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Outline

e Very short review of Schiff theorem
e Multipole expansion as an expansion in powers of Rn/Ra

e 2-photon exchange appears to give larger atomic EDM than
Schiff moment by 2 orders of magnitude - first, naive derivation

e Full derivation - the answer is essentially the same

e Relativistic enhancement is larger for Schiff moment (in
progress)



Schiff theorem

Derivation relies on 3 assumptions:

1. Constituent particles are point-like

2. Non-relativistic dynamics

3. Only electrostatic interactions



Schiff theorem

Derivation relies on 3 assumptions: Loopholes
1. Constituent particles are point-like
Nuclear size - Schiff moment
2. Non-relativistic dynamics
Relativistic electrons - paramagnetic systems
3. Only electrostatic interactions

Electromagnetic currents - topic of this talk



Natural size of interactions

Schiff theorem is the cancellation between these diagrams

C: indicating that the photon couples to the nuclear EDM



Natural size of interactions

Schiff theorem is the cancellation between these diagrams
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C: indicating that the photon couples to the nuclear EDM

Electron-nucleus interaction here is
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Natural size of interactions

This comes from multipole expansion of Coulomb potential
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Green terms survive in limit of point-like nucleus
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Natural size of interactions

This comes from multipole expansion of Coulomb potential

VCoul — // dSdeSlee(x)pN(y)
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Electron is usually outside the nucleus (x > y)
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Natural size of interactions

Schiff moment contribution comes from penetration terms
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Schiff moment electron-nucleus potential looks like
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Breit interaction

1-y exchange at LO in non-relativistic expansion
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Current-current interaction have their own multipoles

Transverse magnetic - magnetic dipole, quadrupole, etc.
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Multipole interactions

Dividing out length scales as we did for charge multipoles,

we find the following natural sizes for multipole interactions
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Can we find an interaction that gives a larger EDM than Schift?

We need a PVTV effect, and as little suppression as possible



Symmetries

POTC | PVTC | PCTV |(PVTV
C even — — odd
M odd — — _even
E — odd even —
MQMs violate P and T, but
AN e

we have J=0 electronic ground state, so we can’t use MQM

Schiff really is the leading contribution for 1-y exchange



Breit iterated
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We can go to 2-y exchange

Combining E1 and E2 multipo]

They can also be recoupled to total J=1 (E1-M1 also possible)
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Siegert’s theorem

Transverse electric multipoles can be written using a gradient

= 1RN\| —— 't /Clgyv

Partial integration makes V - jy appear,
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which is equal to dpn/dt by current conservation
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where Hpy is the nuclear Hamiltonian.

This shows that these multipoles have no diagonal M.E.’s



Transverse electric multipoles

Transverse electric multipoles have no static nuclear moments

A 2,
W nuclear excitation

In order to compare the effects of E1-E2 combination with Schiff,

we should compare using a nuclear energy denominator
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Nailve comparison

So the E1-E2 effective interaction has size
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Compare this with Schiff moment interaction
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E1-E2 is enhanced compared to Schiff moment!




Problems with iterating Breit

1. Crossed diagram is ignored

If electrons are relativistic, this is not small

2. Derivation of Breit interaction takes the step
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Not correct for inelastic scattering, which we have



Time-ordered perturbation theory

“Old-fashioned” perturbation theory, solves BOTH problems

1. Start with a normal Feynman amplitude

2. TOPT rewrites it as sum over all time-orderings of vertices

3. Propagators % turn into energy denominators
Denominators show which time-orderings are important

Also allows direct connection to non-relativistic calculation

(derivation in Sterman’s QFT textbook)



Time-ordered perturbation theory

Trivial example: scalar propagator
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Time-ordered perturbation theory

Trivial example: scalar propagator

i Ph
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Those are energy denominators

corresponding to the 2 possible time orderings of vertices



2-photon exchange in TOPT

There are 4! orderings each for box & crossed diagrams

Some orderings are highly suppressed

We want

by particle mass

Y
i

by nuclear excitation

1. massive particles traveling forward in time

2. only 1 intermediate state with nuclear excitations



2-photon exchange in TOPT

El

[terating Breit corresponds to assuming these 4 are leading
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Breit interaction comes from
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Only 1 of these is leading (1 nuclear excited state)

Adjust answer by factor of 1/4



2-photon exchange in TOPT

There are actually 6 leading diagrams - top middle is in Breit
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Left and right diagrams sum to middle ones (accident?)

Crossed diagrams double the result - get back factor of 2x2 = 4



What did we learn?

This shows that the naive estimate earlier is essentially correct,

despite the incorrect use of the Breit interaction

But we do want to make a better comparison to Schiff result
1. Use Siegert’s theorem and commutator trick for nuclear part

2. Relativistic enhancement near the origin



The E1-E2 interaction is

Full expression

N((47TOJ)2 Ry [ Ba o \
"‘meizﬁ( ‘) i
O 55 {OIEN m) ® (lES 0 + [BY o BT}

This is to be compared with the Schiff moment interaction
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and electronic part can be manipulated further



Back to Siegert’s theorem

Use Siegert’s theorem to rewrite transverse multipoles

as commutator of charge multipoles and nuclear Hamiltonian
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Closure sum eliminates nuclear intermediate states



Commutator

C1 and C2 can be written using nucleon coordinates;

assuming 2-body interactions are momentum-independent,
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This interaction couples to the nuclear EDM,

not the Schiff moment



EDM & Schiff comparison

TABLE I. Electrodipole, Schiff, and magnetic-quadrupole moments of nuclei. The parameter 7
is the coefficient in the 7- and P-odd interaction Hamiltonian (19). The value given in the table for
the neutron was obtained from (6b) by dividing by 7, (20a).

d Mre 7
Nucleus Neutron 7 Le-cm]-10% %[e-fmﬂ-w" o ['r_n;) fm] 10
- 127] p, ds;, 1,2 —1,4 -1,4
8 131X es, n, da/z 0,5 ~0,2 —0,5
s '33Css55 P &1/ -0,9 +3,0 1,7
5 13513785, n, ds,, 0,5 ~0,2 -0,5
o w78, n. fr, 038 ~0.2 23
] 291Hgsgq n, D3y, -0,8 ~0,2 0,8
O 203,205 4, D, S, 1,2 -2 -
209Blisgs p, hoy -1,0 3,8 2,3
spherical 61 Dyee n,5/,+ 7 ~1 27
nuclei 23TNpss p,%/ 2% 1 4 20
2H, — 2 0 1
deformed SHe, _ _1 ~04 -
light - 9-10-3 - -

Sushkov, Flambaum, Khriplovich 1984

Nuclear EDM not as well calculated as Schiff moment

Note the units: d ~ 108 e fm, S ~ 108 ) e fm?



Atomic enhancement

Electron wavefunctions near the origin are important

Solving Dirac equation with Coulomb potential of nucleus,
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Atomic enhancement

For Schiff moment,
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This is a negative power - blows up at the origin

Integral must be cut off at x = Rn. Result is ~10° enhancement
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Atomic enhancement

For BI-E2 (515 \5 3 |P1/2)

/ T8 (@) () — g1 (2)9),(2)) {20511 j2.1)

“N/dwx%_S(Ql/Q,oWQl/Q,ﬁ = Nz fme

Same negative power, same cutoff at x = Rn.
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Final comparison (preliminary)

Before incorporating atomic enhancement, I had 2 overall factors

3
dro (RN ) for Schiff moment,
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with E1-E2 being larger by ratio of ~135.

Atomic enhancement is larger for Schiff by ~Z.

E1-E2 appears to give comparable atomic EDM as Schiff moment



Conclusions

*Rn/Ra counting is a way to estimate the sizes of EDM
contributions

¢2-v exchange between electrons and the nucleus allows
transverse electric multipoles to generate atomic EDM, with
less Rn/Ra suppression than the Schiff moment term

eE1-E2 combination results in a coupling to the nuclear EDM,
rather than the nuclear Schiff moment

e Despite the smaller relativistic enhancement, the new
contribution appears comparable to Schiff. Nuclear EDM
calculations are needed



Backup slides



Approximate calculation (old)



Giant dipole approximation

D (Ey — Eo){0|C1|n)(n|C2|0)
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This expression resembles
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which is known to be dominated by the giant dipole resonance.

We make the ansatz that our expression is also GDR dominated
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Final expression

With these approximations, our final expression is
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We have a numerical factor, an electronic multipole, and
a , which is charge dipole and quadrupole

recoupled to J=1.



Toy model calculation

We compare this nuclear moment with Schiff in a toy model
“Shell model”: nucleons of °N (J=1/2) in HO potential

In order to get PVTV nuclear moments, we insert

0 * VPeore (?7)
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as a perturbation to the HO potential, so that
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is the final result.



Toy model calculation

Schiff moment has overall 1/10 in the definition
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so compare with 10 times S.

Operators | (0]|O]|0) (normalized)
10 -5 -10.9557
{cY,Co'}, 11.931

Nuclear moments are the same order,

as expected from the Rx/Ra argument.



Final comparison
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Multipoles



Multipoles

Full expansion of Breit interaction
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There are 2 kinds of transverse electric terms,

but one is larger by Rn/Ra counting



Multipoles

List of electronic multipole operators
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E’ is the relevant transverse electric operator
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Multipoles

List of nuclear multipole operators
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E is the relevant transverse electric operator



Time reversal



Time reversal

Multipoles are either parity even or odd
even: total charge (monopole), magnetic dipole, etc.

odd: EDM, magnetic quadrupole, etc.

Properties of operators under time reversal is more subtle,

especially when we consider products of operators.



Time reversal
The starting point is the relation ~ (T%|T®) = (¢[¢)

Notice that the bra and ket get reversed.

Consider EDM in T conservation limit:
- AR ..
(GiICwhlid) = [TColig)] (T54))
= [CNi¥ |7, —)]" (%], —5))
=(j, —j|C1old, —7)

Wigner-Eckart relates these by a minus sign -> no EDM

Another way to say this: Ci' does not behave like spin under T



Time reversal

For J=1 operators, TV moments come from operators

that behave in the same way under T and complex conjugation
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Time reversal

Multipoles are either parity even or odd
even: total charge (monopole), magnetic dipole, etc.

odd: EDM, magnetic quadrupole, etc.

Properties of operators under time reversal is more subtle,

especially when we consider products of operators.



Time-ordered perturbation theory



Time-ordered perturbation theory

Steps to the derivation:

1. Write the energy-conserving delta functions at each vertex as

00
/.0 0
5(p?n o pgut) — / dt ez(pin Pout)?
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If an internal line, k, starts at vertex with time t;

and ends at vertex with time t;, then there is a factor
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Time-ordered perturbation theory

2. This factor, ePk (tj—ti) , lets us do the integration over pg

by closing the contour at infinity.

Contour integral picks up a pole from the propagator of this line,
and the pole corresponds to the on-shell energy of the particle.

4 3
Result: / d’p T = / d3p
(27T) (27T) ZwE

Any function of k¥ in the numerator is evaluated

with on-shell energy, since that gives the residue



Time-ordered perturbation theory

3. We still have time integrals that we introduced at the start.

The integrand is now et (Fin—=Fout )t

with on-shell energies.

But whether the particle is ‘in” or ‘out” depends on

the time ordering of the vertices.

Split up the integral into regions, which correspond to orderings.

Then we can perform the integrals fully.

Result: an energy denominator for each intermediate state



Time-ordered perturbation theory

Why is it sufficient to consider
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Justification comes from TOPT




Time-ordered perturbation theory

These have a pure atomic excitation as the last intermediate state
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Compare with...



Time-ordered perturbation theory

...for example

This diagram has massive particles always traveling forward,

and only 1 nuclear excitation.
But atomic excited state always appears with a photon,

which makes the denominator not so small



