

Probing New Physics of Cubic Higgs Interaction

Jing Ren University of Toronto

ACFI Workhop September 19, 2015

Based on H.J. He (Tsinghua), JR, W.Yao (LBNL), 1506.03302

Outline

Motivation

New physics v.s. Higgs self-interactions

- Strong first order electroweak phase transition (SFOEWPT)
- Higgs non-minimal gravitational interaction

Probing new cubic Higgs interactions on hadron collider

- Effective theory with dim=6 operators
- Higgs pair production on hadron collider

Higgs Discovery

We now have the I25GeV SM-like Higgs with LHC Run I

But no convincing evidence from new physics search

Higgs Discovery

We now have the 125GeV SM-like Higgs with LHC Run I

- But no convincing evidence from new physics search
- Higgs as the window for new physics

Less Known Higgs Potential

SM Higgs potential $V(H) = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$

- EWSB: μ^2 , λ fixed by v = 246GeV, $M_h = 125$ GeV
- EWPT: far from first order, (~cross-over)
- Self-couplings: $\lambda_3 = 3M_h^2/\nu$, $\lambda_4 = 3M_h^2/\nu^2$
- Higgs self-couplings measurement
 - Dihiggs production to probe λ_3
 - ► ~ 50% accuracy on HL-LHC [Snomass Higgs Working Group Report, arXiv:1310.8361]
 - ~ 27% accuracy on ILC @500GeV [arXiv:1506.05992] [See Jianming Qian's talk]
 - ► ~ 35% accuracy on CEPC5 (careful!) [McCullough, arXiv:1312.3322]
 - TriHiggs production to probe λ_4 : much more challenging [Plehn, Rauch, PRD 72 (2005) 053008]
- Higgs self-interactions as the window to new physics

New Physics v.s. Higgs Self-Interactions

Strong first order EWPT (SFOEWPT)

Correlation between SFOEWPT and cubic Higgs coupling

Strong first order EWPT (SFOEWPT)

Correlation between SFOEWPT and cubic Higgs coupling

Higgs non-minimal gravitational interaction

Joint effective action for SM and GR: $S = S_{GR} + S_{SM} + S_{NMC}$

Higgs non-minimal gravitational interaction

Joint effective action for SM and GR: $S = S_{GR} + S_{SM} + \frac{\xi_h R H^{\dagger} H}{\xi_h R H^{\dagger} H}$

$$L \xrightarrow{\text{Einstein frame}} \frac{3\xi_h^2}{M_{\rm Pl}^2 \Omega^4} (\partial_\mu H^\dagger H)^2 + \frac{1}{\Omega^2} (D^\mu H)^\dagger (D_\mu H) - \frac{1}{\Omega^4} V(H) \qquad \Omega^2 = 1 + \frac{2\xi_h H^\dagger H}{M_{Pl}^2} (D^\mu H)^\dagger (D_\mu H) - \frac{1}{\Omega^4} V(H) \qquad \Omega^2 = 1 + \frac{2\xi_h H^\dagger H}{M_{Pl}^2} (D^\mu H)^\dagger (D_\mu H) - \frac{1}{\Omega^4} V(H) \qquad \Omega^2 = 1 + \frac{2\xi_h H^\dagger H}{M_{Pl}^2} (D^\mu H)^\dagger (D_\mu H) - \frac{1}{\Omega^4} V(H) \qquad \Omega^2 = 1 + \frac{2\xi_h H^\dagger H}{M_{Pl}^2} (D^\mu H)^\dagger (D_\mu H) - \frac{1}{\Omega^4} V(H) \qquad \Omega^2 = 1 + \frac{2\xi_h H^\dagger H}{M_{Pl}^2} (D^\mu H)^\dagger (D_\mu H) + \frac{1}{\Omega^4} V(H) = 0$$

$$\Delta L_6 = \frac{3\lambda}{\Lambda_{\xi_1}^2} (\partial_\mu H^\dagger H)^2 + \frac{4}{\Lambda_{\xi_2}^2} \Big[\lambda \big(H^\dagger H \big)^3 + \cdots \Big], \ \Lambda_{\xi_1} = \frac{M_{Pl}}{\xi_h} \ll \Lambda_{\xi_2} = \frac{M_{Pl}}{\sqrt{\xi_h}}, \ \text{if } \xi_h \gg 1$$

Higgs non-minimal gravitational interaction

Joint effective action for SM and GR: $S = S_{GR} + S_{SM} + \frac{\xi_h R H^{\dagger} H}{\xi_h R H^{\dagger} H}$

$$L \xrightarrow{\text{Einstein frame}} \frac{3\xi_h^2}{M_{\rm Pl}^2 \Omega^4} (\partial_\mu H^\dagger H)^2 + \frac{1}{\Omega^2} (D^\mu H)^\dagger (D_\mu H) - \frac{1}{\Omega^4} V(H) \qquad \Omega^2 = 1 + \frac{2\xi_h H^\dagger H}{M_{Pl}^2}$$

$$\Delta L_6 = \frac{3\lambda}{\Lambda_{\xi_1}^2} (\partial_\mu H^\dagger H)^2 + \frac{4}{\Lambda_{\xi_2}^2} \Big[\lambda \big(H^\dagger H \big)^3 + \cdots \Big], \ \Lambda_{\xi_1} = \frac{M_{Pl}}{\xi_h} \ll \Lambda_{\xi_2} = \frac{M_{Pl}}{\sqrt{\xi_h}}, \ \text{if } \xi_h \gg 1$$

- Higgs rescaling induced by graviton-Higgs kinetic mixing $\frac{6v^2}{\Lambda_{\xi_1}^2} ≤ O(0.1) \Rightarrow |\xi_h| ≤ 10^{15} \text{ (LHC bound)} \quad \Lambda_{UV} ≤ \Lambda_{\xi_1} \text{ (Unitarity bound)}$
- New derivative Higgs self-couplings: $h\partial_{\mu}h\partial^{\mu}h$
- Higgs inflation: extreme flat potential at large field

Slow roll: $n_s \simeq 1 - 2/N, r_s \simeq 12/N^2$

If $\lambda \sim \mathcal{O}(0.1), |\xi_h| \sim 10^4, \Lambda_{\text{INF}} \sim M_{\text{Pl}}/\sqrt{\xi_h} \sim 10^{16} \text{GeV}$

[Bezrukov, Shaposhnikov, Phys.Lett. B 659 (2008) 703]

Probing New Cubic Higgs Interactions

• Dim=6 operators for Higgs self-interactions: $\mathcal{L}_{eff} = \sum \frac{f_n}{\Lambda^2} \mathcal{O}_n$

[Corbett, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Phys. Rev. D 87, 015022 (2013)]

$$\begin{split} \mathcal{O}_{\Phi,1} &= (D^{\mu}H)^{\dagger}HH^{\dagger}(D_{\mu}H) \,, \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2}\partial^{\mu}(H^{\dagger}H)\partial_{\mu}(H^{\dagger}H) \,, \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3}(H^{\dagger}H)^{3}, \qquad \qquad \mathcal{O}_{\Phi,4} &= (D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H) \,. \end{split}$$

• Dim=6 operators for Higgs self-interactions: $\mathcal{L}_{eff} = \sum \frac{f_n}{\Lambda^2} \mathcal{O}_n$

[Corbett, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Phys. Rev. D 87, 015022 (2013)]

$$\begin{split} \mathcal{O}_{\Phi,1} &= (D^{\mu}H)^{\dagger}HH^{\dagger}(D_{\mu}H) \,, \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2}\partial^{\mu}(H^{\dagger}H)\partial_{\mu}(H^{\dagger}H) \,, \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3}(H^{\dagger}H)^{3} \,, \qquad \textcircled{O}_{\Phi,4} &= (D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H) \,. \end{split}$$

Violate custodial symmetry, negligible for collider study

• Dim=6 operators for Higgs self-interactions: $\mathcal{L}_{eff} = \sum \frac{f_n}{\Lambda^2} \mathcal{O}_n$

[Corbett, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Phys. Rev. D 87, 015022 (2013)]

$$\begin{split} \mathcal{O}_{\Phi,1} &= (D^{\mu}H)^{\dagger}HH^{\dagger}(D_{\mu}H), \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2}\partial^{\mu}(H^{\dagger}H)\partial_{\mu}(H^{\dagger}H), \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3}(H^{\dagger}H)^{3}, \qquad \uparrow \qquad \qquad \mathcal{O}_{\Phi,4} &= (D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H). \\ \text{Violate custodial symmetry,} & & \uparrow \\ \text{negligible for collider study} & & \text{Eliminated by EOM} \end{split}$$

• Dim=6 operators for Higgs self-interactions: $\mathcal{L}_{eff} = \sum \frac{f_n}{\Lambda^2} \mathcal{O}_n$

[Corbett, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Phys. Rev. D 87, 015022 (2013)]

$$\begin{split} \mathcal{O}_{\Phi,1} &= (D^{\mu}H)^{\dagger}HH^{\dagger}(D_{\mu}H), \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2}\partial^{\mu}(H^{\dagger}H)\partial_{\mu}(H^{\dagger}H), \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3}(H^{\dagger}H)^{3}, \qquad \uparrow \qquad \qquad \mathcal{O}_{\Phi,4} &= (D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H). \\ \text{Violate custodial symmetry,} & & \uparrow \\ \text{negligible for collider study} & & \text{Eliminated by EOM} \end{split}$$

- The 2d Parameter Space: (x_2, x_3) $x_j \equiv \frac{f_{\Phi,j}v^2}{\Lambda^2} \equiv \operatorname{sign}(f_{\Phi,j}) \frac{v^2}{\tilde{\Lambda}_i^2} \leftarrow \operatorname{Effective cutoff}$
 - Higgs-SM couplings rescaled by $\zeta = (1 + x_2)^{-1/2}$
 - Cubic Higgs coupling $\lambda_3 = -i\frac{\zeta}{v} \left[3(1+\hat{r})M_h^2 \hat{x}(p_1^2 + p_2^2 + p_3^2) \right]$

$$\widehat{r} \equiv -x_3 \, \zeta^2 \frac{2v^2}{3M_h^2} \,, \qquad \widehat{x} \equiv x_2 \, \zeta^2$$

• Dim=6 operators for Higgs self-interactions: $\mathcal{L}_{eff} = \sum \frac{f_n}{\Lambda^2} \mathcal{O}_n$

[Corbett, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Phys. Rev. D 87, 015022 (2013)]

- The 2d Parameter Space: (x_2, x_3) $x_j \equiv \frac{f_{\Phi,j}v^2}{\Lambda^2} \equiv \operatorname{sign}(f_{\Phi,j}) \frac{v^2}{\tilde{\Lambda}_j^2} \leftarrow \operatorname{Effective cutoff}$
 - Higgs-SM couplings rescaled by $\zeta = (1 + x_2)^{-1/2}$
 - Cubic Higgs coupling $\lambda_3 = -i\frac{\zeta}{v} \left[3(1+\hat{r})M_h^2 \hat{x}(p_1^2 + p_2^2 + p_3^2) \right]$

$$\widehat{r} \equiv -x_3 \zeta^2 \frac{2v^2}{3M_h^2}, \qquad \widehat{x} \equiv x_2 \zeta^2$$

Treat \hat{r}, \hat{x} as two free inputs

- Accidental cancelation with other operators in single higgs measurement
- Nonlinear realization: "quadratic" & "cubic" correlation broken down

Dihiggs Production on Hadron Collider

Gluon fusion production A. Djouadi, Phys. Rept. 457 (2008) I [arXiv:hep-ph/0503172] h 10⁴ g ∞ g $\infty \infty$ HH production at pp colliders at NLO in QCD h QM_H=125 GeV, MSTW2008 NLO pdf (68%cl) 10³ h $g \mod$ $q \mod$ pp-→HH (EFT loop-improved) 10² Vector boson fusion production 10¹ σ_{NLO}[fb] PP→HHjj (VBF) PP→WHH stiH 10⁰ DD. MadGraph5_aMC@NLO PP→ZHH pp→tjHH 10-1 Top-pair associated production 10⁻² g 00000 Frederix, et al, Phys. Lett. B 732 (2014) 142] 10⁻³ 33 25 75 100 $g_{\infty\infty}$ 8 1314 50 √s[TeV]

	\sqrt{s} (TeV)	$pp \rightarrow HH$	pp ightarrow HHjj	$pp ightarrow ar{t}tHH$	$pp \rightarrow WHH$	$pp \rightarrow ZHH$
NLO cross section in unit of fb	8	8.73	0.479	0.177	0.214	0.130
	14	34.8	2.017	0.981	0.565	0.356
	100	1186	79.6	87.8	7.90	5.18

Dihiggs Production on Hadron Collider

• $gg \rightarrow hh$

 $\frac{\sigma}{\sigma_{\rm sm}}\Big|_{100\,{\rm TeV}} = (1-\hat{x})^2 \left(1 - 0.72\,\hat{r} + 3.6\,\hat{x} + 0.22\,\hat{r}^2 + 4.3\,\hat{x}^2 - 1.7\,\hat{r}\,\hat{x}\right)$

▶ $pp \rightarrow hhjj$

 $\frac{\sigma}{\sigma_{\rm sm}}\Big|_{100\,{\rm TeV}} = (1-\hat{x})^2 \left(1 - 0.47\,\hat{r} + 4.6\,\hat{x} + 0.42\,\hat{r}^2 + 38\,\hat{x}^2 - 4.1\,\hat{r}\,\hat{x}\right)$

• $pp \rightarrow t\bar{t}hh$

$$\frac{\sigma}{\sigma_{\rm sm}}\Big|_{100\,{\rm TeV}} = (1-\hat{x})^2 \left(1+0.23\,\hat{r}-0.80\,\hat{x}+0.07\,\hat{r}^2+2.2\,\hat{x}^2-0.54\,\hat{r}\,\hat{x}\right)$$

Kinematic distributions @100TeV

Dihiggs Decay Channels

Decay	Issues	Expectation 3000 ifb	References	_
$bar{b}\gamma\gamma$ (0.26%)	 Signal small BKG large & difficult to asses Simple reconst. 	$S/B \simeq 1/3$ $S/\sqrt{B} \simeq 2.5$	[Baur, Plehn, Rainwater] [Yao 1308.6302] [Baglio et al. JHEP 1304]	HL-LHC with $3ab^{-1}$ $S/\sqrt{B} = 1.3\sigma$ [ATL-PHYS-PUB-2014-019]
$bar{b} au^+ au^-$ (7.3%)	 tau rec tough largest bkg tt Boost+MT2 might help 	differ a lot $S/B \simeq 1/5$ $S/\sqrt{B} \simeq 5$	[Dolan, Englert, MS] [Barr, Dolan, Englert, MS] [Baglio et al. JHEP 1304]	
b $ar{b}W^+W^-$ (25%)	 looks like tt Need semilep. W to rec. two H Boost + BDT proposed 	differ a lot best case: $S/B \simeq 1.5$ $S/\sqrt{B} \simeq 8.2$	[Dolan, Englert, MS] [Baglio et al. JHEP 1304] [Papaefstathiou, Yang, Zurita 1209.1489]	
bbbb (33%)	 Trigger issue (high pT kill signal) 4b background large difficult with MC Subjets might help 	$S/B \simeq 0.02$ $S/\sqrt{B} \le 2.0$	[Dolan, Englert, MS] [Ferreira de Lima, Papaefstathiou, MS] [Wardrope et al, 1410.2794]	Search in tthh and VBF channel, [Liu, Zhang, 1410.1855] [Dolan et al., 1506.08008]
WW*WW* (3l3vjj,2l [±] 2v4j) (4.7%)	 Many taus/W not clear if 2 Higgs Zs, photons no rate 	S/√B~1.5σ (3l3vjj)	[Li, Li, Yan, Zhao, 1503.07611] [Baur, Plehn, Rainwater, PRL 89, 151801 (2002)]	

Fast Simulation of $b\overline{b}\gamma\gamma$ @100TeV

Events generation: Madgraph5, Pythia 6.2, Delphes 3

- Signal: include finite mt effect
- Background: include up to one extra parton with MLM matching
- Detector simulation based on ATLAS responses
 - Use anti-kT for jets with $\Delta R = 0.5$
 - b-tagging efficiency: 75%, 18.8%, and 1% for bottom, charm, and light favor jets in the central region
 - Photon identification efficiency: roughly 80% for photons with $E_T > 50$ GeV and $|\eta| < 2.5$ (HL-LHC: $E_T > 80$ GeV)
 - Jet-faking-photon background: a faking probability of $f_j = 0.0093 \exp(-E_T/27)$ as a function of jet E_T in GeV, and scale the jet energy by 0.75 ± 0.12 as the photon energy

Fast Simulation of $b\overline{b}\gamma\gamma$ @100TeV

- **Background:** $b\bar{b}\gamma\gamma$, $b\bar{b}h(\gamma\gamma)$, $Z(b\bar{b})h(\gamma\gamma)$, $\bar{t}th(\gamma\gamma)$, $jj\gamma\gamma$ (mis-tagging b or \bar{b}) $\bar{t}t\gamma\gamma$, $b\bar{b}j\gamma$, $b\bar{b}jj$, $\bar{t}t\gamma$ (jet-faking-photon)
- Events selection [W. Yao, arXiv:1308.6302 [hep-ph]]

Results

Signal and background at pp(100TeV) with $L = 3ab^{-1}$

Samples	$\sigma \times BR$ (fb)	Generated Evt	Selected Evt	Accept	Expected
$h(b\bar{b})h(\gamma\gamma)$ (SM)	3.53	100000	3955	0.040	418.8 ± 6.6
$b\bar{b}h(\gamma\gamma)$	50.49	99611	78	0.00078	118.6 ± 13.4
$Z(b\bar{b})h(\gamma\gamma)$	0.8756	68585	378	0.0055	14.5 ± 0.7
$t\bar{t}h(\gamma\gamma)$	37.26	63904	67	0.0010	117.2 ± 14.3
$tar{t}\gamma\gamma$	335.8	150654	1	6.6e-06	6.75 ± 6.7
$tar{t}\gamma$	108400	285787	0.013	4.7e-08	15.2 ± 3.2
$bar{b}\gamma\gamma$	5037	763962	11	1.4e-05	217.6 ± 65.6
$bar{b}j\gamma$	8960000	1119406	0.0051	4.6e-09	123.6 ± 31.9
$jj\gamma\gamma$	164200	813797	0.056	6.9e-08	33.9 ± 3.8
Total background	_	_	_	—	647.3 ± 76.0
S/\sqrt{B}	_	_	_	_	16.5

Comparison:

- -- $S/\sqrt{B} = 8.4$, conservative (photon identification) efficiency [Bar et al, JHEP 1502 (2015) 016, arXiv:1412.7154]
- -- $S/\sqrt{B} = 15.2$, comparable efficiency [Azatov et al, arXiv:1502.00539]

Discrimination of Two Operators

• Utilize distribution in reconstructed M_{hh} bins

 M_{hh} bins (GeV): [300, 500], [500, 700], [700, 900], [900, 1100]

16

M_{hh} bins (GeV)	[300, 500]	[500, 700]	[700, 900]	[900, 1100]
$h(b\bar{b})h(\gamma\gamma)$ (SM)	200	170	52.5	11.1
$b ar{b} h(\gamma \gamma)$	67.1	31.9	15.8	3.81
$Z(b\overline{b})h(\gamma\gamma)$	11.2	2.77	0.46	0.04
$t\bar{t}h(\gamma\gamma)$	97.5	15.9	3.22	0.58
$t\bar{t}\gamma\gamma$	5.41	1.1	0.24	0.0
$t\bar{t}\gamma$	13.9	1.09	0.16	0.05
$b \overline{b} \gamma \gamma$	188	23.7	5.25	0.32
$bar{b}j\gamma$	107	11.8	3.44	1.32
$jj\gamma\gamma$	30.3	2.58	0.82	0.24
Total Backgrounds	521	90.8	29.4	6.37

$$\frac{\sigma}{\mathrm{sm}}\Big|_{\mathrm{bin}\,1} = (1-\hat{x})^2 (1-0.82\,\hat{r}+3.4\,\hat{x}+0.17\,\hat{r}^2+3.3\,\hat{x}^2-1.5\,\hat{r}\hat{x}), \quad \frac{\sigma}{\sigma_{\mathrm{sm}}}\Big|_{\mathrm{bin}\,3} = (1-\hat{x})^2 (1-0.14\,\hat{r}+3.5\,\hat{x}+0.04\,\hat{r}^2+5.6\,\hat{x}^2-0.85\,\hat{r}\hat{x})$$

$$\frac{\sigma}{\sigma_{\mathrm{sm}}}\Big|_{\mathrm{bin}\,2} = (1-\hat{x})^2 (1-0.42\,\hat{r}+3.3\,\hat{x}+0.06\,\hat{r}^2+3.8\,\hat{x}^2-0.95\,\hat{r}\hat{x}), \quad \frac{\sigma}{\sigma_{\mathrm{sm}}}\Big|_{\mathrm{bin}\,4} = (1-\hat{x})^2 (1-0.03\,\hat{r}+4.0\,\hat{x}+0.03\,\hat{r}^2+8.6\,\hat{x}^2-0.65\,\hat{r}\hat{x})$$

Sensitivity on (\hat{r}, \hat{x}) Plane: SM

- $(\hat{\boldsymbol{r}}, \hat{\boldsymbol{x}}) = (0,0)$
- Degenerate direction around origin
- Exclusive analysis breaks degenerate direction
- ld sensitivity: $\delta \hat{r} \sim 13\%(4\%),$ $\delta \hat{x} \sim 5\%(1.6\%)$
- The weakest 2d sensitivity: $\delta \hat{r} \sim 25\% (8\%), \delta \hat{x} \sim 10\% (3\%)$

Dihiggs measurements alone can probe both (\hat{r}, \hat{x}) to a good accuracy

Sensitivity on (\hat{r}, \hat{x}) Plane: SM

- Exclusive analysis translated as probe of the effective cutoffs
- Tow cases: $x_2x_3 > 0$ (red), $x_2x_3 < 0$ (blue)
- Id sensitivity: $\tilde{\Lambda}_2$, $\tilde{\Lambda}_3 \gtrsim 1(2)$ TeV
- Weakest 2d sensitivity: $\tilde{\Lambda}_2, \tilde{\Lambda}_3 \gtrsim 0.75(1.4)$ TeV

Sensitivity for Generic (\hat{r}, \hat{x})

Sensitivity contours qualitatively different

Benchmark B: non-minimal gravitational coupling.

 $(\hat{r}, \hat{x}) = (0, 0.2)$ (**B1**), $(\hat{r}, \hat{x}) = (0, 0.5)$ (**B2**), sensitivity contour and degenerate direction strongly depend on the explicit \hat{x} .

Benchmark C: CW potential in classical scale invariant model. $(\hat{r}, \hat{x}) = (2/3, 0)$, similar to the SM.

Summary

- Higgs self-interactions as the window for new physics, important for big questions: EWPT, EWSB, Higgs gravitational interaction...
- Probing new physics of Higgs self-couplings based on effective theory with dim=6 operators. For dihiggs production on hadron collider, discriminate deviation couplings from the SM one by using M_{hh} bins.
- Dihiggs production alone can probe both cubic Higgs couplings to a good accuracy on 100TeV. Sensitivity qualitatively different for various benchmark points.

Thank You!

Perturbative Unitarity Bound [JR, Z. Z. Xianyu, H.J. He, 1404.4627]

- Goldstone boson equivalence theorem: $\xi_h R H^{\dagger} H$ is gauge invariant
- Coupled channel analysis: $2 \rightarrow 2$ scattering

$$E^{2} < \frac{16\pi v^{2}}{(1-\zeta^{2})\left(1+\sqrt{1+3\zeta^{4}}\right)}$$

- Unitarity analysis for Higgs inflation
 - Puzzle: $\Lambda_{INF} \sim M_{Pl}/\sqrt{|\xi_h|}$ go beyond cutoff $M_{Pl}/|\xi_h|$ for $|\xi_h| > 1$
 - Unitarity bound depends on background field
 - The strongest bound from $\pi^+\pi^- \rightarrow \pi^0\pi^0$

Other Dim=6 Operators

For different dihiggs production, some other operators contribute as well

- Top-pair associated production dim=6: $H^{\dagger}H \overline{q}_L H^c t_R + h.c.$
- Gluon fusion production dim=6: $H^{\dagger}HG^{a}_{\mu\nu}G^{a\mu\nu}$
- Vector fusion production dim=6: $H^{\dagger}HW^{a\mu\nu}W^{a}_{\mu\nu}$, $H^{\dagger}H(D^{\mu}H)^{\dagger}(D_{\mu}H)$

Higgs Mass Reconstruction

When one of the reconstructed mass consistent with the Higgs mass

