Using the Q_{weak} Apparatus to Probe the γZ -Box

James Dowd The College of William & Mary (for the Q_{weak} Collaboration)

Sept. 28-30, 2017

This work was supported in part by the National Science Foundation under Grant No. PHY-1405857.

Overview

- Qweak experiment
 - Used elastic asymmetry of $\vec{e}p$ scattering to measure the weak charge of the proton, Q_w^p
- For ~2 weeks, Qweak received beam at higher energy (3.35 GeV)
 - Another experiment hall had priority
- Opportunity to use the apparatus to make an ancillary measurement
 - Relevant to the main Qweak experiment
 - Stands on its own merit
- Goal: Constrain and validate theoretical predictions of $\Re e \Box_{\gamma Z}^V$ correction to Q_W^p
 - Using inelastic asymmetry of $\vec{e}p$ scattering at 3.35 GeV

James Dowd

Motivation

- Qweak measured Q_W^p
 - Must include Electroweak Radiative Corrections
- Gorchtein and Horowitz* showed $\Box_{\nu Z}^V$
 - Larger than previously expected
 - Significant hadronic physics uncertainties
 - **Energy dependence**
- Examined further by several groups
 - Gorchtein, Horowits, and Ramsey-Musolf
 - Sibirtsev, Blunden, Melnitchouk, and Thomas
 - **Carlson and Rislow**
 - Hall, Blunden, Melnitchouk, Thomas, and Young
- Could impact Qweak precision

* Gorchtein and Horowitz. Phys. Rev. Lett. 102, 091806 (2009)

0.014

0.012

0.010 800.0 ^Z 800.0 ^Z 900.0 ^S

> 0.004 0.002 0.000^{1}

WILLIAM & MARY 4

The Qweak Apparatus

The Electroweak Box Sept. 28-30, 2017

WILLIAM & MARY 5

The Qweak Apparatus

The Electroweak Box Sept. 28-30, 2017

Kinematics

Where does the Qweak Inelastic measurement sit?

 $W = 2.23 \ GeV$ $Q^2 = 0.075 \ GeV^2$

- 3 Kinematic Regions contributing to $\Box_{\gamma Z}^V$ integral
- Region I
 - Christy-Bosted parameterization
 - Uses $\gamma \gamma \rightarrow \gamma Z$ rotated structure functions
- Region II
 - VMD + Regge Parameterization
- Region III
 - DIS region

* Hall, Blunden, Melnitchouk, Thomas, and Young. Phys.Lett. B753 (2016) 221-226

WILLIAM & MARY 6

The Electroweak Box Sept. 28-30, 2017

Outline of Analysis

Remove Pion Background

- Asymmetry
- Signal fraction

Extract Longitudinal *e*⁻ Asymmetry

- Pure transverse runs
- Beam polarization angle

Remove other backgrounds

PV Inelastic $\vec{e}p$

Asymmetry

WILLIAM & MARY 7

- Asymmetries & signal fractions
- Elastic radiative tail
- Al target windows
- Concrete bunker 'punch-through'
- Others

Characterization of Pion Background

- Large difference between E & E'
 - Leads to large pion background
- 4" lead wall placed in front of lowest
 Čerenkov Detector
 - Ranges out most electrons
 - Leaves mostly pions

- $\begin{bmatrix} 2 & 3 \\ 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & \otimes & 5 \end{bmatrix}$ $\begin{bmatrix} 8 & 7 & 6 \end{bmatrix}$
- Sacrifice statistics to make a 'Pion detector'

The Electroweak Box Sept. 28-30, 2017

James Dowd

Characterization of Pion Background

The Electroweak Box Sept. 28-30, 2017

James Dowd

Pion Background Fraction

- Use ADC pulse height spectrum to distinguish particle type
 - Electrons deposit ~5 times more light
- Allow normalization of the simulations to float independently
 - Separate GEANT4 simulations: $e^- \& \pi^-$
 - Fit to ADC spectrum with a Minuit minimization

Integrate each scaled simulation to get total yields

- 'Yield' beam current normalized rate, weighted by pulse height
- $Y_{\pi} \& Y_{e} \rightarrow f_{\pi}^{i}$, background fraction

Will not work for main detector 7

- 4" Pb wall installed in front
- Made into an effective pion detector
- Low electron count
- Impossible to fit
- Pion yield fractions
 - $f_{\pi}^{i\neq7} = 0.097 \pm 0.033$
 - $f_{\pi}^{i=7} = 0.81 \pm 0.06$

WILLIAM & MARY 10

The Electroweak Box Sept. 28-30, 2017

Asymmetry Extraction

$$A_{meas}^{ij} = A_{calc}^{ij} = (1 - f_{\pi}^{i}) (A_{e}^{L} \cos \theta_{Pol}^{j} + A_{e}^{T} \sin \theta_{Pol}^{j} \sin \phi^{i})$$

'Many-Worlds' Monte
Carlo Minimization
$$\chi^{2} = \sum (A_{meas}^{ij} - A_{calc}^{ij})^{2}$$

- The 16 measured asymmetries are parameterized
 - Longitudinal vs Transverse
 - Electron vs Pion
- Coefficients are in terms of input parameters
 - 2 pion yield fractions (w/ & w/o wall)
 - 2 polarization angles
- 4 extracted raw asymmetry components

♦	A_e^L	-3.1 ± 0.6 ppm
	A_e^T	6.9 ± 1.5 ppm
	A_{π}^{L}	8.6 ± 2.4 ppm
	A_{π}^{T}	-19.7 ± 4.7 ppm

Preliminary, not for quotation!

WILLIAM & MARY 11

The Electroweak Box Sept. 28-30, 2017

Asymmetry Extraction

$$A_{meas}^{ij} = A_{calc}^{ij} = (1 - f_{\pi}^{i}) (A_{e}^{L} \cos \theta_{Pol}^{j} + A_{e}^{T} \sin \theta_{Pol}^{j} \sin \phi^{i})$$

'Many-Worlds' Monte
Carlo Minimization
$$+ f_{\pi}^{i} (A_{\pi}^{L} \cos \theta_{Pol}^{j} + A_{\pi}^{T} \sin \theta_{Pol}^{j} \sin \phi^{i})$$

$$\chi^{2} = \sum (A_{meas}^{ij} - A_{calc}^{ij})^{2}$$

- The 16 measured asymmetries are parameterized
 - Longitudinal vs Transverse
 - **Electron vs Pion**

Car

- Coefficients are in terms of input parameters
 - 2 pion yield fractions (w/ & w/o wall)
 - 2 polarization angles

A_e^L	$-3.1\pm0.6~\mathrm{ppm}$	
A_e^T	6.9 ± 1.5 ppm	
A_{π}^{L}	8.6 ± 2.4 ppm	FREE
A_{π}^{T}	-19.7 ± 4.7 ppm	
	$ \begin{array}{c} A_e^L \\ A_e^T \\ A_{\pi}^L \\ A_{\pi}^T \end{array} $	A_e^L $-3.1 \pm 0.6 \text{ ppm}$ A_e^T $6.9 \pm 1.5 \text{ ppm}$ A_{π}^L $8.6 \pm 2.4 \text{ ppm}$ A_{π}^T $-19.7 \pm 4.7 \text{ ppm}$

WILLIAM & MARY 12

The Electroweak Box Sept. 28-30, 2017

Preliminary Result

* Hall, Blunden, Melnitchouk, Thomas, and Young. Phys. Rev., D88(1): 013011, 2013.

The Electroweak Box Sept. 28-30, 2017

James Dowd

Measurement Uncertainty

- Limited by statistical uncertainty
 - Only ~2 weeks of data
- Pion background fraction
 - Largest systematic uncertainty
 - Demonstrates that we can separate $e^- \& \pi^-$ when not in counting mode
- Systematic uncertainty dominated by
 - Pion background fraction
 - Asymmetry Separation

Future Experiment Wishlist

- Data that spans kinematic integral
 - E, W, and Q^2
 - Ex: Tune MOLLER apparatus to access various inelastic kinematics
- Dedicated pion detector
 - Cleaner pion separation
- More Statistics!

James Dowd

Summary

• Preliminary analysis complete

- Final analysis will appear in my PhD thesis (Possibly a separate publication)
- Preliminary result in good agreement with predictions

 $A_{phys} = -8.8 \pm 0.9(stat) \pm 1.3(syst)$ ppm

- This measurement lies in a kinematic region with almost no experimental world data
 - Future experiments: MOLLER, P2, SoLID
- Valuable measurement that validates theory
 - Constrains γZ structure functions
 - Constrains $\Re e \square_{\gamma Z}^V$ correction to Q_W^p
- Several other 'free' measurements
 - Need more analysis before getting to interesting physics

A_e^T	6.9 ± 1.5 ppm
A_{π}^{L}	8.6 ± 2.4 ppm
A_{π}^{T}	-19.7 ± 4.7 ppm

James Dowd

The Qweak Collaboration

101 collaborators26 grad students11 post docs27 institutions

Institutions:

- ¹ University of Zagreb
- ² College of William and Mary
- ³ A. I. Alikhanyan National Science Laboratory
- ⁴ Massachusetts Institute of Technology
- ⁵ Thomas Jefferson National Accelerator
- Facility
- ⁶ Ohio University
- ⁷ Christopher Newport University
- ⁸ University of Manitoba,
- ⁹ University of Virginia ¹⁰ TRIUMF
- ¹¹ Hampton University
- ¹² Mississippi State University
- ¹³ Virginia Polytechnic Institute & State Univ
- ¹⁴ Southern University at New Orleans
- ¹⁵ Idaho State University
- ¹⁶ Louisiana Tech University
- ¹⁷ University of Connecticut
- ¹⁸ University of Northern British Columbia
- ¹⁹ University of Winnipeg
- ²⁰ George Washington University
- ²¹ University of New Hampshire
- ²² Hendrix College, Conway
- ²³ University of Adelaide
- ²⁴Syracuse University
- ²⁵ Duquesne University

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ K. Bartlett,² J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵ F. Benmokhtar,^{7,25} J. Birchall,⁸ R.D. Carlini,^{5,2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,² J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁸ J.M. Finn,², T. Forest,^{15,16}, C. Gal,⁹ D. Gaskell,⁵ M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16,2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷ M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,², A.R. Lee,¹³ J.H. Lee,^{6,2}, L. Lee,¹⁰ S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,¹³, J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹ H. Nuhait,¹⁶ Nuruzzaman,^{11,12} W.T.H van Oers,^{10,8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵ J.F. Rajotte,⁴ W.D. Ramsay,^{10,8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵ P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19,8} B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ P. Zang,²⁴ and S. Zhamkochyan.³

Spokespersons Project Manager Grad Students

Background Corrections

$$A_{phys} = \frac{\frac{A_e^L}{P} - \sum f_k A_k^{bkgd}}{1 - \sum f_k}$$

Elastic radiative tail

- By far the largest background
- Rigorous Mo & Tsai* formulation of radiative cross section corrections

• Al target windows

- Combination of data and MC simulation
- Total correction size is small

• Concrete Bunker 'Punch through'

- Some high energy (> 3 GeV) electrons penetrate the concrete bunker.
- Small background corrections not yet included
 - Beamline background
 - Detector non-linearity
 - PMT double difference

A_{El}^{bkgd}	-0.58 ± 0.02 ppm
f _{El}	0.607 ± 0.023
A_{Al}^{bkgd}	-2.4 <u>+</u> 4.8 ppm
f _{Al}	0.0064 ± 0.0064
A_{PT}^{bkgd}	-3.96 ± 0.04 ppm
f _{PT}	0.037 ± 0.004

* Rev. Mod. Phys., 41:205-235, 1969

The Electroweak Box Sept. 28-30, 2017

James Dowd