Decays and transition form factors of π^0 , and η' mesons: status at KLOE/KLOE-2 and other experiments

Andrzej Kupsc Uppsala University for the KLOE/KLOE-2 and for the WASA-at-COSY Collaborations

Outline

- n,n' factories/data samples (pd, pp, e+e-)
- Selected results KLOE/WASA:

Transition Form Factors /Anomalous processes

- $\gamma^* \gamma \rightarrow \eta$ (Гүү)
- $e^+e^- \rightarrow \eta \gamma$
- $\eta \rightarrow e^+e^-e^+e^- / e^+e^- \rightarrow \phi \rightarrow \eta/\pi^0e^+e^-$ (TFF)
- $\eta \rightarrow \pi^+\pi^-\gamma$

Even P processes • $\eta \rightarrow \pi^+ \pi^- \pi^0$

Scanned at the American Institute of Physics

Ben Nefkens

Saclay pd

CBall

π-р, үр

WASA

pd, pp

Juliet Lee-Franzini

KLOE

e+e- colliders

BEPCIIL= 6×10^{32} cm⁻²s⁻¹ at J/WBESIIIDATNEL= 10^{32} cm⁻²s⁻¹ at φ KLOE/KLOE-2VEPP2000L= 10^{32} cm⁻²s⁻¹ at 2GeVCMD-3,SND

ϕ decay	Produced ev/fb ⁻¹
K⁺K⁻	1.5×10 ⁹
K _L K _S	1.0×10 ⁹
η	5×107
η΄	2×10 ⁵

 $\sigma_{\text{peak}} \sim 3.1 \,\mu\text{b}$ KLOE: 2.5 fb⁻¹ @ $\sqrt{s} = M_{\phi}$ (~ 8×10⁹ ϕ produced) + 250 pb⁻¹ @ 1000 MeV (off-peak data) σ_{T} (1GeV) 80 nb + scan ±20 MeV ~ O(10 pb⁻¹)

KLOE 2001-2005 data

Frascati φ -factory e^+e^- collider $\sqrt{s} = M\varphi$

KLOE-2 IP collisions: from 2010 Commissioning for KLOE-2 Status:L=1.5 × 10³² cm⁻²s⁻¹ with 1.3 A + 700/800 mA,

7pb⁻¹/day

Novel interaction scheme: large angle beam crossing + crabbed waist sextupoles

PRL104 (2010) 174801

KLOE-2: Extension of the KLOE physics program at upgraded DA INE

KLOE → KLOE-2

Low Energy QCD processes

Even # pseudoscalars PPPP

u-d quark masses π -

 $\pi - \pi, \pi - \eta$ scattering

Anomalous: odd # pseudoscalars: PVV(Pyy), PPPV

 $\frac{\pi^{0},\eta,\eta'}{\prod_{n=1}^{\infty}\gamma} \qquad \frac{\eta,\eta'}{\prod_{n=1}^{\infty}\gamma} \qquad \frac{\eta,\eta'}{\pi^{-1}}$

 $V \rightarrow PV$

Vector Meson Dominance: $V^0 \leftrightarrow \gamma$

Pseudoscalar Transition Form Factors (TFF)

MesonNet(HP3) Workshop on Meson Transition Form Factors May 29-30,2012 Kraków

Radiative widths of η, π^0

 η, π^0 : narrow and short lived

=> **[tot=[yy/BRyy**]

Two exp. techniques: $\gamma Z \rightarrow \eta, \pi^0$ Primakoff $\delta \Gamma(\pi^0 \rightarrow \gamma \gamma) \sim 2.8\%$ PrimEx PRL 106,162303(2011)

 e^+e^- : $\gamma\gamma \rightarrow \eta, \pi^0$

KLOE-2 Taggers 5fb⁻¹ => δΓ(π^0 → γγ) ~1%

Details: [EPJC 72, 1917 (2012)]

 $\begin{array}{ll} \eta: 5 \times 10^{-19} \text{ s; } \mathbf{\Gamma} = 1.3 \text{ keV} & \eta \to \gamma \gamma \\ \pi^{\mathbf{0}}: 8 \times 10^{-17} \text{ s; } \mathbf{c}\tau = 25 \text{ nm} & \pi^{\mathbf{0}} \to \gamma \gamma \end{array}$

VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT		
0.510±0.026	OUR FIT	δΓ(n –	• vv) ~	5%		
0.510±0.026 OUR AVERAGE							
0.51±0.12±0.05	36	BARU	90	MD1	$e^+ \; e^- \rightarrow e^+ \; e^- \; \eta$		
$0.490 \pm 0.010 \pm 0.048$	2287	ROE	90	ASP	$e^+ \; e^- \rightarrow e^+ \; e^- \; \eta$		
$0.514 \pm 0.017 \pm 0.035$	1295	WILLIAMS	88	CBAL	$e^+ \; e^- \rightarrow e^+ \; e^- \; \eta$		
$0.53 \pm 0.04 \pm 0.04$		BARTEL	85E	JADE	$e^+ \; e^- \rightarrow e^+ \; e^- \; \eta$		
* * * We do not use the following data for averages, fits, limits, etc. * * *							
0.476±0.062	1	RODRIGUES	08	CNTR	Reanalysis		
$0.64 \pm 0.14 \pm 0.13$		AIHARA	86	TPC	$e^+ \; e^- \rightarrow e^+ \; e^- \; \eta$		
0.56±0.16	56	WEINSTEIN	83	CBAL	$e^+ \; e^- \rightarrow e^+ \; e^- \; \eta$		
0.324 ± 0.046		BROWMAN	74B	CNTR	Primakoff effect		
1.00±0.22	2	BEMPORAD	67	CNTR	Primakoff effect		

 $\sigma(e^+e^- \rightarrow e^+e^-\eta, \sqrt{s=1GeV})$

Γγγ=520±20_{stat}±13_{syst} eV [KLOE JHEP1301 (2013) 119]

TFF kinematic regions: π^0 , η

Data: CELLO, NA60, CB-MAMI, CMD-2, SND

Dalitz decays

$$rac{d\Gamma(P o \ell^+ \ell^- \gamma)}{dq^2 \Gamma_{\gamma\gamma}} = rac{2lpha}{3\pi} rac{1}{q^2} \sqrt{1 - rac{4m_\ell^2}{q^2}} \left(1 + rac{2m_\ell^2}{q^2}
ight) \left(1 - rac{q^2}{M_P^2}
ight)^3 |F_P(q^2, 0)|^2$$

 $\sigma(e+e- \rightarrow \pi^0 \gamma, \eta \gamma)$

Data: CMD-2,SND

$V \rightarrow P\gamma^*$ and $e+e- \rightarrow PV$ processes

Double off shell TFF

η meson radiative decay width

φ→e⁺e⁻η

\bigcirc

History of $\pi^0 \rightarrow e^+e^-$ measurements

- Unitary bound (model independent) $BR \ge 4.75 \cdot 10^{-8}$
- Experiment: KTeV (794 events from $K_L \to 3\pi^0$): $BR(\pi^0 \to e^+e^-) = (6.44 \pm 0.25_{stat} \pm 0.22_{syst}) \times 10^{-8}$ $BR_{no-rad}(\pi^0 \to e^+e^-) = (7.48 \pm 0.29_{stat} \pm 0.25_{syst}) \times 10^{-8}$ PRD75:012004(07)

HADES WASA CBall NA48/NA62

	UB	\mathbf{SM}	3σ diff	EXP
$\mathcal{B}\left(\pi^{0} ightarrow e^{+}e^{-} ight) imes10^{8}$	≥ 4.69	$6.23\pm0.$.12 7.49 \pm	$0.38 { m KTeV2007}$
${\cal B}\left(\eta ~ ightarrow e^+e^- ight) imes 10^9$	≥ 1.78	$5.2\pm0.$	$.3 \le 5.6 \cdot$	10^3 HADES2012
$\mathcal{B}\left(\eta^\prime ightarrow e^+e^- ight) imes 10^{10}$	≥ 0.36	$1.9\pm0.$	$.3 \searrow 2.1$	$1\cdot 10^3 \text{ ND1988}$
${\cal B}\left(\eta_c ightarrow e^+ e^- ight) imes 10^{14}$	≥ 4.2	Dorok	hov,PLB	667,145
e+ \	n'/n			
			Sea	rches using fo
e- ~~			e+e	$- \rightarrow \eta'$, L=0.
Form	ation		= >	B< 2 1 ⋅ 10 ⁻¹

B< 2.1 · 10⁻⁷ 90% *C*L =>

Vorobev SJNP 48(1988)273

- No kin fit:use DC resolution
- Not use EMC Energy $\Phi \rightarrow \eta \gamma$ L = 558 pb⁻¹ 205 k events eff=21% S/B=10

Normalization $\eta \rightarrow \pi^+\pi^-\pi^0$

$$\boxed{\frac{\Gamma(\eta \to \pi^+ \pi^- \gamma)}{\Gamma(\eta \to \pi^+ \pi^- \pi^0)}} = 0.1856 \pm 0.0005 \pm 0.0028$$

$\Gamma(\eta \rightarrow \pi^+ \pi^- \gamma) / \Gamma(\eta \rightarrow \pi^+ \pi^- \pi^0)$

value	events	author	year	
0.203 ± 0.008	PDG average			
0.175 ± 0.007 ± 0.006	859	Lopez	2007	
0.209 ± 0.004	18 k	Thaler	1973	
0.201 ± 0.006	7250	Gormley	1970	

From $\eta \rightarrow \pi^+\pi^-\gamma$ to $\eta \rightarrow e^+e^-\gamma$

DATA: C Barrel PLB 402,195 ('97); KLOE PL B718, 910 ('13)

BESIII data sample on $\eta' \rightarrow \pi^+\pi^-\gamma$

 $\eta/\eta' \rightarrow \pi^0 \gamma \gamma$

Dominant VMD contribution

Three body decays, Dalitz plot

EXP: CBall KLOE WASA VES BESIII

 $|A(X,Y)|^{2} = N(1 + aY + bY^{2} + dX^{2} + fY^{3} + gX^{2}Y)$

WASA-at-COSY new prel. DP $\eta \rightarrow \pi^+\pi^-\pi^0$

 $1.5 \cdot 10^5$ events

۵

preliminary, -1.144(18) 2013

U(3) CHPT, Borasoy, Nißler 2005: BR($\eta \rightarrow \pi^+\pi^-\pi^0$) $\approx 1.8\%$ large $\rho^\pm\pi^0$

CLEO: PRL 102, 061801 (2009)

BESIII $\eta' \rightarrow \pi \pi \pi$

