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Outline

•Very short review of Schiff theorem!

•Multipole expansion as an expansion in powers of RN/RA!

•2-photon exchange appears to give larger atomic EDM than 
Schiff moment by 2 orders of magnitude - first, naive derivation!

•Full derivation - the answer is essentially the same!

•Relativistic enhancement is larger for Schiff moment (in 
progress)



Schiff theorem
Derivation relies on 3 assumptions:!

! 1. Constituent particles are point-like!

! ! !

! 2. Non-relativistic dynamics!

! ! !

! 3. Only electrostatic interactions!

! !



Schiff theorem
Derivation relies on 3 assumptions: Loopholes!

! 1. Constituent particles are point-like!

! ! Nuclear size - Schiff moment!

! 2. Non-relativistic dynamics!

! ! Relativistic electrons - paramagnetic systems!

! 3. Only electrostatic interactions!

! ! Electromagnetic currents - topic of this talk



Natural size of interactions
Schiff theorem is the cancellation between these diagrams!

!

!

C1 indicating that the photon couples to the nuclear EDM!

!

!
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Natural size of interactions
Schiff theorem is the cancellation between these diagrams!

!

!

C1 indicating that the photon couples to the nuclear EDM!

Electron-nucleus interaction here is!

!
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Natural size of interactions
This comes from multipole expansion of Coulomb potential!

!

Electron is usually outside the nucleus (x > y)!

!

!

Green terms survive in limit of point-like nucleus!

l-th multipole interaction goes as
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Natural size of interactions
This comes from multipole expansion of Coulomb potential!

!

Electron is usually outside the nucleus (x > y)!

!

!

Penetration terms are the effects of nonzero nuclear size!

They are suppressed by nuclear vs atomic volume
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Natural size of interactions
Schiff moment contribution comes from penetration terms!

!

!

Schiff moment electron-nucleus potential looks like!

!

     - nuclear Schiff moment operator with lengths divided out!

Volume factor -                 times smaller than EDM potential
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Breit interaction
1-γ exchange at LO in non-relativistic expansion!

!

Current-current interaction have their own multipoles!

Transverse magnetic - magnetic dipole, quadrupole, etc.!

                                                                            note the powers of y!

Transverse electric -!
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Yl(ŷ)⌦~jN (~y)

i

lm

EN
lm = i

p
(l + 1)(2l + 1)

Z
d3y

✓
y

RN

◆l�1 h
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Multipole interactions
Dividing out length scales as we did for charge multipoles,!

we find the following natural sizes for multipole interactions!

!

!

!

Can we find an interaction that gives a larger EDM than Schiff?!

We need a PVTV effect, and as little suppression as possible
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Symmetries
!

!

MQMs violate P and T, but!

!

!

we have J=0 electronic ground state, so we can’t use MQM!

Schiff really is the leading contribution for 1-γ exchange

PCTC PV TC PCTV PV TV
C even � � odd

M odd � � even

E � odd even �

?

?



Breit iterated
!

!

We can go to 2-γ exchange!

!

                                                                           + …!

Combining E1 and E2 multipoles can give PVTV effect!

They can also be recoupled to total J=1 (E1-M1 also possible)

PCTC PV TC PCTV PV TV
C even � � odd

M odd � � even

E � odd even �

E1
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Siegert’s theorem
Transverse electric multipoles can be written using a gradient!

!

Partial integration makes              appear,!

which is equal to                 by current conservation!

Final result is!

where          is the nuclear Hamiltonian.!

This shows that these multipoles have no diagonal M.E.’s
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Transverse electric multipoles

E1

E2

V e↵
E1�E2 ⇠ VE1

1

E0 � En
VE2

Transverse electric multipoles have no static nuclear moments!

!

                                                                            !

!

In order to compare the effects of E1-E2 combination with Schiff,!

we should compare using a nuclear energy denominator!

nuclear excitation



Naive comparison
So the E1-E2 effective interaction has size!

!

!

Compare this with Schiff moment interaction!

!

!

E1-E2 is enhanced compared to Schiff moment!
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Problems with iterating Breit
1. Crossed diagram is ignored!

!

!

If electrons are relativistic, this is not small!

2. Derivation of Breit interaction takes the step!

!

Not correct for inelastic scattering, which we have
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Time-ordered perturbation theory
“Old-fashioned” perturbation theory, solves BOTH problems!

1. Start with a normal Feynman amplitude!

2. TOPT rewrites it as sum over all time-orderings of vertices!

3. Propagators         turn into energy denominators!

! Denominators show which time-orderings are important!

! Also allows direct connection to non-relativistic calculation!

(derivation in Sterman’s QFT textbook)!

i
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Time-ordered perturbation theory
Trivial example: scalar propagator!

!

!

!

!
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Time-ordered perturbation theory
Trivial example: scalar propagator!

!

!

!

!

Those are energy denominators!

corresponding to the 2 possible time orderings of vertices
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2-photon exchange in TOPT
There are 4! orderings each for box & crossed diagrams!

Some orderings are highly suppressed!

!

                          by particle mass                    by nuclear excitation!

We want!

1. massive particles traveling forward in time!

2. only 1 intermediate state with nuclear excitations



2-photon exchange in TOPT
Breit interaction comes from!

!

Iterating Breit corresponds to assuming these 4 are leading!

!

!

Only 1 of these is leading (1 nuclear excited state)!

Adjust answer by factor of 1/4



2-photon exchange in TOPT
There are actually 6 leading diagrams - top middle is in Breit!

!

!

!

!

Left and right diagrams sum to middle ones (accident?)!

Crossed diagrams double the result - get back factor of 2x2 = 4



What did we learn?
This shows that the naive estimate earlier is essentially correct,!

despite the incorrect use of the Breit interaction!

!

But we do want to make a better comparison to Schiff result!

1. Use Siegert’s theorem and commutator trick for nuclear part!

2. Relativistic enhancement near the origin!



Full expression
The E1-E2 interaction is!

!

!

This is to be compared with the Schiff moment interaction!

!

Nuclear part and electronic part can be manipulated further!
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Back to Siegert’s theorem
Use Siegert’s theorem to rewrite transverse multipoles!

as commutator of charge multipoles and nuclear Hamiltonian!

!

!

!

Closure sum eliminates nuclear intermediate states!

!
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Commutator
C1 and C2 can be written using nucleon coordinates;!

assuming 2-body interactions are momentum-independent,!

!

!

This interaction couples to the nuclear EDM,!

not the Schiff moment!

!
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EDM & Schiff comparison
!

!

!

!

!

Nuclear EDM not as well calculated as Schiff moment!

Note the units: d ~ 108 η e fm, S ~ 108 η e fm3

simultaneously taken into account. Numerical calculations 
show that corrections on the order of 50% can appear when 
account is taken of the nonlocal character of the nucleon- 
nucleon T- and P-odd interaction (Ar- l/m,). 

According to (46) and (49), in the shell model the Schiff 
moment is Q = 3 for nuclei with an external neutron (q = 0). 
Polarization of the core leads to q -0.1 for a neutron, so that 
in this case Q differs from zero. 

The numerical values of d, Q, and M for some nuclei are 
listed in Table I. 

b) Nonspherical nuclei 
Nonspherical nuclei are known to have close levels of 

opposite parity. This enhances the effects connected with the 
usual weak interaction. The possibility of enhancing the 
EDM of nonspherical nuclei when the ground state is close 
to a level having opposite polarity but the same angular mo- 
mentum was first noted in Ref. 12 and was discussed quite 
recently in Refs. 8 and 13. Unfortunately, if only heavy sta- 
ble nuclei are considered, the choice is quite small. We have 
in fact 16'Dy, which has a (5/2-) level at a distance 25.7 keV 
from the ground state 15/2+), as well as 237Np (ground state 
15/2+), excited 15/2-), AE = 59.5 keV). There are also sev- 
eral nuclei with AE-  100 keV (153E~,  155Gd, 163DY, 233U). At 
first glance one might expect a noticeable enhancement of 
the effects compared with spherical nuclei, for which A E -  8 
MeV. It turns out, however, that the enhancement hardly 
exceeds 10 in these nuclei. 

The calculation for deformed nuclei is carried out in a 
"frozen" (rotating with the nucleus) reference frame. The 
conversion to the laboratory frame is via the formulas 

where T = d, , Q, , M, is the operator of interest to us, (0 ) is 
the ground state, and IL? ) is the state of opposite parity. We 
calculated the matrix elements in (54) in the Nilson single- 
particle oscillator model. Unfortunately, the matrix ele- 
ments d, , Q, , and HTp between the nearest neighbors are 
small and cannot be reliably calculated. For example, the 
calculated matrix element (5/2+Id, (5/2-) turns out to be 
one-fifth the experimental value determined from the life- 
time of the 15/2 - ) level of 161Dy. The matrix element 
(L? lHTp 13 ) furthermore depends strongly on the choice of 
the parameters of the distribution of the density p in the 
Hamiltonian (19). It appears that only the matrix element 
( 3  IM, IL? ), which is not small, can be reliably calculated. 
There are good reasons for the suppression of the matrix 
elements d, , Q, , and HTp. First, the angular momenta I of 
the dominant components in the Nilson functions of the 
anomalously close states 10 ) and 13 ) differ by two, and are 
therefore not mixed by the above operators. Second, there is 
a special reason, connected with its spatial structure, why 
the operator HTp is suppressed. The density and potential 
have like profiles also in nonspherical nuclei. Therefore if the 
spin-orbit interaction is neglected the approximate formula 
(43) is valid: 

H T P x E o V  U=iE [UP, HO]-, 
where H, =p2/2m + U is the single-particle Hamiltonian. 
Therefore 

Similar factors explain the anomalous suppression of 
(0 Id, 13 ) in calculations by the Nilson oscillator model. 
Indeed. if 

(53) mwL2 (xZ+yZ)  mwz2zz 
We have taken it into account that in the ground state of the U =  C)  +T, - L, 
rotational band we have J = 0, where 0 is the projection of L 

the angular momentum on the axis of the nucleus. The quan- We have 
tities d, , Q, , and M, are the components of the correspond- e dU ie 
ing tensors in the frozen system, the z axis is directed along a,= er, E - -. = - 

mu:  dz mwZ2 [pz,HoI-.  (56) 
the nuclear axis. The contribution due to the close level is 
equal to Consequently (0 Id, (3 ) is also proportional to the small 

TABLE I. Electrodipole, Schiff, and magnetic-quadrupole moments of nuclei. The parameter 71 
is the coefficient in the T- and P-odd interaction Hamiltonian (19). The value given in the table for 
the neutron was obtained from 16b) by dividing by 71. 120a). 

spherical 
nuclei 
deformed 

light 

878 Sov. Phys. JETP 60 (5), November 1984 Sushkov eta/ 878 Sushkov, Flambaum, Khriplovich 1984



Atomic enhancement
Electron wavefunctions near the origin are important!

Solving Dirac equation with Coulomb potential of nucleus,!

!

with!

!

Note the Z1/2 enhancement in normalization, and !

characteristic length becoming RA/Z
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Atomic enhancement
For Schiff moment,!

!

!

This is a negative power - blows up at the origin!

Integral must be cut off at x = RN. Result is ~105 enhancement!

!
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Atomic enhancement
For E1-E2,!

!

!

Same negative power, same cutoff at x = RN. !

This time, there’s only 1 power of Z!

!
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Final comparison (preliminary)
Before incorporating atomic enhancement, I had 2 overall factors!

                                 for Schiff moment,!

!

with E1-E2 being larger by ratio of ~135.!

Atomic enhancement is larger for Schiff by ~Z.!

!

E1-E2 appears to give comparable atomic EDM as Schiff moment

4⇡↵

10RA

✓
RN

RA

◆3

(4⇡↵)2
p
3

15
p
20⇡

�ENR3
N

R3
A

for E1-E2,



Conclusions
•RN/RA counting is a way to estimate the sizes of EDM 

contributions!

•2-γ exchange between electrons and the nucleus allows 
transverse electric multipoles to generate atomic EDM, with 
less RN/RA suppression than the Schiff moment term!

•E1-E2 combination results in a coupling to the nuclear EDM, 
rather than the nuclear Schiff moment!

•Despite the smaller relativistic enhancement, the new 
contribution appears comparable to Schiff. Nuclear EDM 
calculations are needed



Backup slides



Approximate calculation (old)



Giant dipole approximation
!

This expression resembles!

!

which is known to be dominated by the giant dipole resonance.!

We make the ansatz that our expression is also GDR dominated!

!
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Final expression
With these approximations, our final expression is!

!

!

We have a numerical factor, an electronic multipole, and !

a nuclear multipole, which is charge dipole and quadrupole!

recoupled to J=1.!
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Toy model calculation
We compare this nuclear moment with Schiff in a toy model!

“Shell model”: nucleons of 15N (J=1/2) in HO potential!

In order to get PVTV nuclear moments, we insert!

!

as a perturbation to the HO potential, so that!

!

is the final result.
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Toy model calculation
Schiff moment has overall 1/10 in the definition !

!

so compare with 10 times S.!

!

!

Nuclear moments are the same order,!

as expected from the RN/RA argument.
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Final comparison
Comparing !

!

with!

!

the ratio of the numerical factors is!

!

taking reasonable values of 
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Multipoles



Multipoles
Full expansion of Breit interaction!

!

!

!

!

There are 2 kinds of transverse electric terms,!

but one is larger by RN/RA counting
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Multipoles
List of electronic multipole operators!

!

!

!

!

E’ is the relevant transverse electric operator!

C

A
lm ⌘

Z
d

3
x

✓
RA

x

◆l+1

⇢e(~x)Ylm(x̂)

M

A
lm ⌘

Z
d

3
x

✓
RA

x

◆l+1

~

Y

l
lm(x̂) ·~je(~x)

E

A
lm ⌘R

l+2
A

Z
d

3
x


~r⇥

✓
1

x

l+1
~

Y

l
lm(x̂)

◆�
·~je(~x)

E

0A
lm ⌘R

l
A

Z
d

3
x


~r⇥

✓
1

2(2l � 1)xl�1
~

Y

l
lm(x̂)

◆�
·~je(~x)



Multipoles
List of nuclear multipole operators!

!

!

!

!

E is the relevant transverse electric operator!
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Time reversal



Time reversal
Multipoles are either parity even or odd!

even: total charge (monopole), magnetic dipole, etc.!

odd: EDM, magnetic quadrupole, etc.!

!

Properties of operators under time reversal is more subtle,!

especially when we consider products of operators.!



Time reversal
The starting point is the relation!

Notice that the bra and ket get reversed.!

Consider EDM in T conservation limit:!

!

!

Wigner-Eckart relates these by a minus sign -> no EDM!

Another way to say this:        does not behave like spin under T
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Time reversal
For J=1 operators, TV moments come from operators !

that behave in the same way under T and complex conjugation!

!

!

!

!
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Time reversal
Multipoles are either parity even or odd!

even: total charge (monopole), magnetic dipole, etc.!

odd: EDM, magnetic quadrupole, etc.!

!

Properties of operators under time reversal is more subtle,!

especially when we consider products of operators.!



Time-ordered perturbation theory



Time-ordered perturbation theory
Steps to the derivation:!

1. Write the energy-conserving delta functions at each vertex as !

!

If an internal line, k, starts at vertex with time ti!

and ends at vertex with time tj, then there is a factor!

!
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Time-ordered perturbation theory
2. This factor,                   , lets us do the integration over !

by closing the contour at infinity.!

Contour integral picks up a pole from the propagator of this line,!

and the pole corresponds to the on-shell energy of the particle.!

Result:!

Any function of k0 in the numerator is evaluated!

with on-shell energy, since that gives the residue
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Time-ordered perturbation theory
3. We still have time integrals that we introduced at the start.!

The integrand is now                        with on-shell energies.!

But whether the particle is ‘in’ or ‘out’ depends on!

the time ordering of the vertices.!

Split up the integral into regions, which correspond to orderings.!

Then we can perform the integrals fully.!

Result: an energy denominator for each intermediate state
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Time-ordered perturbation theory
Why is it sufficient to consider !

!

!

!

!

!

Justification comes from TOPT



Time-ordered perturbation theory
These have a pure atomic excitation as the last intermediate state!

!

!

!

!

!

Compare with…

1 Summary

This document develops and applies the formalism of time-ordered perturbation theory to the problem of 2-photon
exchange contribution to atomic EDMs. The flow of the argument is as follows:

1. The full amplitude for 2-photon exchange can be written as a sum of diagrams with all possible time-orderings.
Each diagram has a set of energy denominators that come from each intermediate state.

2. Because the typical momenta of atomic electrons are much larger than the typical atomic excitation energies,
it is su�cient to consider time orderings shown in Fig. 1. These diagrams are characterized by the presence of
an intermediate state with only an atomic excitation.

Figure 1: List of time orderings that give the leading result for EDMs. There is a time-reversed diagram corresponding
to each one.

3. The relevant orderings can be described as ”2-photon exchange first, then external photon coupling” or vice
versa. This allows us to evaluate the subdiagrams in Fig. 2. The amplitude can be Fourier transformed to give
an electron-nucleus potential, given in eqs. (49, 50). The potential can be used in non-relativistic perturbation
theory as h0|V ext

e

KV
2�

|0i.

4. The potential from 2-photon exchange can be compared to the Schi↵ operator, first with (R
N

/R
A

) power
counting, then using the toy model calculation. With power counting, the size of the E1-E2 interaction is
found to be ⇠ 400 times larger than the Schi↵ moment. Toy model confirms that the 2 nuclear moments that
are relevant for this comparison, which we expected to be of the same order, are indeed of the same order. So
the factor of 400 enhancement is intact.

2 Time-ordered perturbation theory

In Sec. 9.6 of Sterman [1], there is a derivation of time-ordered (old-fashioned) perturbation theory from the usual
Feynman rules. I will generalize the derivation slightly, by including a numerator that depends on the particle
momenta. The transition amplitude for a graph with N internal lines and V vertices can be written in the form
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Time-ordered perturbation theory
…for example!

!

!

This diagram has massive particles always traveling forward,!

and only 1 nuclear excitation.!

But atomic excited state always appears with a photon,!

which makes the denominator not so small

Figure 6: All possible orderings for 2-photon exchange graphs with external photon on the final electron line, in
which massive particles are always traveling forward in time, with only one nuclear energy denominator. There is a
time-reversed diagram corresponding to each one.

Figure 7: Similar set of graphs to the previous figure, with external photon attached to the internal electron line.
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