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Outline

• Neutron star in Cassiopeia A supernova remnant
o from X-ray spectra:
 mass–radius M–R
 temperature T

o cooling constraints on core superfluid and superconductor

• Fastest young pulsar PSR J0537–6910
o spin-down interrupted by spin-up glitches
 from only glitch data: mild constraints on crust superfluid and nuclear EOS
 with X-ray or age data: strong constraints on crust superfluid and mass M

o multi-messenger: EM spin-down suggests GWs from r-mode

• Summary and a few other examples of physics from pulsar dynamics



Cassiopeia A supernova remnant and neutron star
NASA/Chandra

Chandra graded
• 2000 Jan
• 2002 Feb
• 2004 Feb
• 2007 Dec
• 2009 Nov
• 2010 Nov

• ≈1680: supernova (age ≈ 340 yr; Fesen+2006) at distance ≈ 3.3 kpc (Alarie+2014)
• 1999: non-pulsed X-ray source discovered in Chandra first light (Tananbaum)
• 2009: identified as neutron star, youngest known (WH+Heinke)
• 2010: rapid cooling measured (Heinke+WH)
• 2011: rapid cooling due to superfluid+superconductor (Shternin,WH+; Page+)
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Cassiopeia A supernova remnant and neutron star

Fit X-ray spectra with model spectrum:
• interstellar absorption NH
• neutron star atmosphere d, M, R, T

Mass upper limit due to measured flux
• EOS-dependent fast cooling (direct Urca)

• ≈1680: supernova (age ≈ 340 yr; Fesen+2006) at distance ≈ 3.3 kpc (Alarie+2014)
• 1999: non-pulsed X-ray source discovered in Chandra first light (Tananbaum)
• 2009: identified as neutron star, youngest known (WH+Heinke)
• 2010: rapid cooling measured (Heinke+WH)
• 2011: rapid cooling due to superfluid+superconductor (Shternin,WH+; Page+)
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Shternin,WH+2022



Cooling of Cassiopeia A neutron star

• 18 T over 20 years: cooling rate 1.6 ± 0.2% or 2.2 ± 0.3% per decade [Shternin,WH+2022]
• 14 T over 19 years: cooling rate 2.2 ± 0.2% or 2.8 ± 0.3% per decade [WH+2021]
• 4 T over 14 years: 1.5 ± 0.3% or 2.3 ± 0.4% [Posselt+Pavlov 2022]

Fit X-ray spectra with model spectrum:
• interstellar absorption NH = variable
• neutron star atmosphere d, M, R, T

NASA/Chandra
Chandra graded

• 2000 Jan
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• 2004 Feb
• 2007 Dec
• 2009 Nov
• 2010 Nov
• 2012 May
• 2013 May
• 2014 May
• 2015 Apr
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Milestones:
1680: supernova
1690: Tcore < Tcrust
1760: T ∼ constant
1900: T < Tcn,max
1930: rapid cooling

Cassiopeia A on superfluidity and superconductivity
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• Spin period P = 16 ms (ν = 62 Hz) only in X-ray
• 1–5 kyr supernova remnant N157B in Large Magellanic Cloud

⇒ fastest-spinning young pulsar

• also known as the Big Glitcher
o 45 glitches in 13 years with RXTE (1999–2011)
o 17 glitches in 5.2 years with NICER (2017–2022)
o glitch rate > 3/yr

• Braking index n = ν̈ν ⁄ ν̇2

o n = –1.234±0.009 for long-term spin-down (≈23 yr)
o n → 7 or lower between glitches (∼100 day)

PSR J0537–6910



• Spin rate ν decrease (spin-down) due to EM radiation loss
• Regular spin-down interrupted by spin-up glitches

• Angular momentum transfer from superfluid (Anderson+Itoh 1975)

o superfluid rotation νn by vortex formation but pinned so NO spin-down
o glitch event
∆ν exceeds critical value
 vortices unpin – coupling of superfluid with rest of star
 angular momentum transfer

Superfluid model of pulsar glitches

νn

ν
∆ν ∝ νn− ν

Graber+2017



Neutron star mass from glitches
• Young pulsar spin-down interrupted by spin-up glitches
• Extra angular momentum from superfluid [Anderson+Itoh 1975] 

• Consider moment of inertia for glitches:
o how much does observed glitch require?

EOS models [Link+1999; Andersson,WH+2012; Chamel 2013; 
Piekarewicz,Fattoyev,Horowitz 2014; Steiner,Gandolfi+2015; Pizzochero+2017]

Iglitch ∼ Icrust ≡ Isf ⇒ confirmation of crust superfluid
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Measuring mass and testing EOS/superfluid models
• Young pulsar spin-down interrupted by spin-up glitches
• Extra angular momentum from superfluid [Anderson+Itoh 1975] 

• Consider moment of inertia for glitches:
o how much does observed glitch require?

EOS models
o how much superfluid is available?

superfluid models: Tc (nb)
o how much does pulsar have now?

temperature from age/X-ray: T < Tc (nb)

J0537–6910 is ≈ 1.8MSun neutron star and 
glitch size and frequency due to available 
superfluid moment of inertia at age 2 kyr



Measuring mass and testing EOS/superfluid models
• Young pulsar spin-down interrupted by spin-up glitches
• Extra angular momentum from superfluid [Anderson+Itoh 1975] 
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Spin evolution of PSR J0537–6910

RXTE data

n = –1.234

n ≈ 7

• Spin period P = 16 ms (ν = 62 Hz) only in X-ray
o 45 glitches in 13 years with RXTE (1999–2011)
o 17 glitches in 5.2 years with NICER (2017–2022)

• Braking index n = ν̈ν ⁄ ν̇2

o n = –1.234±0.009 for long-term spin-down (≈23 yr)
o n → 7 or lower between glitches (∼100 day)
o n = 3: magnetic dipole
o n = 5: GW mountain
o n = 7: GW r-mode

Antonopoulou+2018



Antonopoulou+2018

RXTE data

n = –1.234

n ≈ 7

Inter-glitch braking index
• Spin period P = 16 ms (ν = 62 Hz) only in X-ray
o 45 glitches in 13 years with RXTE (1999–2011)
o 17 glitches in 5.2 years with NICER (2017–2022)

• Braking index n = ν̈ν ⁄ ν̇2

o n = –1.234±0.009 for long-term spin-down (≈23 yr)
o n → 7 or lower between glitches (∼100 day)
o n = 3: magnetic dipole
o n = 5: GW mountain
o n = 7: GW r-mode



• Spin period P = 16 ms (ν = 62 Hz) only in X-ray
o 45 glitches in 13 years with RXTE (1999–2011)
o 17 glitches in 5.2 years with NICER (2017–2022)

• Braking index n = ν̈ν ⁄ ν̇2

o n = –1.234±0.009 for long-term spin-down (≈23 yr)
o n → 7 or lower between glitches (∼100 day)
o n = 3: magnetic dipole
o n = 5: GW mountain
o n = 7: GW r-mode

• Physics of mountain/r-mode: crust EOS and elasticity, 
superfluid mutual friction or hyperons, etc

Pulsar braking indices

see talks by Horowitz


https://player.vimeo.com/video/20006885





Abbott,WH+2022

O3 data4ν/3 2νν

• Spin period P = 16 ms (ν = 62 Hz) only in X-ray
o 45 glitches in 13 years with RXTE (1999–2011)
o 17 glitches in 5.2 years with NICER (2017–2022)

• Braking index n = ν̈ν ⁄ ν̇2

o n = –1.234±0.009 for long-term spin-down (≈23 yr)
o n → 7 or lower between glitches (∼100 day)
o n = 3: magnetic dipole
o n = 5: GW mountain
o n = 7: GW r-mode

• Physics of mountain/r-mode: crust EOS and elasticity, 
superfluid mutual friction or hyperons, etc

• LIGO/Virgo/KAGRA sensitive at νgw > 20 Hz
o ∼ 500 pulsars with νspin > 10 Hz
o Most sensitive GW searches use contemporaneous 

EM observations (track pulsar spin)

PSR J0537–6910 as a GW source

see talks by Hinderer 
and Millhouse

see talks by Horowitz



Comparison of cooling and dynamics reveals dense 
matter physics beyond just mass–radius
• Cassiopeia A cooling at ≈ 2% per decade
• Glitches in young pulsars imply ∼ 1.4MSun

• Spin evolution of PSR J0537–6910 due to GWs
• Unique insights into superfluids and superconductors

• Dense matter impact on other dynamics
o cooling in low-mass X-ray binaries                             

[eg Brown,Horowitz,Reddy+2018]

o millisecond magnetars in gamma-ray bursts and 
superluminous supernovae

o transient f-modes in pulsars

• Astrophysics need: Consistent EOS and sf/sc models

Summary
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