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Outline

®* Neutron star in Cassiopeia A supernova remnant
o from X-ray spectra:

> mass—radius M—-R
> temperature T

o cooling constraints on core superfluid and superconductor

® Fastest young pulsar PSR J0537-6910
o spin-down interrupted by spin-up glitches

> from only glitch data: mild constraints on crust superfluid and nuclear EOS
> with X-ray or age data: strong constraints on crust superfluid and mass M
o multi-messenger: EM spin-down suggests GWs from r-mode

®* Summary and a few other examples of physics from pulsar dynamics
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Cassiopeia A supernova remnant and neutron star
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~1680: supérnova (age ~ 340 yr; Fesen+2006 B8 kpc (Alarie+.2014)
* 1999: non-pulsed X-ray source discovered in-ClpM)d ight (Tananbaum)
* 2009: identified as neutron star, youngest knows (WH+Heinke)
* 2010: rapid cooling measured (Heinke+WH) b . i
* 2011: rapid coolihg due to superfluid+superconductor (Shternin,WH+,$

Mass upper limit.due to measured qux_
* EOS-dependent fast cooling (direct Urca)
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Cooling of Cassi_opeia'A neutron star
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* 18 T over 20 years: cooling rate 1.6 + 0.2%or 2.2 £ 0.3% |5er decade [Shternin WH+2:
: cooling rate 2.2 £ 0.2% or 2.8 + 0.3% per deca [\M&(ﬂ'ﬂ
: 1.5+ 0.3% or 2.3 £ 0.4% [Posselt+Paviov 2022]
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Milestones:
1680: supernova
1690: T__..<T

COFE crust

1760: T ~ constant
1900: T< T

ch,maXx

1930: rapid cooling

Cassiopeia A on superfluidity and superconductivity
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PSR J0537-6910

Spin period P =16 ms (v =62 Hz) only in X-ray
1-5 kyr supernova remnant N157B in Large Magellanic Cloud
= fastest-spinning young pulsar

also known as the Big Glitcher

o 45 glitches in 13 years with RXTE (1999-2011)
o 17 glitches in 5.2 years with NICER (2017-2022)
o glitch rate > 3/yr
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Braking index n = Vv /v?
o n =-1.234+0.009 for long-term spin-down (=23 yr)
o n — 7 or lower between glitches (~100 day)

|
—
[« -}

o~
n
m
1]
St
o
-
"
o
]
=
T
|
[}
o
o
Q
=
|
]
o,
=]
=
o,
m
ob
2

|
—
4]

|
[
S

|
—_
o

| I
o Wb

log spin period (=)

2018.8 2019 2019.2

58400 58500
Modified Julian Date (d)

2019.4

58600



2018.8 2019 2019.2

Superfluid model of pulsar glitches

G
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GLITCH

» Regular spin-down interrupted by spin-up glitches superfluid

* Angular momentum transfer from superfluid (Anderson+itoh 1975)
o superfluid rotation v, by vortex formation but

EEEEEEEEEN
pinned

o glitch event

» Av exceeds critical value

coupled
superfluid

time t



Neutron star mass from glitches

* Young pulsar spin-down interrupted by spin-up glitches
e Extra angular momentum from superfluid [Anderson+itoh 1975]

* Consider moment of inertia for glitches:
o how much does observed glitch require?

EOS models [Link+1999; Andersson,WH+2012; Chamel 2013;
Piekarewicz,Fattoyev,Horowitz 2014; Steiner,Gandolfi+2015; Pizzochero+2017]

_...Yela constraint .
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Neutron star mass from glitches

* Young pulsar spin-down interrupted by spin-up glitches
e Extra angular momentum from superfluid [Anderson+itoh 1975]

* Consider moment of inertia for glitches:
o how much does observed glitch require?
EOS models

.....Yela constraint .




Going beyond glitch data

* Young pulsar spin-down interrupted by spin-up glitches
e Extra angular momentum from superfluid [Anderson+itoh 1975]

* Consider moment of inertia for glitches:
o how much does observed glitch require?
EOS models
o how much superfluid is available?
superfluid models: T_(n,)
o how much does pulsar have now?
temperature from age/X-ray: T< T_(n,)




Going beyond glitch data

* Young pulsar spin-down interrupted by spin-up glitches
e Extra angular momentum from superfluid [Anderson+itoh 1975]

* Consider moment of inertia for glitches:
o how much does observed glitch require?
EOS models
o how much superfluid is available?
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Measuring mass and testing EOS/superfluid models

* Young pulsar spin-down interrupted by spin-up glitches
e Extra angular momentum from superfluid [Anderson+itoh 1975]

* Consider moment of inertia for glitches:
o how much does observed glitch require?
EOS models
o how much superfluid is available?
superfluid models: T_(n,)
o how much does pulsar have now?
temperature from age/X-ray: T< T_(n,)




Measuring mass and testing EOS/superfluid models

* Young pulsar spin-down interrupted by spin-up glitches
e Extra angular momentum from superfluid [Anderson+itoh 1975]

* Consider moment of inertia for glitches:
o how much does observed glitch require?
EOS models
o how much superfluid is available?
superfluid models: T_(n,)
o how much does pulsar have now?
temperature from age/X-ray: T< T_(n,)

"’T'*I_‘!'"'_T“T"_T_V_'F"_Tﬁ'rﬁ'ﬁ'—T_r_‘r_"r'_T—!'r'_Y ’1*‘!"":'_‘[_1%7
J0537-6910 j L4

Vela L]

B1048-58 te— 4 pulsar
: glitches

B1338-62
B1708-44
B1757-24
B1800-21
B1823-13

1E1841-045

0 0.5 1 1.5 2
neutron star mass (Mg )




Spin evolution of PSR J0537-6910

 Spin period P =16 ms (v =62 Hz) only in X-ray
o 45 glitches in 13 years with RXTE (1999-2011)
o 17 glitches in 5.2 years with NICER (2017-2022)

e Braking index n = vv/Vv?
o n =-1.234+0.009 for long-term spin-down (=23 yr)
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n — 7 or lower between glitches (~100 day)
n = 3: magnetic dipole
n=>5: GW mountain
n=7: GW r-mode
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Inter-glitch braking index
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 Spin period P =16 ms (v =62 Hz) only in X-ray
o 45 glitches in 13 years with RXTE (1999-2011)
o 17 glitches in 5.2 years with NICER (2017-2022)
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e Braking index n = vv/Vv?

S
o

o n =-1.234+0.009 for long-term spin-down (=23 yr)

interglitch braking index

o n — 7 or lower between glitches (~100 day)
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o n =3: magnetic dipole
o n=5: GW mountain
o n=7: GW r-mode
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Pulsar braking indices
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 Spin period P =16 ms (v =62 Hz) only in X-ray
o 45 glitches in 13 years with RXTE (1999-2011)
o 17 glitches in 5.2 years with NICER (2017-2022)
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e Braking index n = vv/Vv?
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o n =-1.234+0.009 for long-term spin-down (=23 yr)
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o n — 7 or lower between glitches (~100 day)
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o n =3: magnetic dipole
o n=5: GW mountain
o n=7: GW r-mode
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 Physics of mountain/r-mode: crust EOS and elasticity,
superfluid mutual friction or hyperons, etc




https://player.vimeo.com/video/20006885




PSR JO537-6910 as a GW source
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 Spin period P =16 ms (v =62 Hz) only in X-ray
o 45 glitches in 13 years with RXTE (1999-2011)
o 17 glitches in 5.2 years with NICER (2017-2022)
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e Braking index n = vv/Vv?

log spin period derivative (s s~1)

o n =-1.234+0.009 for long-term spin-down (=23 yr)
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o n — 7 or lower between glitches (~100 day)
o n =3: magnetic dipole

Sensitivity estimate

on= 5: GW mountain EZT;\IIfspin—downHmit
on=7: GW r'mOde . T spin-down limits
Vela pulssri 4\’/3 2v 03 data
 Physics of mountain/r-mode: crust EOS and elasticity, il l
superfluid mutual friction or hyperons, etc
e LIGO/Virgo/KAGRA sensitive at Vew > 20 Hz : ABIZ6I0
o ~ 500 pulsars with v ;. > 10 Hz '

o Most sensitive GW searches use contemporaneous
EM observations (track pulsar spin)




-
™

outer crust% lnner crust \\ core -{10°

.4
\

S
@

- Summary -
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Comparison of cooling'anﬂ*dynamics reveals dense
matter physics béyond just mass—radius
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e Cassiopeia A cooling at = 2% per decade ' ...l
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