Higgs Portal & Cosmology: Theory Overview

M.J. Ramsey-Musolf U Mass Amherst

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

Higgs Portal WS May 2014

The Origin of Matter

Cosmic Energy Budget

The Origin of Matter

Explaining the origin, identity, and relative fractions of the cosmic energy budget is one of the most compelling motivations for physics beyond the Standard Model

Symmetries & the Origin of Matter

Questions for This Workshop

• What happened ~ 10ps after the Big Bang?

Questions for This Workshop

- What happened ~ 10ps after the Big Bang?
- Single step (cross over) transition ?
- *More d.o.f. with a richer pattern of EWSB?*
 - Single or multiple steps ?
 - First or second order ?
 - Coupled to origin of matter ?

Questions for This Workshop

- What happened ~ 10ps after the Big Bang?
- Single step (cross over) transition ?
- *More d.o.f. with a richer pattern of EWSB?*
 - Single or multiple steps ?
 - First or second order ?
 - Coupled to origin of matter ?
- What are collider signatures that could provide clues?
 - Modified Higgs properties (production, decays)
 - New states

Recent Developments:

- BICEP2 CMB B-mode observation → Evidence for primordial gravitational radiation associated with inflation
- Discovery of BEH-like boson → Paradigm of symmetry-breaking in particle physics driven by a fundamental scalar likely correct
- Non-observation (so far) of physics beyond the Standard Model at the LHC

Recent Results

• Discovery of BEH-like scalar at the LHC

Non-observation (so far) of sub-TeV particles at LHC

Recent Results

- Discovery of BEH-like scalar at the LHC
 - Idea of φ-driven spontaneous EW symmetry breaking is likely correct
- Non-observation (so far) of sub-TeV particles at LHC

Recent Results

- Discovery of BEH-like scalar at the LHC
 - Idea of φ-driven spontaneous EW symmetry breaking is likely correct
- Non-observation (so far) of sub-TeV particles at LHC
 - Sub-TeV BSM spectrum is compressed
 - Sub-TeV BSM is purely EW or Higgs portal
 - BSM physics lies at very different mass scale

Outline

- Portals & the Early Universe
- Why the Higgs Portal
- Scalar Fields in Particle Physics & Cosmology
- General Considerations
- Illustrative Higgs Portals: Simplest Extensions

I. Portals & Early Universe

Portals

Two approaches:

- Specific model (MSSM....)
- "Model independent"

Model Independent Portals

- Vector portal ("dark photons"...)
- Neutrino portal
- Axion portal
- Higgs portal
- Higher dimensional op's portal

Model Independent Portals

- Vector portal ("dark photons"...)
- Neutrino portal
- Axion portal
- Higgs portal
- Higher dimensional op's portal

Model Independent Portals

- Vector portal ("dark photons"...)
- Neutrino portal
- Axion portal

• Higgs portal

Higher dimensional op's portal

Higgs Portal: DM

$$\mathcal{O}_4 = \lambda_{\phi H} \,\, \phi^\dagger \phi \,\, H^\dagger H$$

- Renormalizable
- Z₂ symmetric
- Dimensionless coupling
- φ (DM): singlet or charged under SU(2)_L x U(1)_Y

Higgs Portal: Phase Transitions

$$\mathcal{O}_4 = \lambda_{\phi H} \; \phi^\dagger \phi \; H^\dagger H$$

+...

X

X

- Renormalizable
- Z₂ symmetric
- Dimensionless coupling
- φ (DM): singlet or charged under SU(2)_L x U(1)_Y

Higgs Portal: Higher Dim Op's

$$\mathcal{O}_5 = rac{\lambda_{\chi H}}{\Lambda} ar{\chi} \chi \, H^\dagger H$$

+...

X

1

X

- Renormalizable
- Z₂ symmetric
- Dimensionless coupling
- χ (DM): singlet or charged under SU(2)_L x U(1)_Y

II. Why the Higgs Portal ?

Preserving EW Min

Preserving EW Min

"Funnel plot"

Preserving EW Min SM stability V_{EFF} & pert'vity top loops perturbativity EW vacuum 500 400 M 300 200 naïve stability scale Λ 16 12 14

$$\beta_{\lambda} = \frac{1}{16\pi^2} \begin{pmatrix} 4\lambda^2 & -36y_t^4 + 12\lambda y_t^2 - 9\lambda g^2 - 3\lambda {g'}^2 + \frac{9}{4}{g'}^4 + \frac{9}{2}g^2 {g'}^2 + \frac{27}{4}g^4 \end{pmatrix}$$

sets m_H top loops

"Funnel plot"

"Funnel plot" Preserving EW Min SM stability V_{EFF} & pert'vity top loops perturbativity EW vacuum 500 400 ¥ 300 200 naïve stability m_H scale Λ 14 12 SM unstable above ~ 10⁸ - 10¹⁵ TeV $-36y_t^4 + 12\lambda y_t^2 - 9\lambda g^2 - 3\lambda {g'}^2 + \frac{9}{4}{g'}^4 + \frac{9}{2}g^2 {g'}^2 + \frac{27}{4}g^4 \Big)$ $\beta_{\lambda} = \frac{1}{16\pi^2}$ $4\lambda^2$ sets m_H top loops
Stable EW Vacuum ?

What is the BSM Energy Scale Λ ?

BSM: $O_{BSM} = c / \Lambda^2 \rightarrow \Lambda \sim 10 \text{ TeV}$

EWPO: data favor a "light" SM-like Higgs scalar

~ 10⁻³ agreement with EWPO

LHC: so far no sub-TeV BSM physics

Higgs Portal: new low scale d.o.f. ?

III. Scalar Fields in Particle Physics & Cosmology

φ

?

What role do scalar fields play (if any) in the physics of the early universe ?

Problem	Theory	Exp't
• Inflation		
Dark Energy		
Dark Matter		
Phase transitions		

Problem	Theory	Exp't
• Inflation	 	
Dark Energy	~	
Dark Matter	~	
Phase transitions	~	

Problem	Theory	Exp't
• Inflation	 	?
Dark Energy	~	?
Dark Matter	~	?
Phase transitions	~	?

Problem	Theory	Exp't
• Inflation	~	?
Dark Energy	~	?
Dark Matter	~	?
Phase transitions	~	?

• Could experimental discovery of additional scalars point to early universe scalar field dynamics?

• Are there signatures in modified Higgs properties, new states, or EW precision tests ?

Problem	Theory	Exp't
• Inflation	 ✓ 	?
Dark Energy	~	?
Dark Matter	~	?
Phase transitions	~	?

Focus of this talk, but perhaps part of larger role of scalar fields in early universe

IV. General Considerations

Thermal DM: Ω_{CDM} & σ_{SI}

Thermal DM: WIMP

Direct detection: Spin-indep DM-nucleus scattering

Thermal DM: Ω_{CDM} & σ_{SI}

EWPT & EW Baryogenesis

Increasing m_h

"Strong" 1st order EWPT

EW Phase Transition: Gravity waves

"Strong

1st order EWPT

F(φ)

Electroweak Phase Transition

EW Phase Transition: St'd Model

Lattice: Endpoint

Lattice	Authors	$M_{\rm h}^C~({ m GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

S'td Model: 1st order EWPT requires light Higgs

Lattice: Laine, Rummukainen

Decreasing RH stop mass

EW Phase Transition: MSSM

EW Phase Transition: MSSM

EW Phase Transition: MSSM

EW Phase Transition: Higgs Portal

EW Phase Transition: Higgs Portal

- Renormalizable
- φ : singlet or charged under SU(2)_L x U(1)_Y
- Generic features of full theory (NMSSM, GUTS...)
- More robust vacuum stability
- Novel patterns of SSB

EW Phase Transition: Higgs Portal

- Renormalizable
- φ : singlet or charged under SU(2)_L x U(1)_Y
- Generic features of full theory (NMSSM, GUTS...)
- More robust vacuum stability
- Novel patterns of SSB

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet	1	~	*
Real singlet	1	*	~
Complex Singlet	2	~	~
Real Triplet	3	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet	1	~	*
Real singlet	1	*	~
Complex Singlet	2	~	~
Real Triplet	3	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features (NMSSM, GUTs, Hidden Valley....)
Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet	1	~	*
Real singlet	1	*	~
Complex Singlet	2	~	~
Real Triplet	3	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features (NMSSM, GUTs, Hidden Valley....)

The Simplest Extension

Simplest extension of the SM scalar sector: add one real scalar S (SM singlet)

$$V_{\rm HS} = \frac{a_1}{2} \left(H^{\dagger} H \right) S + \frac{a_2}{2} \left(H^{\dagger} H \right) S^2$$

EWPT:
$$a_{1,2} \neq 0 \& \langle S \rangle \neq 0$$

DM: $a_1 = 0 \& \langle S \rangle = 0$

O'Connel, R-M, Wise; Profumo, R-M, Shaugnessy; Barger, Langacker, McCaskey, R-M Shaugnessy; He, Li, Li, Tandean, Tsai; Petraki & Kusenko; Gonderinger, Li, Patel, R-M; Cline, Laporte, Yamashita; Ham, Jeong, Oh; Espinosa, Quiros; Konstandin & Ashoorioon...

The Simplest Extension, Cont'd

Mass matrix

$$M^2 = \begin{pmatrix} \mu_h^2 & \mu_{hs}^2/2 \\ \mu_{hs}^2/2 & \mu_s^2 \end{pmatrix}$$

$$\mu_h^2 \equiv \frac{\partial^2 V}{\partial h^2} = 2\bar{\lambda}_0 v_0^2$$
$$\mu_s^2 \equiv \frac{\partial^2 V}{\partial s^2} = b_3 x_0 + 2b_4 x_0^2 - \frac{a_1 v_0^2}{4x_0}$$
$$\mu_{hs}^2 \equiv \frac{\partial^2 V}{\partial h \partial s} = a_1 + 2a_2 x_0 v_0$$
$$x_0 =$$
$$\tan \theta = \frac{y}{1 + \sqrt{1 + y^2}}, \qquad y \equiv \frac{\mu_{hs}^2}{\mu_h^2 - \mu_s^2}$$

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \sin\theta & \cos\theta \\ \cos\theta & -\sin\theta \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

$$m_{1,2}^2 = \frac{\mu_h^2 + \mu_s^2}{2} \pm \frac{\mu_h^2 - \mu_s^2}{2} \sqrt{1 + y^2}$$

The Simplest Extension, Cont'd

Mass matrix

$$\mu_h^2 \equiv \frac{\partial^2 V}{\partial h^2} = 2\bar{\lambda}_0 v_0^2$$
$$\mu_s^2 \equiv \frac{\partial^2 V}{\partial s^2} = b_3 x_0 + 2b_4 x_0^2 - \frac{a_1 v_0^2}{4x_0}$$
$$\mu_{hs}^2 \equiv \frac{\partial^2 V}{\partial h \partial s} = a_1 + 2a_2 x_0 v_0$$
$$x_0 =$$
$$\tan \theta = \frac{y}{1 + \sqrt{1 + y^2}}, \qquad y \equiv \frac{\mu_{hs}^2}{\mu_h^2 - \mu_s^2}$$

New topologies

$$m_{1,2}^2 = \frac{\mu_h^2 + \mu_s^2}{2} \pm \frac{\mu_h^2 - \mu_s^2}{2} \sqrt{1 + y^2}$$

The Simplest Extension, Cont'd

Mass matrix $\mu_h^2 \equiv \frac{\partial^2 V}{\partial h^2} = 2\bar{\lambda}_0 v_0^2$ $\mu_h^2 \equiv \frac{\partial^2 V}{\partial s^2} = b_3 x_0 + 2b_4 x_0^2 - \frac{a_1 v_0^2}{4x_0}$ $\mu_h^2 \equiv \frac{\partial^2 V}{\partial s^2} = b_3 x_0 + 2b_4 x_0^2 - \frac{a_1 v_0^2}{4x_0}$ $\mu_{hs}^2 \equiv \frac{\partial^2 V}{\partial h \partial s} = a_1 + 2a_0 x_0 v_0$ $x_0 = \langle S \rangle$ $\tan \theta = \frac{y}{1 + \sqrt{1 + y^2}}, \quad y \equiv \frac{\mu_{hs}^2}{\mu_h^2 - \mu_s^2}$

Stable S (dark matter)

- Tree-level Z₂ symmetry: a₁=0 to prevent s-h mixing and one-loop s→hh
- $x_0 = 0$ to prevent h-s mixing & s \rightarrow hh

The Simplest Extension

DM Scenario

$$V_{\rm HS} = + \frac{a_2}{2} \left(H^{\dagger} H \right) S^2$$

The Simplest Extension

DM Scenario

, 0000 g

لأووو

q

+

DM Phenomenology

Relic Density

Direct Detection

Barger, Langacker, McCaskey, *R-M, Shaugnessy*

New Scalars EW Vacuum Stability

Preserving EW Min

$$\beta_{\lambda} = \frac{1}{16\pi^2} \left(4\lambda^2 + 12a_2^2 - 36y_t^4 + 12\lambda y_t^2 - 9\lambda g^2 - 3\lambda {g'}^2 + \frac{9}{4}{g'}^4 + \frac{9}{2}g^2 {g'}^2 + \frac{27}{4}g^4 \right)$$

$$DM-H \ coupling \qquad top \ loops$$

Gonderinger, Li, Patel, R-M; Gonderinger, Lim, R-M

New Scalars EW Vacuum Stability

Preserving EW Min

Gonderinger, Li, Patel, R-M; Gonderinger, Lim, R-M

LHC discovery potential

Signal Reduction Factor

LHC discovery potential

Invisible decays

LHC discovery potential

Invisible decays

Dijet azimuthal distribution

Jets + E_{T} +

Look for azimuthal shape change of primary jets (Eboli & Zeppenfeld '00)

LHC discovery potential

Invisible decays

Real Singlet: EWPT

$$V_{\rm HS} = \frac{a_1}{2} \left(H^{\dagger} H \right) S + \frac{a_2}{2} \left(H^{\dagger} H \right) S^2$$

Real Singlet: EWPT

Real Singlet: EWPT

Low energy phenomenology

Signatures

Scan: EWPT-viable model parameters

Light: all models Black: LEP allowed

Profumo, R-M, Shaugnessy '07

Scan: EWPT-viable model parameters

Light: all models Black: LEP allowed

LHC: reduced $BR(h \rightarrow SM)$

Profumo, R-M, Shaugnessy '07

Scan: EWPT-viable model parameters

Light: all models Black: LEP allowed

EWPT: Resonant Di-Higgs Production

Trivial Singlet v.e.v. **Signatures** $m_2 > 2 m_1$ Mixed States: 500 Precision \leftrightarrow ILC 400 m² [GeV 200 100 m_2 = 270 GeV "un-boosted" 0 L 100 $m_1 > 2 m_2$ *m*₂ = 370 GeV "boosted" 300 200 m, [Ge

Scan: EWPT-viable model parameters

Light: all models Black: LEP allowed

 $bb\tau^{+}\tau^{-}$: discovery with ~ 100 fb⁻¹ in " $\tau_{lep} \tau_{had}$ " channel

EWPT: Resonant Di-Higgs Production

Signatures

 m_2 = 270 GeV "un-boosted" m_2 = 370 GeV "boosted"

$bb\tau^{+}\tau^{-}$: discovery with ~ 100 fb⁻¹ in " $\tau_{lep} \tau_{had}$ " channel

	$h_2 \rightarrow h_1 h_1$	t	\overline{t}	$Z b \overline{b}$	Zjj
	$bb au_{ m lep} au_{ m had}$	$bb\ell au_{ m had}$	$bb au_{ m lep} au_{ m had}$	$bb\tau_{\rm lep}\tau_{\rm had}$	$jj\tau_{\rm lep}\tau_{\rm had}$
Event selection V.C)	19.17	5249	762	601	98
$\Delta R_{bb} > 2.1, P_{T,b_1} > 5 \text{ GeV } P_{T,b_2} > 30 \text{ GeV}$	11.45	2639	384	188	10.8
h_1 -mass: 90 GeV $< m_{bb}$	8.00	531	80	69	3.68
Collinear x_1, x_2 Cuts	4.81	209	36.4	41.6	2.41
$\Delta R_{\ell\tau} > 2$	10	129	23.1	26.5	2.03
$m_T^\ell < 30 \text{ GeV}$		30.9	11.1	24.4	1.90
h_1 -mass: 110 GeV $< m_{\tau\tau}^{\text{coll}} < 150$ GeV	~~ <i>\</i> /	77	2.05	4.92	0.38
$E_T^{\text{miss}} < 50 \text{ GeV}$	1.37	b	87	4.29	0.36
h_2 -mass: 230 GeV $< m_{bb au au}^{ m coll} < 300$ GeV	1.29	0.39	10	1.21	0.13
				a/	6
R-M & No. arXiv:1310.6035					

Scan: EWPT-viable model parameters

Light: all models Black: LEP allowed

Signatures

Scan: EWPT-viable model parameters

Light: all models Black: LEP allowed

Profumo, R-M, Shaugnessy '07

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet	1	~	*
Real singlet	1	*	~
Complex Singlet	2	~	~
Real Triplet	3	~	~

Back up slides

May be low-energy remnants of UV complete theory & illustrative of generic features

Complex Singlet: EWB & DM?

Barger, Langacker, McCaskey, R-M Shaugnessy

Spontaneously & softly broken global $U(1) < S > \neq 0$

$$V_{HS} = \frac{\delta_2}{2} H^{\dagger} H |\tilde{S}|^2 = \frac{\delta_2}{2} H^{\dagger} H (S^2 + A^2)$$

Controls Ω_{CDM} , T_C , & H-S mixing

$$V_{\tilde{S}} = \frac{b_2}{2} |\tilde{S}|^2 + \frac{b_1}{2} \tilde{S}^2 + \text{c.c.} + \cdots$$

Gives non-zero M_A

Complex Singlet: EWB & DM?

Barger, Langacker, McCaskey, R-M Shaugnessy

Consequences:

Three scalars:

 h_1 , h_2 : mixtures of h & S

A : dark matter

Phenomenology:

- Produce h_1 , h_2 w/ reduced σ
- Reduce BR ($h_i \rightarrow SM$)
- Observation of BR (invis)
- Possible obs of $\sigma^{\rm SI}$

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet	1	~	*
Real singlet	1	*	~
Complex Singlet	2	~	~
Real Triplet	3	~	~

Simplest non-trivial EW multiplet

Real Triplet

$$\Sigma^{0}, \Sigma^{+}, \Sigma^{-} \sim (1, 3, 0)$$

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]

$$V_{H\Sigma} = \frac{a_1}{2} H^{\dagger} \Sigma H + \frac{a_2}{2} H^{\dagger} H \text{ Tr } \Sigma^2$$

EWPT: $a_{1,2} \neq 0 \& <\Sigma^0 > \neq 0$ *DM & EWPT:* $a_1 = 0 \& <\Sigma^0 > = 0$

Real Triplet

$$\Sigma^{0}, \Sigma^{+}, \Sigma^{-} \sim (1, 3, 0)$$

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]

$$V_{H\Sigma} = \frac{a_1}{2} H^{\dagger} \Sigma H + \frac{a_2}{2} H^{\dagger} H \text{ Tr } \Sigma^2$$

EWPT:
$$a_{1,2} \neq 0 \& \le \Sigma^0 > \neq 0$$

DM & EWPT:
$$a_1 = 0$$
 & $<\Sigma^0 > = 0$

Small: ρ -param

Real Triplet: DM

$$\Sigma^{0}, \Sigma^{+}, \Sigma^{-} \sim (1, 3, 0)$$

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]

EWPT:
$$a_{1,2} \neq 0 \& <\Sigma^0 > \neq 0$$

DM & EWPT: $a_1 = 0 \& <\Sigma^0 > = 0$

Small: ρ -param

EW Phase Transition: Higgs Portal

Patel, R-M: arXiv 1212.5652 ; Fileviez-Perez, Patel, RM, Wang

Higgs Diphoton Decays

LHC: $H \rightarrow \gamma \gamma$

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]

Real Triplet: EWPT

$$\Sigma^{0}, \Sigma^{+}, \Sigma^{-} \sim (1, 3, 0) \stackrel{H. I}{ph}$$

H. Patel & R-M, 1212.5652/hepph (2012)

Real Triplet: EWPT

$$\Sigma^{0}, \Sigma^{+}, \Sigma^{-}$$
 ~ (1, 3, 0) H. Patel & R-M, 1212.5652/hep-
ph (2012)

 $\frac{a_2}{2}H^{\dagger}H$ Tr Σ^2 $V_{H\Sigma} =$ $m_H = 125 \text{ GeV}, b_4 = 0.75$ 200 $\delta = 0\%$ (SM) -10% Two-step EWSB $\frac{WU-SU}{2} + \frac{SU(2)_{L}S}{2} + \frac{MI}{3} + \frac{SU(2)_{L}S}{2} + \frac{SU(2)_{L}S}{2}$ -20% -40% zero Σvev 80 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 a_2
Real Triplet : DM Search

Mass splitting due to EW symmetry breaking:

$$M_{\Sigma^{\pm}} - M_{\Sigma^0} \sim \frac{\alpha}{4\pi} M_W$$

$$\Sigma^{+}
ightarrow \Sigma^{0}$$
 + π^{+} (soft)

Generalizes to higher dim EW multiplets

Real Triplet : DM Search

Basic signature: Charged track disappearing after ~ 5 cm $x_0 = 0: H^{\pm} \to H_2 \pi^{\pm}$ $q\overline{q} \rightarrow W^{\pm^*} \rightarrow H^{\pm}H_2 \quad q\overline{q} \rightarrow Z^*, \gamma^* \rightarrow H^+H^-$ 10⁶ (1) 10⁵ 10 Trigger: Monojet SM monojet+missing ET missing $E_{T} > 120 \text{ GeV}$ 10 SM Background: QCD jZ and jW w/ $Z \rightarrow vv \& W \rightarrow Iv$ monojet + tracks 10 10 j+ 2 charged tracks (H⁺H⁻) j+ 1 charged track (H[≖]H₂) 10 200 400 600 800 M_H (GeV) Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]

Real Triplet : DM Search

Basic signature: Charged track disappearing after ~ 5 cm $x_0 = 0: H^{\pm} \to H_2 \pi^{\pm}$ $q\overline{q} \rightarrow W^{\pm^*} \rightarrow H^{\pm}H_2 \quad q\overline{q} \rightarrow Z^*, \gamma^* \rightarrow H^+H^-$ 10⁶ (1) 10⁵ 10 Trigger: Monojet missing $E_{\tau} > 120 \text{ GeV}$ 10[°] SM Background: QCD jZ and jW w/ $Z \rightarrow vv \& W \rightarrow Iv$ monojet + tracks 10 large E_{T} Cuts: hard jet 10 j+ 2 charged tracks (**H**⁺H⁻) j+1 charged track ($H^{\pm}H_2$) One 5cm track 10 200 400 600 800 M_H (GeV)

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]

EW Phase Transition: Higgs Portal

Do good symmetries today need to be good symmetries in the early Universe ?

Patel, R-M, Wise: PRD 88 (2013) 015003

Symmetry Breaking & Restoration

Do good symmetries today need to be good symmetries in the early Universe ?

Rochelle salt: $KNaC_4H_4O_6 4H_20$

J. Valasek

Increasing T \rightarrow

EW Phase Transition: Higgs Portal

Do good symmetries today need to be good symmetries in the early Universe ? No

•O(*n*) *x* O(*n*): Weinberg (1974)

• *SU*(5), *CP*...: *Dvali*, *Mohapatra*, *Senjanovic* ('79, 80's, 90's)

- Cline, Moore, Servant et al (1999)
- EM: Langacker & Pi (1980)
- *SU*(3)_{*C*} : *Patel, R-M, Wise: PRD* 88 (2013) 015003

EW Phase Transition: Higgs Portal

Do good symmetries today need to be good symmetries in the early Universe ? No

•O(*n*) *x* O(*n*): Weinberg (1974)

• *SU*(5), *CP...: Dvali*, *Mohapatra*, *Senjanovic* (*'*79, 80*'*s, 90*'*s)

- Cline, Moore, Servant et al (1999)
- EM: Langacker & Pi (1980)
- *SU*(3)_{*C*} : *Patel, R-M, Wise: PRD* 88 (2013) 015003

Color Breaking & Restoration

Two illustrative cases:

H. Patel, R-M, Wise 1303.1140 (2013)

Extension	DOF	EWPT	DM
Color triplet scalar	6	~	*
Color triplet + singlet	7	~	*

Color Breaking & Restoration

Two illustrative cases:

H. Patel, R-M, Wise 1303.1140 (2013)

Extension	DOF	EWPT	DM
Color triplet scalar	6	~	*
Color triplet + singlet	7	~	*

Spontaneous B violation

EW Phase Transition: Higgs Portal

Summary: Workshop Questions

- What happened ~ 10ps after the Big Bang?
- Single step (cross over) transition ?
- *More d.o.f. with a richer pattern of EWSB?*
 - Single or multiple steps ?
 - First or second order ?
 - Coupled to origin of matter ?
- What are collider signatures that could provide clues?
 - Modified Higgs properties (production, decays)
 - New states

Back Up Slides

Ingredients for Baryogenesis

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

Ingredients for Baryogenesis

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

Ingredients for Baryogenesis

Scenarios: leptogenesis, EW baryogenesis. Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

Testable Standard Model

BSM

- *B* violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

Baryon Number Preservation

"Washout factor"

$$S \equiv \rho_B(\Delta t_{\rm EW}) / \rho_B(0) > e^{-N}$$

Two qtys of interest:

- T_C from V_{eff}
- E_{sph} from Γ_{eff}

Daisy Resummation

Convergence of PT: going beyond \hbar expansion

Light stop scenario

Patel & R-M '11

$$\begin{split} V_{\text{eff}}(\phi_{\min},T) &- V_{\text{eff}}(0,T) \sim \\ &- \hbar \frac{T}{12\pi} \Big[\left(m_{\tilde{t}}^2 + y_{\tilde{t}}^2 \phi^2 + \Sigma_{\tilde{t}}(T) \right)^{3/2} - \left(m_{\tilde{t}}^2 + \Sigma_{\tilde{t}}(T) \right)^{3/2} \Big] \,. \end{split}$$

For given T. increasingly negative $m_{\tilde{t}}^2$ increases difference between two minima

Increased $\Delta V \rightarrow$ Lowered $T_{\rm C}$

DM Phenomenology

Relic Density

Real Triplet: EWPT

$$\Sigma^0, \Sigma^+, \Sigma^-$$
 ~ (1, 3, 0) ^{H.} ph

H. Patel & R-M, 1212.5652/hepph (2012)

Real Triplet: EWPT

$$\Sigma^{0}, \Sigma^{+}, \Sigma^{-} \sim (1, 3, 0)$$
 H. Patel 6
ph (2012)

H. Patel & R-M, 1212.5652/hepph (2012)

Real Triplet: EWPT

$$\Sigma^0, \Sigma^+, \Sigma^-$$
 ~ (1, 3, 0) ^{H. H.}

H. Patel & R-M, 1212.5652/hepph (2012)

$$V_{H\Sigma} = \frac{a_2}{2} H^{\dagger} H \operatorname{Tr} \Sigma^2$$

Two-step EWSB

- Break SU(2)_L x U(1)_Y w/ Σ vev
- 2. Transition to Higgs phase w/ small or zero Σ vev

Color Breaking & Restoration

Two illustrative cases:

H. Patel, R-M, Wise 1303.1140 (2013)

	Extension	DOF	EWPT	DM
	Color triplet scalar	6	~	*
	Color triplet + singlet 	7	~	*
_	<i>"Light": special flavor structure</i>	Spontan	eous B v	iolation

Color Breaking & Restoration

Two illustrative cases:

H. Patel, R-M, Wise 1303.1140 (2013)

	Extension	DOF	EWPT	DM
	Color triplet scalar	6	~	*
	Color triplet +	7	~	*
	singlet			
ſ				
	heavy: generic flavor structure	sture Spontaneous B violation		

SM + Color Triplet

H. Patel, R-M, Wise 1303.1140 (2013)

$$V = -\mu_H^2 (H^{\dagger} H) - \mu_C^2 (C^{\dagger} C) + \frac{\lambda_H}{2} (H^{\dagger} H)^2 + \frac{\lambda_C}{2} (C^{\dagger} C)^2 + \lambda_{HC} (H^{\dagger} H) (C^{\dagger} C).$$

Decays: $C \rightarrow \langle C \rangle = v_C$: B violation

$$L_Y = C\bar{u}_R g_{uL} L_L + C\bar{Q}_L g_{Qe} e_R + \text{h.c.}.$$

SM + Color Triplet

H. Patel, R-M, Wise 1303.1140 (2013)

$$V = -\mu_H^2 (H^{\dagger} H) - \mu_C^2 (C^{\dagger} C) + \frac{\lambda_H}{2} (H^{\dagger} H)^2 + \frac{\lambda_C}{2} (C^{\dagger} C)^2 + \lambda_{HC} (H^{\dagger} H) (C^{\dagger} C).$$

Upper bound on m_c:

$$\begin{array}{ll} m_h^2 = 2\mu_H^2 = 2\lambda_H v_H^2 \ > \ 0 \\ m_C^2 = -\mu_C^2 + \lambda_{HC} v_H^2 \ > \ 0 \end{array}$$

$$m_C < (\sqrt{\lambda_{HC}}) v_H \simeq (174 \text{ GeV}) \sqrt{\lambda_{HC}}$$

SM + Color Triplet + Singlet

H. Patel, R-M, Wise 1303.1140 (2013)

$$\begin{split} \Delta V &= -\frac{\mu_S^2}{2}S^2 + \frac{\lambda_S}{4}S^4 + \lambda_{HC}(H^{\dagger}H)(C^{\dagger}C) \\ &+ \frac{\lambda_{HS}}{2}(H^{\dagger}H)S^2 + \frac{\lambda_{CS}}{2}(C^{\dagger}C)S^2 \\ &+ \frac{e_S}{3}S^3 + e_C C^{\dagger}CS + e_H H^{\dagger}HS \,. \end{split}$$

Heavier colored scalar

$$m_C^2 = -\mu_C^2 + \lambda_{HC} v_H^2 + \frac{\lambda_{CS}}{2} v_S^2 + e_C v_S$$

Higgs Decays: All Channels

Theoretical Issues

Gauge-dependence in $V_{EFF}(\varphi, T)$

 $V_{EFF}(\varphi, T) \rightarrow V_{EFF}(\varphi, T; \xi)$

Ongoing research: approaches for carrying out tractable, GI computations

• H. Patel & MRM, JHEP 1107 (2011) 029

- C. Wainwright, S. Profumo, MRM Phys Rev. D84 (2011) 023521
- H. Gonderinger, H. Lim, & MRM, arXiv:1202.1316

Effective Potential

 $\phi_{\rm cl}(x) \to \phi_{\rm cl} \longrightarrow \Gamma(\phi_{\rm cl}) = -({\rm vol}) V_{\rm eff}(\phi_{\rm cl})$

Nielsen Identities

Identity:

$$\frac{\partial\Gamma}{\partial\xi} = \int d^d x \, d^d y \left[C(\phi, A; x, y) \frac{\delta\Gamma}{\delta\phi(x)} + E^a_\mu(\phi, A; x, y) \frac{\delta\Gamma}{\delta A^a_\mu(x)} \right]$$

Extremal configurations:

$$\delta\Gamma/\delta\phi(x) = \delta\Gamma/\delta A^a_\mu(x) = 0 \longrightarrow \frac{\partial\Gamma}{\partial\xi} = 0$$

Effective potential:

$$\phi \to \phi_{\min}(\xi) \longrightarrow$$

$$\frac{\partial V_{\text{eff}}}{\partial \xi} = -\tilde{C}(\phi,\xi) \frac{\partial V_{\text{eff}}}{\partial \phi} = 0$$

Baryon Number Preservation

"Washout factor"

$$S \equiv \rho_B(\Delta t_{\rm EW}) / \rho_B(0) > e^{-N}$$

Two qtys of interest:

- T_C from V_{eff}
- E_{sph} from Γ_{eff}

Baryon Number Preservation: Pert Theory

$$S \equiv \rho_B(\Delta t_{\rm EW})/\rho_B(0) > e^{-N}$$

"Baryon number preservation criterion" (BNPC)

H. Patel & MRM, JHEP 1107 (2011) 029

Baryon Number Preservation: Pert Theory

"Baryon number preservation criterion" (BNPC)

H. Patel & MRM, JHEP 1107 (2011) 029

Nielsen Identities: Application to T_c

Critical Temperature

 $V_{eff} (\varphi_{min}, T_{C}) = V_{eff} (0, T_{C})$

Fukuda & Kugo '74: T=0 V_{EFF} Laine '95 : 3D high-T Eff Theory Patel & R-M '11: Full high T Theory

Apply consistently order-by-order in $\,\hbar\,$

 $V_{\text{eff}}(\phi, T) = V_0(\phi) + \hbar V_1(\phi, T) + \hbar^2 V_2(\phi, T) + \dots$

 $\phi_{\min} = \phi_0 + \hbar \phi_1(T,\xi) + \hbar^2 \phi_2(T,\xi) + \dots$

Implement minimization order-by-order (defines ϕ_n)

 $V_{\text{eff}}[\phi_{\min}(T), T] = V_0(\phi_0) + \hbar V_1(\phi_0, T)$

+ $\hbar^2 \left[V_2(\phi_0, T, \xi) - \frac{1}{2} \phi_1(T, \xi) \frac{\partial^2 V_0}{\partial \phi^2} |_{\phi_0} \right] + \mathcal{O}(\hbar^3)$

Obtaining a GI T_c

Patel & R-M '11

Track evolution of minima with T using \hbar expansion

Track evolution of different minima with T using $V_{\text{eff}} \left[\phi_{\min}^{(n)}(T), T \right] = V_0 \left[\phi_0^{(n)} \right] + \hbar V_1 \left[\phi_0(n), T \right]$

