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The Origin of Matter 

Explaining the origin, identity, and relative fractions of 
the cosmic energy budget is one of the most compelling 
motivations for physics beyond the Standard Model 
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Symmetries & Cosmic History 

Standard Model Universe  

EW Symmetry 
Breaking: Higgs   

New Forces ?  

QCD: n+p! 
nuclei 

QCD: q+g! 
n,p… 

Astro: stars, 
galaxies,.. 
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Symmetries &  the Origin of Matter 

? 

Baryogenesis: When? 
CPV? SUSY? Neutrinos?  

 EW Baryogenesis:  
testable w/ EDMs + 
colliders 

Leptogenesis:  
less testable, 
look for 
ingredients w/ νs 

Can new TeV scale 
physics explain the 
abundance of matter ? 

If so, how will we 
know ? 
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Questions for This Workshop 

•  What happened ~ 10ps after the Big Bang? 

•  Single step (cross over) transition ? 

•  More d.o.f. with a richer pattern of EWSB?  

•  Single or multiple steps ?  
•  First or second order ? 
•  Coupled to origin of matter ?  

•  What are collider signatures that could provide clues?  

•  Modified Higgs properties (production, decays) 

•  New states 



Recent Developments: 

•  Discovery of BEH-like boson ! Paradigm of 
symmetry-breaking in particle physics driven by 
a fundamental scalar likely correct 

•  Supersymmetry as an illustration 

•  Theoretical progress & challenges 

•  Our work 

•  Non-observation (so far) of physics beyond 
the Standard Model at the LHC 

•  BICEP2 CMB B-mode observation ! Evidence 
for primordial gravitational radiation associated 
with inflation 
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Recent Results  

•  Discovery of BEH-like scalar at the LHC 

•  Non-observation (so far) of sub-TeV particles at LHC 
•  Sub-TeV BSM spectrum is compressed 
•  Sub-TeV BSM is purely EW or Higgs portal 
•  BSM physics lies at very different mass scale 

•  Idea of φ-driven spontaneous EW symmetry 
  breaking is likely correct 
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•  Portals & the Early Universe 

•  Why the Higgs Portal 

•  Scalar Fields in Particle Physics & Cosmology 

•  General Considerations 

•  Illustrative Higgs Portals: Simplest Extensions 



I. Portals & Early Universe 

Standard Model “Hidden Sector” : 
DM, early universe 
dynamics (EWPT)… 



Portals 
Two approaches: 

•  Specific model (MSSM….) 

•  “Model independent”  
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•  Renormalizable 

•  Z2 symmetric 
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Higgs Portal: Phase Transitions  

•  Renormalizable    ✔ 

•  Z2 symmetric     ✖ 

•  Dimensionless coupling   ✖ 

•  φ (DM): singlet or charged  
 under SU(2)L x U(1)Y 

+… 



Higgs Portal: Higher Dim Op’s 

•  Renormalizable    ✖ 

•  Z2 symmetric     ✔ 

•  Dimensionless coupling   ✖ 

•  χ (DM): singlet or charged  
 under SU(2)L x U(1)Y 

+… 
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Stable EW Vacuum ? 
Preserving EW Min “Funnel plot” 

top loops  sets mH 

VEFF 

 ϕ 

perturbativity 

 mH 

 top loops 

 naïve stability 
scale Λ 

 EW vacuum 

SM unstable above 
~ 108 - 1013 TeV 

SM stability 
& pert’vity 

Higgs portal interactions ! 
more robust stability ? 



What is the BSM Energy Scale Λ ? 

~ 10-3 agreement 
with EWPO 

EWPO: data favor a 
“light” SM-like Higgs 
scalar 

BSM: OBSM = c / Λ2  !    

Λ ~ 10 TeV 

Barbieri & 
Strumia ‘99 

LHC: so far no sub-
TeV BSM physics 

Higgs Portal: new low 
scale d.o.f. ? 



III. Scalar Fields in Particle 
Physics & Cosmology 
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Scalar Fields in Cosmology 

What role do scalar fields play (if any) 
in the physics of the early universe ? 
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Scalar Fields in Cosmology 

•  Inflation 

•  Dark Energy 

•  Dark Matter 

•  Phase transitions 

Problem Theory Exp’t 

 ✔ 

✔ 

✔ 

✔ 
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? 

•  Could experimental discovery of additional scalars 
point to early universe scalar field dynamics? 

•  Are there signatures in modified Higgs properties, 
new states, or EW precision tests ? 



Scalar Fields in Cosmology 

•  Inflation 

•  Dark Energy 

•  Dark Matter 

•  Phase transitions 

Problem Theory Exp’t 

✔ 

✔ 

✔ 

✔ 

? 

? 

? 

? 

Focus of this talk, but perhaps part of 
larger role of scalar fields in early universe  



IV. General Considerations  



Thermal DM: ΩCDM & σSI  
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Thermal DM: ΩCDM & σSI  

Thermal DM: WIMP  

χ	


χ	
 SM 

SM 

Direct detection: Spin-indep 
DM-nucleus scattering  

χ	


χ	
 A 

A 

?

CDMS 2013 

K McCarthy APS 
‘13 
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EW Phase Transition: Gravity waves 
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GW Spectra: 
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Detonation & 
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EW Phase Transition: St’d Model 
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F1st order 2nd order 

Increasing mh  

Lattice: Endpoint 

S’td Model: 1st order EWPT 
requires light Higgs 



EW Phase Transition: New Scalars 
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New scalars  
1st order 
EWPT 

Decreasing RH stop mass 

CCB Vac 

Lattice: Laine, Rummukainen 

MSSM: Light RH stops 

PT: Carena et al,… 
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phase metastable 
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SUS-13-009 
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The Simplest Extension 

Model 

Independent Parameters: 

   v0, x0, λ0, a1, a2, b3, b4 

H-S Mixing	

H1 ! H2H2	
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Stable S (dark matter?) 
•  Tree-level Z2 symmetry: a1=b3=0 to  

 prevent s-h mixing and one-loop s    hh    

•  x0 =0 to prevent h-s mixing xSM EWPT:  ✖ 

Signal Reduction Factor 

Production Decay 

Simplest extension of the SM scalar 
sector: add one real scalar S (SM singlet) 

EWPT: a1,2 = 0  & <S> = 0 

DM:      a1 = 0    & <S> = 0 

/ / 

O’Connel, R-M, Wise; Profumo, R-M, Shaugnessy; Barger, Langacker, McCaskey, R-M 
Shaugnessy; He, Li, Li, Tandean, Tsai; Petraki & Kusenko; Gonderinger, Li, Patel, R-M; Cline, 
Laporte, Yamashita; Ham, Jeong, Oh; Espinosa, Quiros; Konstandin & Ashoorioon…   
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Production Decay 

DM Scenario 

ΩDM & σSI 

+ +… 



DM Phenomenology 
Relic Density 

He, Li, Li, Tandean, Tsai 

Direct Detection 

He, Li, Li, Tandean, Tsai 

Barger, Langacker, McCaskey, 
R-M, Shaugnessy 



New Scalars EW Vacuum Stability 
Preserving EW Min “Funnel plot” 

VEFF 
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 top loops 

 naïve stability 
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 EW vacuum 
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SM stability 
& pert’vity 

DM-H coupling 
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Preserving EW Min “Funnel plot” 

VEFF 

 ϕ 

perturbativity 

 mH 

 top loops 

 naïve stability 
scale Λ 

 EW vacuum 

top loops 

Gonderinger, Li, Patel, R-M; Gonderinger, Lim, R-M 

SM stability 
& pert’vity 

SM + singlet: stable  
but non-pertur’tive 

DM-H coupling 
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LHC & Higgs Phenomenology 
LHC discovery potential 

Signal Reduction Factor 

Production Decay 

V1j < 1: mixed states hj  New decays: h2 ! h1 h1  

Dark matter:  no mixing ! states are h,S 

  New decays h! SS (invisible!) possible 



LHC & Higgs Phenomenology 
Invisible decays 

He, Li, Li, 
Tandean, 
Tsai 

Look for azimuthal shape change of 
primary jets (Eboli & Zeppenfeld ‘00)  

 Dijet azimuthal distribution 
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h j
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LHC discovery potential 

Signal Reduction Factor 
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LHC & Higgs Phenomenology 
Invisible decays 

He, Li, Li, 
Tandean, 
Tsai 

Look for azimuthal shape change of 
primary jets (Eboli & Zeppenfeld ‘00)  

 Dijet azimuthal distribution 
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LHC discovery potential 

Signal Reduction Factor 

Production Decay 

ATLAS 
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h2 → h1h1 tt̄ Z bb̄ Z jj

bb̄τlepτhad bb̄ℓτhad bb̄τlepτhad bb̄τlepτhad jjτlepτhad
Event selection (see section V.C) 19.17 5249 762 601 98
∆Rbb > 2.1, PT,b1 > 45 GeV, PT,b2 > 30 GeV 11.45 2639 384 188 10.8
h1-mass: 90 GeV < mbb < 140 GeV 8.00 531 80 69 3.68
Collinear x1, x2 Cuts 4.81 209 36.4 41.6 2.41
∆Rℓτ > 2 4.10 129 23.1 26.5 2.03
mℓ

T < 30 GeV 3.44 30.9 11.1 24.4 1.90
h1-mass: 110 GeV < mcoll

ττ < 150 GeV 1.56 4.97 2.05 4.92 0.38
Emiss

T < 50 GeV 1.37 3.31 0.87 4.29 0.36
h2-mass: 230 GeV < mcoll

bbττ < 300 GeV 1.29 0.39 0.17 1.21 0.13

TABLE IV: Event selection and background reduction for the bb̄τlepτhad channel in the un-boosted benchmark scenario. We
show the NLO cross section (in fb) for the signal h2 → h1h1 → bb̄τlepτhad and the relevant backgrounds tt̄ → bb̄τlepτhad, bb̄ℓτhad,
Z bb̄ → bb̄τlepτhad and Z jj → jjτlepτhad after successive cuts (same efficiency and face rate assumptions as in Table II).

h2 → h1h1 tt̄ Z bb̄ Z jj

bb̄τlepτhad bb̄ℓτhad bb̄τlepτhad bb̄τlepτhad jjτlepτhad
Event selection (see section V.C) 10.73 5249 762 601 98
∆Rbb < 2.2, PT,b1 > 50 GeV, PT,b2 > 30 GeV 6.02 1576 223 85 2.46
h1-mass: 90 GeV < mbb < 140 GeV 4.77 672 94 31.5 0.84
|P⃗ bb

T | > 110 GeV 3.42 345 49 13.9 0.33
Collinear x1, x2 Cuts 2.31 136 22.3 8.38 0.22
∆Rℓτ < 2.3 1.71 68 11.1 4.31 0.055
mℓ

T < 30 GeV 1.46 18.4 5.64 4.02 0.051
h1-mass: 110 GeV < mcoll

ττ < 150 GeV 1.05 4.2 1.26 0.30 0.003
25 GeV < Emiss

T < 90 GeV 0.76 2.93 0.75 0.23 0.002
h2-mass: 330 GeV < mcoll

bbττ < 400 GeV 0.63 0.60 0.15 0.026 < 0.001

TABLE V: Event selection and background reduction for the bb̄τlepτhad channel in the boosted benchmark scenario (same
efficiency and face rate assumptions as in Table II).
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FIG. 7: Normalized Emiss
T distribution after event selection

(before cuts) for signal and background (“τlepτlep”)

events (largely dominated by tt̄ production), we cut on
the transverse mass of the lepton (see Fig. 8)

mℓ
T =

√

2pℓTE
miss
T (1 − cosφℓ,miss) < 30 GeV (13)

with φℓ,miss being the azimuthal angle between the di-
rection of missing energy and the lepton transverse mo-
mentum.

The corresponding impact of the cut-flow on signal
and background cross sections are given in Tables IV
and V for the unboosted and boosted scenarios. As for
the τlepτlep channel, the various cuts allow one to greatly
suppress the backgrounds and increase the signal signifi-
cance. For the τlepτhad channel, since it is not possible to
impose a Z-peak veto through a cut in the invariant mass
of the lepton pair, we increase the lower end of the mcoll

ττ

invariant mass signal window (from 100 GeV to 110 GeV)
in order to suppress Zbb̄ and Zjj backgrounds. The dis-
tributions for mcoll

ττ and mcoll
bbττ in this channel are shown

in Figs. 9 and 10.

From the results from Tables IV and V, we find that
for the semileptonic channel a S/

√
S +B ∼ 5 for the

unboosted benchmark scenario can be obtained with ∼
50 fb−1, while for the boosted benchmark scenario the re-
quired integrated luminosity is slightly higher, ∼ 90 fb−1.
This channel therefore appears to be promising both for
the boosted and unboosted regimes.
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D. Hadronic (τhadτhad) final states.

The selection criteria for this channel are given by two
hadronically-decaying τ -leptons (Nτh = 2), exactly zero
leptons ( Nℓ = 0), and a similar set of kinematic require-
ments on the τ leptons and b-jets as in the other chan-
nels: pτT > 10 GeV, |yb| < 2.5, ∆Rbb > 0.5, pbT > 10. As
compared to the semileptonic and leptonic channels, the
backgrounds for the purely hadronic channel are smaller.
The cut flows for the unboosted and boosted scenarios
are given in Tables VI and VII, respectively.
In light of the results from Tables VI and VII, we ob-

tain S/
√
S +B ∼ 5 with ∼ 100 fb−1 in the hadronic

channel for both the unboosted and boosted benchmark
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FIG. 10: Normalized mcoll
bbττ distribution for signal and back-

ground (“τlepτhad”).

scenarios. While this channel appears to be promising
both for both scenarios, we caution that we have not
considered other pure QCD backgrounds, such as multi-
jet or bb̄jj production, where the jets fake a hadronically
decaying τ lepton. The reason is the difficulty of reli-
ably quantifying the jet fake rate for these events, which
while being under 5%, depends strongly on the character-
istics of the jet [40]. While we do not expect this class of
background contamination to be an impediment to signal
observation in the τhadτhad channel, we are less confident
in our quantitative statements here than for the other
final states.

V. DISCUSSION AND OUTLOOK

Uncovering the full structure of the SM scalar sector
and its possible extensions will be a central task for the
LHC in the coming years. The results will have impor-
tant implications not only for our understanding of the
mechanism of electroweak symmetry-breaking but also
for the origin of visible matter and the nature of dark
matter. Extensions of the SM scalar sector that address
one or both of these open questions may yield distinc-
tive signatures at the LHC associated with either mod-
ifications of the SM Higgs boson properties and/or the
existence of new states.
In this study, we have considered one class of Higgs

portal scalar sector extensions containing a singlet scalar
that can mix with the neutral component of the SU(2)L
doublet leading to two neutral states h1,2. This xSM
scenario can give rise to a strong first order electroweak
phase transition as needed for electroweak baryogenesis;
it maps direction onto the NMSSM in the decoupling
limit; and it serves as a simple paradigm for mixed state
signatures in Higgs portal scenarios that contain other
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scenarios. While this channel appears to be promising
both for both scenarios, we caution that we have not
considered other pure QCD backgrounds, such as multi-
jet or bb̄jj production, where the jets fake a hadronically
decaying τ lepton. The reason is the difficulty of reli-
ably quantifying the jet fake rate for these events, which
while being under 5%, depends strongly on the character-
istics of the jet [40]. While we do not expect this class of
background contamination to be an impediment to signal
observation in the τhadτhad channel, we are less confident
in our quantitative statements here than for the other
final states.

V. DISCUSSION AND OUTLOOK

Uncovering the full structure of the SM scalar sector
and its possible extensions will be a central task for the
LHC in the coming years. The results will have impor-
tant implications not only for our understanding of the
mechanism of electroweak symmetry-breaking but also
for the origin of visible matter and the nature of dark
matter. Extensions of the SM scalar sector that address
one or both of these open questions may yield distinc-
tive signatures at the LHC associated with either mod-
ifications of the SM Higgs boson properties and/or the
existence of new states.
In this study, we have considered one class of Higgs

portal scalar sector extensions containing a singlet scalar
that can mix with the neutral component of the SU(2)L
doublet leading to two neutral states h1,2. This xSM
scenario can give rise to a strong first order electroweak
phase transition as needed for electroweak baryogenesis;
it maps direction onto the NMSSM in the decoupling
limit; and it serves as a simple paradigm for mixed state
signatures in Higgs portal scenarios that contain other
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Complex Singlet: EWB & DM? 
Barger, Langacker, McCaskey, R-M Shaugnessy 

Spontaneously & softly broken global U(1) 

Controls ΩCDM , TC , & H-S mixing 

Gives  non-zero MA  
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Complex Singlet: EWB & DM? 
Barger, Langacker, McCaskey, R-M Shaugnessy 

Consequences: 

Three scalars:  h1 , h2 :  mixtures of h & S  

 A :  dark matter  

Phenomenology: •  Produce h1 , h2 w/ reduced σ	

•  Reduce BR (hj ! SM) 

•  Observation of BR (invis) 

•  Possible obs of σSI 
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Higgs Diphoton Decays  
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Real Triplet : DM Search 

Mass splitting due to EW symmetry breaking:  
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Generalizes to higher dim EW multiplets  
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Do good symmetries today 
need to be good symmetries 
in the early Universe ? No 

• O(n) x O(n): Weinberg (1974) 

•  SU(5), CP…: Dvali, Mohapatra, 
Senjanovic (‘79, 80’s, 90’s) 

•  Cline, Moore, Servant et al 
(1999) 

•  EM: Langacker & Pi (1980) 

•  SU(3)C : Patel, R-M, Wise: PRD 
88 (2013) 015003  
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Color Breaking & Restoration 

H. Patel, R-M, Wise 
1303.1140 (2013) Two illustrative cases: 

Extension EWPT DM DOF 
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Summary: Workshop Questions 

•  What happened ~ 10ps after the Big Bang? 

•  Single step (cross over) transition ? 

•  More d.o.f. with a richer pattern of EWSB?  

•  Single or multiple steps ?  
•  First or second order ? 
•  Coupled to origin of matter ?  

•  What are collider signatures that could provide clues?  

•  Modified Higgs properties (production, decays) 

•  New states 
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Baryon Number Preservation “Washout factor” 

ζ = F(ϕ)	


 ln S ~ A(TC) e ζ 

Two qtys of interest:	


•  TC  from Veff 

•  Esph from Γeff	




Daisy Resummation 
Convergence of PT: going beyond     expansion 

Patel & R-M 
‘11 Light stop scenario   

Increased ΔV !   
Lowered TC    

For given T, increasingly 
negative         increases 
difference between two minima   

Csikor ‘00 



DM Phenomenology 
Relic Density 

He, Li, Li, Tandean, Tsai 

Direct Detection 

He, Li, Li, Tandean, Tsai 

Barger, Langacker, McCaskey, 
R-M, Shaugnessy 

H 
S 

S 

f 

f 

- 

Higgs pole 



Real Triplet: EWPT 

Σ0 , Σ+, Σ-	
 ~ ( 1, 3, 0 ) 
H. Patel & R-M, 1212.5652/hep-
ph (2012)  

Two-step EWSB 

1.  Break SU(2)L x 
U(1)Y w/ Σ vev 

2.  Transition to Higgs 
phase w/ small or 
zero Σ vev 
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Real Triplet: EWPT 

Σ0 , Σ+, Σ-	
 ~ ( 1, 3, 0 ) 
H. Patel & R-M, 1212.5652/hep-
ph (2012)  

Two-step EWSB 

1.  Break SU(2)L x 
U(1)Y w/ Σ vev 

2.  Transition to Higgs 
phase w/ small or 
zero Σ vev 



Color Breaking & Restoration 

H. Patel, R-M, Wise 
1303.1140 (2013) Two illustrative cases: 

Extension EWPT DM DOF 

 Color triplet scalar 

 Color triplet +  
 singlet 

 ….. 

6 

7 

✔ 

✔ 

✖ 

✖ 

Spontaneous B violation “Light”: special 
flavor structure 



Color Breaking & Restoration 

H. Patel, R-M, Wise 
1303.1140 (2013) Two illustrative cases: 

Extension EWPT DM DOF 

 Color triplet scalar 

 Color triplet +  
 singlet 

 ….. 

6 

7 

✔ 

✔ 

✖ 

✖ 

Spontaneous B violation heavy: generic 
flavor structure 



SM + Color Triplet 

H. Patel, R-M, Wise 
1303.1140 (2013) 

Decays: C ! <C> = υC : B violation 



SM + Color Triplet 

Upper bound on mC: 

H. Patel, R-M, Wise 1303.1140 (2013) 



SM + Color Triplet + Singlet 

H. Patel, R-M, Wise 1303.1140 (2013) 

Heavier colored scalar 



Higgs Decays: All Channels  

)µSignal strength (
  -1  0 +1

Combined

 4l→ (*) ZZ→H 

γγ →H 

νlν l→ (*) WW→H 

ττ →H 

 bb→W,Z H 

-1Ldt = 4.6 - 4.8 fb∫ = 7 TeV:  s
-1Ldt = 13 - 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.8 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s

-1Ldt = 4.7 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s

 = 125.5 GeVHm

 0.20± = 1.30 µ

ATLAS Preliminary



Theoretical Issues 

Gauge-dependence in VEFF (ϕ , T ) 

VEFF (ϕ , T ) ! VEFF (ϕ , T ; ξ )  

Ongoing research: approaches for 
carrying out tractable, GI computations 

•  H. Patel & MRM, JHEP 1107 (2011) 029 

•  C. Wainwright, S. Profumo, MRM Phys Rev. D84 (2011) 023521 

•  H. Gonderinger, H. Lim,  & MRM, arXiv:1202.1316  



Origin of Gauge Dependence 
Effective Action  

Effective Potential 

Source term: 

Not GI 



Nielsen Identities 
Identity:  

Extremal configurations:  

Effective potential:  



Baryon Number Preservation “Washout 
factor” 

ζ = F(ϕ)	


 ln S ~ A(TC) e ζ 

Two qtys of interest:	


•  TC  from Veff 

•  Esph from Γeff	




Baryon Number Preservation: Pert Theory 

~ 

ζ = F(ϕ)	


Conventional 
treatments 

Gauge Dep 

H. Patel & MRM, JHEP 1107 (2011) 029 
“Baryon number preservation 
criterion” (BNPC) 



Baryon Number Preservation: Pert Theory 

~ 

ζ = F(ϕ)	


Conventional 
treatments 

Gauge Dep 

•  GI TC from hbar exp, 
Veff (φ+φ), or Hamiltonian 
formulation 

•  Use GI scale in Esph 
computation 

H. Patel & MRM, JHEP 1107 (2011) 029 
“Baryon number preservation 
criterion” (BNPC) 



Nielsen Identities: Application to TC 
Critical Temperature  

Veff (ϕmin , TC) = Veff (0 , TC)  

Apply consistently order-by-order in    

Implement minimization order-by-order (defines φn )  

Fukuda & Kugo ‘74: T=0 VEFF 
Laine ‘95 : 3D high-T Eff Theory 
Patel & R-M ‘11: Full high T Theory 



Obtaining a GI TC 
Track evolution of minima with T using    expansion 

Track evolution of different minima 
with T using   

 n=1 

 n=2  n=3 

Patel & R-M ‘11 

Illustrative results in SM:   

Full φ 


