LHC Searches for Neutrino Physics I

Un-ki Yang Seoul National University

ACFI Workshop, July 18-20, 2017, U of Mass. at Amherst

Neutrino Oscillation

- > Neutrino oscillations
- Small neutrino mass
- Lepton Number Violation (LNV)
 Heavy right-handed neutrino

Beyond the Standard Model

Neutrino: Physics Beyond SM

> A natural way to generate LNV and neutrino mass

Introduce an effective operators to the SM

$$\frac{Y_L}{\Lambda_L}LLH^2 + \frac{Y_B}{\Lambda_B^2}qqqL + \dots$$

Seesaw Mechanism (type I, II, III)

Type III: weak-triplet

Physics behind the Seesaw? Left-Right Symmetry model offers the Seesaw scale and heavy neutrinos

$$SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \quad M_{W_R} \gg M_{W_L}$$

Heavy Neutrinos at the LHC?

- LHC: direct production of heavy N
 - Same-sign two leptons + 2 jets
 - Type I: probe light-heavy mixing
 - LRSM: a resonance W_R production

Ονββ : does not fully probe the light-heavy mixing

Heavy N productions

> Type I:

- Resonant production via s-channel W* or W(real):
- Majorana: positive or negative lepton (50% same-sign)
- Cross section depends on $|V_{IN}|^2$ and m_N

> LRSM:

 TeV scale gauge bosons (2W_R and Z')

Signal: 2 leptons + 2 jets + no p_T

Heavy N productions

> Type 1:

- Resonant production via s-channel W* or W(real):
- Majorana: positive or negative lepton (50% same-sign)
- Cross section depends on $|V_{IN}|^2$ and m_N

> LRSM:

 TeV scale gauge bosons (2W_R and Z')

> Type III:

• Production of Σ^0 , $\Sigma^{+/-}$ via s-channel W*

Signal: 2 leptons + 2 jets + no p_T

We use the LHC

AT L AS

Before Searching for New Physics

Standard Model Production Cross Section Measurements Status: July 2017 △ O total (x2) σ [pb] **ATLAS** Preliminary 10^{11} Theory $\Box \Delta \mathbf{O}$ inelastic Run 1,2 $\sqrt{s} = 7, 8, 13$ TeV LHC pp $\sqrt{s} = 7$ TeV 10^{6} ~ Data 4.5 - 4.9 fb⁻¹ 0 dijets 10⁵ 0 LHC pp $\sqrt{s} = 8$ TeV $p_{\rm T} > 25 \, {\rm GeV}$ Data 20.3 fb⁻¹ 10^{4} -**□**-n_j≥0 LHC pp $\sqrt{s} = 13$ TeV 10^{3} $n_j \ge 1 |_{-\Box_-} n_j \ge 0$ $p_{\rm T} > 125 \,\,{\rm GeV}$ Data 0.08 - 36.1 fb⁻¹ Ó Δ total Ο. 0 ____ $p_{\rm T} > 100 { m GeV}$ WW $n_i > 2n$ t-chan <u>Δ</u> о. 10² $\mathbf{O} = \mathbf{D} \cdot \mathbf{n}_i \geq \mathbf{n}_i$ ww *ww* $n_j \ge 1$ total 0 Δ o ο $n_i \ge 2$ • ggF ŵΖ 10^{1} $n_i \ge 3$ H→WW n_j≥4 n_j≥5 Wγ 0 s-chan Δ ooo • $H \rightarrow \tau \tau$ 1 n_j≥6 **O** o >5-0 🗖 Zt Δ Δ $n_i \ge 7$ VBF $H \rightarrow WW$ Δ Δ 0 <mark>▲ -0</mark>- 10^{-1} O $n_i \ge 8$ 0 0 Δ D. 0 $H \rightarrow \gamma \gamma$ 10^{-2} Δ $H \rightarrow ZZ \rightarrow 4l$ Δ $n_j \ge 1$ Δ 0 Δ 10^{-3} $WW\gamma t\bar{t}W t\bar{t}Z t\bar{t}\gamma Wjj$ pp Ζϳϳwwzγγ₩γγ₩₩γΖγϳϳννϳϳ γ w Ζ tĒ t VV γγ н Jets EWK Excl. R=0.4 EWK EWKEWK fid. fid. fid. fid. tot. tot. fid. fid. fid. fid. tot. tot. fid. fid. fid. tot. fid. fid. fid. fid. fid.

> Impressive agreements with the SM

Search for Type I Seesaw

Final states: dileptons + 2 jets + no missing transverse energy (MET)
 Use only same sign leptons channels due to a large Z+jets bkgds

Challenges:

- Small signal cross sections but large bkgds from QCD jets
- Understanding of Z+jets bkgd, but with a lepton-charge flip

Event Selection

- > Common Selection
 - 2 same sign leptons (isolated)
 - Njets: at least two jets

Difference in selection

- > CMS
 - 20/15 GeV lepton pt cuts
 - Di-lepton triggers
 - Search for m(N)>40 GeV
 - Use m(ljj),m(lljj) for signals

> ATLAS

- 25/20 GeV lepton pt cuts
- Single lepton trigger
- Search for m(N)>100 GeV
- Use m(jj) for signals

> Remarks

- CMS: di-lepton trigger → lower pt cut → increase acceptance for low m_N, but more bkgds
- 3rd lepton veto:
- ATLAS: mass of two leading jets to be near m_w

> No excess, upper limits on $|V_{eN}|^2$ and $|V_{uN}|^2$

JHEP 04 (2016) 169

Results@CMS

Results on Mixing JHEP 04 (2016) 169 PLB 748, 144 (2015)

> LHC provides the best direct limits on $|V_{\mu N}|^2$ for m_N >90 GeV > The first direct limit on $|V_{eN} V_{\mu N}^*|$ for m_N >40 GeV

Search for Type I Seesaw at LHCb > For 0.25 < *m_N* < 5 GeV \succ Searches in $B^- \rightarrow \pi^+ \mu^- \mu^$ b • Normalize to $B^- \rightarrow J/\psi K^-$ W⁻ Candidates / (10 MeV) 60000 LHCb Norm (a) Channel 40000 π^{\dagger} 20000 5200 5300 5400 5100 5500 m(J/ψ K^{*}) [MeV] LHCb LHCb (b) (C)

Search for Type I Seesaw at LHCb No signal found

Seesaw Type I in tri-lepton channel

- In di-lepton+2 jets: difficulty to explore small m_N region due to jet pt cut, use tri-lepton channel
- > Tri-lepton channel: smaller BR, but no jet
 - Promising with high-statistics
 - CMS results using the full 13 TeV data will be available by this summer
 - Search is down down to m_N~ 1 GeV
 - Our sensitivity is reached to $|V_{IN}|^2 \sim 10^{-5}$ at very low mass

Extension to more channels

- > 3 new channels are being analyzed
 - t-channel, and pair production channels: dilepton + 4 jets
 - OS dilepton at high heavy N mass

$$\begin{array}{l} \Sigma^{\pm} \to W^{\pm}\nu, \ \Sigma^{\pm} \to Z\ell^{\pm}, \ \Sigma^{\pm} \to H\ell^{\pm} \\ \Sigma^{0} \to W^{\pm}\ell^{\mp}, \ \Sigma^{0} \to Z\nu, \ \Sigma^{\pm} \to H\nu \end{array}$$

$$u$$

$$W^{\pm} \qquad U$$

> Assume $m(\Sigma^{\pm}) = m(\Sigma^{0})$

$$V_{\mu N} = V_{e N} = V_{\tau N}$$

N _{leptons}	OSSF	Kinematic Variable	CR-veto
3	on-Z	$M_{ m T}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 100\mathrm{GeV}$
	above-Z	$L_{\rm T} + E_{\rm T}^{\rm miss}$	-
	below-Z	$L_{\rm T} + E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 50 {\rm GeV}$
	none	$L_{\rm T} + E_{\rm T}^{\rm miss}$	-
≥ 4	1 pair	$L_{\rm T} + E_{\rm T}^{\rm miss}$	-
	2 pairs	$L_{\rm T} + E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 50 {\rm GeV}$ if on-Z

Search for Seesaw Type III

Searches in the LRSM

Same Final state as type I but very different kinematics

CMS Baseline Selection:

• 2 Isolated* leptons (e/mu),

No charge requirement on leptons.

- Lepton 1/2 pt > 60/40 GeV,
- Njet ≥ 2 *,
- M(II) > 200 GeV,

(remove SM backgrounds),

M(IIjj) (i.e m(W_R)) > 600 GeV.

Challenges:

- For m_N<<m_{WR}, jets and lepton from N decays overlap
 → standard isolation will kill signals
- Same challenges as Type I in terms of bkgds

Results @ CMS

ee channel

EPJ C74 (2014) 3149

≻ A local significance, 2.8σ effect
≻ Consistency with the LRSM?

Limits in the LRSM

EPJ C74 (2014) 3149

> What about the results from ATLAS?

JHEP 1507 (2015) 162

Invariant mass (Iljj)

No excess in ee channel (SS)
 OS channel?

U.K.Yang<mark>,</mark> SNU

Limits in the LRSM

- Both use the shape of reconstructed W_R mass
- Exclusion in m_N and m_{WR} plane

CMS @ 8 TeV (OS+SS) Best sensitivity in 8 TeV Muon: exclude up to 3.0 TeV ATLAS @ 8 TeV (SS) Best sensitivity in SS channels Exclude up to 3.0 TeV

With the full 2016 data, limit is expect to up to 4.5 TeV

Search for Composite Model

- Composite model: an explanation to mass hierarchy issue in SM
- Can explain the 2.8σ excess in ee channel but no excess in μμ channel
 - A composite model of lepton and quarks with contact interaction, Λ
 - Excited μ state heavier than excited e state arXiv:1508.02277 [hep-ph]

Search for Composite Model

ee channel

p_T(e): 110, 35 GeV
 m(ee or μμ)>300 GeV,

μµ channel

p_T(μ)>53, 30 GeV >=1 fat jet with p_T(jet)> 190 GeV

- > Upper limits at 95% CL on the cross section *Br
- Exclude a Composite Majorana Neutrino of mass up to 4.35 (e), 4.50(µ) TeV

Searches in **TT** channel

- A 2.8σ excess in eejj channel but no excess
 in dimuon channel
 - Any broad excess in 3rd generation?
- > Searches in $\tau\tau$:
 - All hadronic channel, τ(h)τ(h)
 →Largest branching ratio, but a large QCD tau-fake
 - Lepton+hadronic channel: τ(e)τ(h), τ(μ)τ(h)
 → Relatively clean events, but a small branching ratio,
- → Wait for the Next Talk by Prof. Teruki Kamon

Neutrino oscillations attract many interesting searches at the LHC

- Nature of neutrino: Majorana or Dirac can be tested at high energy scale, LHC
- Tests of Seesaw models to explain small ν mass: heavy N
 - Different Seesaw types
 - Left-Right Symmetry model
 - Composite model
- > Searches by ATLAS, CMS, and LHCb show no excess seen in data: set upper limits are set on $|V_{IN}|^2$, exclude W_R mass up to 4.5 TeV
- Searches will be explored using the full 13 TeV data, and will be extended to additional channels (t-channel, pair N production, and long-lived N)