including additional Shell-Model NME

 $\langle \mathbf{m}_{\beta\beta} \rangle < 270 - 760 \text{ meV}$

1) IBM-2 (PRC 91, 034304 (2015))
2) QRPA (PRC 87, 045501 (2013))
3) pnQRPA (PRC 024613 (2015))
4) Shell Model (PRC 91, 024309 (2015))
5) ISM (NPA 818, 139 (2009))
6) EDF (PRL 105, 252503 (2010))

CUORE Detector Assembly

Mechanical Detector Assembly

Universal Working Plane

Tower garage

CUORE Detector Assembly

Tower Assembly

Karsten Heeger, Yale University

UMass, December 16, 2015

CUORE Detector Towers

Assembly of all 19 towers is complete

CUORE Cryogenic Systems & Commissioning

Phased Commissioning

6mK stable base temperature achieved in October 2014

shielding tested during recent cooldown

CUORE Sensitivity

- CUORE sensitivity goal $T_{1/2}^{0\nu\beta\beta}$ > 9.5 x 10²⁵ yr @ 90% C.L.
- Effective Majorana mass 51 133 meV @ 90% C.L.
 - Assumptions: 5 keV FWHM ROI resolution (δE), background rate (b) of 0.01 counts/(keV·kg·yr), 5 years of live time.

CUORE - What a signal might look like...

Reach of cosmology and current experiments

Palanque-Delabrouille $\Sigma_v < 84 \text{ meV } 1\sigma \text{ CL}$ JCAP 1502, 045 (2015)

Next Frontier - Future Searches for 0vββ

Karsten Heeger, Yale University

m_{lightest} > 50 meV (irrespective of ordering)

Ton scale experiments will make discovery if

- spectrum has inverted ordering

improvement of x100 over current results

significant discovery potential

Towards a Next-Generation Experiment

Goals/Requirements

- Expect signals of **1 count/tonne-year for half-lives of 10**²⁷ **years**, or **<m**_{ββ}**>~ 15 meV**.
- For discovery aim for S:B of better than 1:1 in region of interest
- Region of interest can be single dimension (e.g. energy) or multi-dimensional (e.g. energy+fiducial)

Next Steps

International collaborations are building on current efforts using multiple isotopes:

- ⁷⁶Ge: large Ge experiment, HPGE crystals, ton-scale
- ⁸²Se: SuperNEMO, tracking and calorimeter, 100kg scale
- ¹³⁶Xe:
 - nEXO, liquid TPC, 5 tonnes
 - NEXT/BEXT, high pressure gas TPC, tonne-scale
 - KamLAND-Zen, scintillator
- ¹³⁰Te:
 - CUPID, bolometers+scintillation/Cherenkov light
 - SNO+ phase II, scintillator
- other efforts worldwide
- staged approach possible, some experiments pursue isotopic enrichment

R&D for Future Bolometric 0vßß Searches

Goals fo future experiment: Expect signals of 1 count/tonne-year for half-lives of 10^{27} years, or $\langle m_{\beta\beta} \rangle \sim 15$ meV. For discovery aim for S:B of better than 1:1 in region of interest

Increase mass enrich in ¹³⁰Te

Reduce background

via particle ID cleaner detectors, tag backgrounds, active veto

Explore other/multiple isotopes

Bolometer R&D:

- CALDER
- Cherenkov/TeO2
- LUCIFER
- LUMINEU

Beyond CUORE: 130Te Enrichment

3

Enrichment

- Natural next step for CUORE
 - -Increase # of parent nuclei, not the detector mass (# of background events)
- ¹³⁰Te enrichment is relatively cheap at \$17K/kg ٠
 - Compared to ⁷⁶Ge enrichment at \$100/g
- 500 gram of enriched ¹³⁰Te metal is sent to SICCAS for ٠ enriched crystal growth.

Cosmogenics Background in CUORE

Goal: measure ROI backgrounds in situ in coincidence with CUORE

- in particular neutron spallation from external Pb shields

Beyond CUORE: Different Isotopes

- Bolometer utilizes only the low heat ٠ capacity of dielectric crystal.
- High efficiency and flexibility in candidate isotope choices.
- Especially valuable for discovery ٠ confirmations in different isotopes.

90% sensitivity limits

Crystal	Exposure	half-life sensitivity	$ m_{ee} _S$
	[ton·y]	$[10^{27}y]$	[meV]
ZnSe	5	3.3	9 - 26
	10	6.5	6 - 18
$CdWO_4$	5	1.5	14 - 26
	10	3.0	10 - 18
$\rm ZnMoO_4$	5	0.9	11 - 32
	10	1.4	9 - 25
${\rm TeO}_2$	5	3.4	8 - 22
	10	6.8	6 - 16

Beyond CUORE: Particle ID with Light Detectors

phonon+photon

- Cherenkov light or scintillation to distinguish α from β/γ (¹³⁰TeO₂, Zn⁸²Se, ¹¹⁶CdWO₄, and Zn¹⁰⁰MoO₄)
- More rejection power needed: 99.9% α background suppression. Light detector R&D for better resolution.
- Background free search.

 $m_{\beta\beta} \sim (M \cdot t)^{-1/2}$, not $(M \cdot t)^{-1/4}$

Karsten Heeger, Yale University

Conclusions

Neutrinoless double beta ($0\nu\beta\beta$) is a comprehensive method for probing the Majorana nature neutrinos. Observation would establish lepton number violation and physics beyond Standard Model.

CUORE program builds on the success of CUORICINO and predecessors

- CUORE-0 (2013 2015)
 - confirms successful background mitigation and Cuoricino background model
 - energy resolution of < 5 keV FWHM for ROI reached
 - provides the most sensitive limit for $(0\nu\beta\beta)$ in ¹³⁰Te to date.
- CUORE (2016)
 - tower assembly is complete and cryogenic system commissioning underway.
 - physics data taking expected to start in 2016.
 - with 206 kg of ¹³⁰Te and 5 keV energy resolution, is able to reach 51-133 meV effective Majorana mass.
- **Beyond CUORE/CUPID**: R&D effort is underway. Large bolometers offer path towards exploring the inverted hierarchy.

CUORE Collaboration

