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Massive Neutrinos and Cosmology: 
Overview

Masses, number, BSM ν scattering, 
large asymmetry … 

Cosmic shear

Lensed CMB

Galaxies 
Ly-α forest  

21 cm

Primary CMB

BBN

Early phase

st
ru

ct
ur

e 
fo

rm
at

io
n



Future of Laboratory Constraints

Tritium endpoint 

Aim: mνe < 0.2 eV at 95% CL (KATRIN) 

0νββ: 

Test if neutrinos are Majorana particles 

Next gen ~ 100 meV and lower in double beta decay 
mass



Mass schemes from measurement of 
neutrino oscillation

Sum of neutrino 
masses greater 

than about 60 meV

Both double beta decay experiments and cosmology 
should be able to probe this regime.

Sum of neutrino 
masses greater than 
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Massive Neutrino and Primary CMB
1 x 0.8 eV neutrino (dashed) 
!
Expansion rate increases 
!
Changes: gravitational potential, 
damping and angle subtended 
by sound horizon

For a precision probe, 
we need the physics 
after last scattering. 
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Jeans Instability for Neutrinos

Neutrino perturbations on length scales larger 
than the Jeans length become unstable and 
collapse into dark matter potential wells. 

Bond and Szalay, ApJ 274, 443 (1983) 
Hu and Eisenstein, ApJ 498, 497 (1998) 
Hu, Eisenstein and Tegmark, PRL 80, 5255 (1998) 

kJ(z)-1



Effect of non-zero neutrino mass on the 
density perturbations

kJ(now)
H0

ΔP/P ~ 4 Ωnu/ΩM 
~ 4(Σm/94 eV)/(ΩMh2)
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Effect of Lensing on the CMB

z

Deflection ~ arcmin



Coherence of (CMB) Lensing Deflection

Coherence ~ 10 deg

Peak sensitivity ~ z=2

Estimate d from CMB maps 
Hu and Okamoto, 2002



Effect of Lensing on galaxy shapes: Cosmic 
Shear
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Effect of massive neutrino on CMB lensing

EE
TT

dd Best CMB 
constraints from 
lensing 
deflection 
measure (dd) 

The dominant effect is due 
to the change in the angle 
subtended by the sound 
horizon 

Unlensed TT, EE 
not the way for 
precision Σmν.
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Effect of massive neutrino on CMB lensing

EE
TT

dd Best CMB 
constraints from 
lensing 
deflection 
measure (dd) 

The dominant effect is due 
to the change in the angle 
subtended by the sound 
horizon 

5 10 50 100 500 1000

-0.06

-0.04

-0.02

0.00

0.02

0.04

Multipole

C l
HSm
n
=
0.
12
eV
in
1
nL

C l
HSm
n
=
0L

-
1 Unlensed TT, EE 

not the way for 
precision Σmν.



Effect of dynamical dark energy on the 
density perturbations

~mφ
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Neutrino mass and dark energy: can we 
infer them separately?

2

lensing potential, ⟨φ(L)φ∗(L′)⟩ = Cφφ
L δ(L−L′)/[2πL(L+

1)], which can be inferred from the temperature and po-
larization map 4-point functions [15]. In Figure 1 we plot
the deflection angle power spectrum, Cdd

l ≡ l(l + 1)Cφφ
l .

FIG. 1: Top panel: Deflection angle power spectrum C
dd
l for

the fiducial model (mν = 0). Bottom panel: 100×dCdd
l /dmν×

(∆mν/Cdd
l ) (dark) and 100 × dCdd

l /dwx × (∆wx/Cdd
l ) (light)

for ∆mν = 0.1 eV and ∆wx = 0.2.

We calculate the 2-point functions using a publicly
available code, CMBfast [5], which was modified to in-
clude a scalar field dark energy component, to calculate
Cdd

l , and to include the effect of massive neutrinos on the
recombination history (through the expansion rate). We
use the Peacock and Dodds prescription to calculate the
non-linear matter power spectrum [16].
Effect of neutrinos. The lower panel in Figure 1 shows
the differences in the power spectra between our fiducial
model and the exact same model but with one of the
three neutrino masses altered from zero to 0.1 eV. The
error boxes are those for CMBpol (described below; see
Table 1). The Cdd

l are noise-dominated at l > 600 for
CMBpol.

The signature of a 0.1 eV neutrino in the angular power
spectra, in the absence of lensing, is at the 0.1% level.
Such small masses are only detectable through their ef-
fect on lensing, which comes through their influence on
the gravitational potential. Replacing a massless compo-
nent with a massive one increases the energy density and
therefore the expansion rate, suppressing growth. The
net suppression of the power spectrum is scale depen-
dent and the relevant length scale is the Jeans length for
neutrinos [17, 18, 19] which decreases with time as the

neutrino thermal velocity decreases. This suppression
of growth is ameliorated at scales larger than the Jeans
length at matter–radiation equality, where the neutri-
nos can cluster. Neutrinos never cluster at scales smaller
than the Jeans length today. The net result is no effect
on large scales and a suppression of power on small scales,
resulting in the shape of δCdd

l /Cdd
l in Figure 1.

Error forecasting method.

The power spectra we include in our analysis are C̃TT
l ,

C̃TE
l , C̃EE

l (unlensed), and Cdd
l . We do not use the lensed

power spectra to avoid the complication of the correlation
in their errors between different ℓ values and with the er-
ror in Cdd

l . Using the lensed spectra and neglecting these
correlations can lead to overly optimistic forecasts [20].
If we include the lensed spectra instead of the unlensed
ones, the expected errors on wx and mν for CMBpol (see
Table 1) shrink by about 40% and 30% respectively.

The distortions to the angular power spectra due to
a 0.1 eV neutrino and changes of order 10% in wx are
very small. We have taken care to accurately forecast
the constraints possible in this mass range. First, we
make a Taylor expansion of the power spectra to first
order in all the cosmological parameters. Then, given the
the expected experimental errors on the power spectra,
the expected parameter error covariance matrix is easily
calculated.

The Taylor expansion works better and suscepti-
bility to numerical error is reduced with a careful
choice of the parameters used to span a given model
space [2, 21, 22, 23]. We take our set to be P =
{ωm, ωb, ων , θs, wx, zri, k3P i

Φ(kf ), ns, n′

s, yHe}, with the
assumption a flat universe. The first three of these are
the densities today (in units of 1.88×10−29g/cm3) of cold
dark matter plus baryons, baryons and massive neutri-
nos. Next two are the angular size subtended by the
sound horizon on the last–scattering surface and the ra-
tio of dark energy pressure to density. The Thompson
scattering optical depth for CMB photons, τ , is parame-
terized by the redshift of reionzation zri. The primordial
potential power spectrum is assumed to be k3P i

Φ(k) =
k3

fP i
Φ(kf )(k/kf )ns−1+n′

S ln(k/kf ) with kf = 0.05 Mpc−1.
The fraction of baryonic mass in Helium is yHe. We Tay-
lor expand about P = {0.146, 0.021, 0, 0.6,−1, 6.3, 6.4×
10−11, 1, 0, 0.24}.

We follow [24] to calculate the errors expected in C̃TT
l ,

C̃TE
l and C̃EE

l given Table 1. For errors on Cdd
l we follow

[15]. The errors on the unlensed spectra in the regime
where lensing is important (deep in the damping tail)
are certainly underestimated because reconstruction of
the unlensed map from the lensed map will add to the
errors. However, this is not worrisome since we limit all
the unlensed spectra to l < 2000, and a further restric-
tion to l < 1500 (where lensing is least important) only
increases the error on mν by about 10% for CMBpol.

Experiments. We consider Planck [25], a high-resolution

Kaplinghat, Knox and Song, PRL (2003)

The answer is yes! ** 
!
!
** if DE is only important at 
late times

Both ν mass and DE are 
unknown late-time effects.



Prospects: CMB Lensing

Kaplinghat, Knox and Song, PRL 2003

CMB lensing (by itself) can measure the effect of finite neutrino mass 
allowing for DE EOS and running at the level of ~ 40 meV (1σ).

Lesgourgues, Perroto, Pastor, Piat PRD 2006



Extra radiation parameterized as Neff
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Phase shift: a way to measure Neff precisely
2

FIG. 1: Undamped power spectra Kl (defined in Eq. 1) with di↵erent values of N⌫ . In all panels the baryon density !b,
the ratio of matter to radiation density ⇢m/(⇢� + ⇢⌫) and the angular size of the sound horizon ✓s are held fixed as these
are well-determined by CMB data fairly independently of the assumed value of N⌫ . In the top panel the dominant source
of variation is the change in the damping scale ✓D caused by the changes in N⌫ . In the middle panel we fix ✓D by varying
the primordial fraction of baryonic mass in Helium appropriately, leaving the dominant source of power spectrum variation as
the change in oscillation amplitude A0. Finally in the bottom panel, with the spectra normalized to remove the e↵ect of A0

variation, one can see the subtle impact of the shifts in temporal phase �. The data points are the 2013 Planck data.

power spectrum. Modes with a wavelength of ⇠ 220
Mpc project into ` ' 400. They have a shorter oscilla-
tion period so that by t = t⇤ they have gone through their
first extremum and reached a null at the time of decou-
pling. Modes that hit their pth extremum at decoupling
contribute to the pth peak.

A key length scale for understanding the response of
C` to the CNB is the sound horizon at decoupling, rs(t⇤).
The sound horizon is smaller than it would be without
the presence of the CNB, because the fractional expan-

sion rate H / ⇢̄
1/2
tot

. If we scaled up the fractional expan-
sion rate H at all times by a factor ↵, the decrease in
time it takes for the temperature to drop to T ' 0.3
eV would lead to rs / 1/↵. The angle rs subtends,
✓s = rs(t⇤)/d where d is the angular-diameter distance
to the last-scattering surface, strongly influences the lo-
cations of the acoustic peaks such that �`p = `p�✓s/✓s. If
we knew d, we could use this e↵ect alone to measure the
energy density in the CNB. However, d depends on the
(otherwise unknown) value of the cosmological constant.

In Fig. 1 we show a series of plots where we vary N⌫

while holding certain other quantities fixed, in order to
demonstrate the observable consequences of various ef-
fects of neutrinos. Because ✓s, baryon density !b, and
the ratio of matter to radiation density ⇢m/(⇢� + ⇢⌫)
are well determined by the data, in all rows we show
variations with these parameters fixed. In the top row

one can see the impact of N⌫ on the typical distance a
photon di↵uses prior to last scattering, rd. This di↵u-
sion suppresses anisotropy for modes with wavelengths
� . rD, with an approximate e↵ect of C` ! D`C` where
D` ' exp

⇥
�(`✓D)1.18

⇤
where ✓D = rD/d. Because the

di↵usion is a stochastic process it scales with expansion
rate as 1/

p
↵ rather than 1/↵ as rs does. These di↵erent

scalings mean that while we adjust d to keep ✓s fixed, we
get ✓D /

p
↵. Thus for N⌫ = 5, the expansion rate is

greater, leading to larger ✓D and more damping.

To visualize more subtle e↵ects of the CNB, we can
vary the priordial fraction of baryonic mass in Helium,
Yp, to keep ✓D fixed as well [6]. Doing so in the mid-
dle panel, we can see an impact of the perturbations in
the CNB. As an initially over-dense region compresses
under the influence of gravity, the compression does not
occur rapidly enough to prevent the gravitational poten-
tial from decaying due to the expansion-driven drop in
density. By the time pressure gradients halt the compres-
sion, the gravitational potential has nearly completely de-
cayed. The result of this temporary time-dependent grav-
itational driving of the accoustic oscillations is a change
to the subsequent amplitude and phase so that the ampli-
tude of a standing wave is A0 cos[krs(t) + �]. The values
of A0/A and � depend on the details of the potential de-
cay, and in particular on the fraction of the radiation
that can freely stream out of over densities at the speed

Information in phase shift: Bashinsky and Seljak 2004 
(separate from damping!)

Follin, Knox, Millea and Pan 2015

Future: σ(Nν) ~ 0.3 (Planck polarization), 0.1 (CMB-S4) 
Baumann, Green, Meyers and Wallisch 2015 (very nice description of the physics)



Key caveat

Cosmological probes are sensitive to the energy density of 
neutrinos.  

While the Jeans length does depend on the mass, it does not 
seem that we will be able to exploit this scale dependence to 
measure the mass hierarchy directly.



Current limits: assuming base ΛCDM 
model

Planck Collaboration: Cosmological parameters

Fig. 28. Marginalized posterior distributions for (w0,wa) for var-
ious data combinations. We show Planck TT+lowP in combi-
nation with BAO, JLA, H0 (“ext”), and two data combinations
which add the CFHTLenS data with ultra-conservative cuts as
described in the text (denoted “WL”). Dashed grey lines show
the parameter values corresponding to a cosmological constant.

⇤CDM predictions. This tension can be seen even in the sim-
ple model of Eq. (53). The green regions in Fig. 28 show 68 %
and 95 % contours in the w0–wa plane for Planck TT+lowP com-
bined with the CFHTLenS H13 data. In this example, we have
applied “ultra-conservative” cuts, excluding ⇠� entirely and ex-
cluding measurements with ✓ < 170 in ⇠+ for all tomographic
redshift bins. As discussed in Planck Collaboration XIV (2015),
with these cuts the CFHTLenS data are insensitive to modelling
the nonlinear evolution of the power spectrum, but this reduc-
tion in sensitivity comes at the expense of reducing the statistical
power of the weak lensing data. Nevertheless, Fig. 28 shows that
the combination of Planck+CFHTLenS pulls the contours into
the phantom domain and is discrepant with base⇤CDM at about
the 2� level. The Planck+CFHTLenS data also favours a high
value of H0. If we add the (relatively weak) H0 prior of Eq. (30),
the contours (shown in cyan) in Fig. 28 shift towards w = �1.
It therefore seems unlikely that the tension between Planck and
CFHTLenS can be resolved by allowing a time-variable equa-
tion of state for dark energy.

A much more extensive investigation of models of dark
energy and also models of modified gravity can be found in
Planck Collaboration XIV (2015). The main conclusions of that
analysis are as follows:

• an investigation of more general time-variations of the equa-
tion of state shows a high degree of consistency with w = �1;
• a study of several dark energy and modified gravity models

either finds compatibility with base⇤CDM, or mild tensions,
which are driven mainly by external data sets.

6.4. Neutrino physics and constraints on relativistic
components

In the following subsections, we update Planck constraints on
the mass of standard (active) neutrinos, additional relativistic de-

grees of freedom, models with a combination of the two, and
models with massive sterile neutrinos. In each subsection we
emphasize the Planck-only constraint, and the implications of
the Planck result for late-time cosmological parameters mea-
sured from other observations. We then give a brief discussion of
tensions between Planck and some discordant external data, and
assess whether any of these model extensions can help to resolve
them. Finally we provide constraints on neutrino interactions.

6.4.1. Constraints on the total mass of active neutrinos

Detection of neutrino oscillations has proved that neutrinos have
mass (see e.g., Lesgourgues & Pastor 2006, for a review). The
Planck base ⇤CDM model assumes a normal mass hierarchy
with

P
m⌫ ⇡ 0.06 eV (dominated by the heaviest neutrino mass

eigenstate) but there are other possibilities including a degen-
erate hierarchy with

P
m⌫ >⇠ 0.1 eV. At this time there are no

compelling theoretical reasons to prefer strongly any of these
possibilities, so allowing for larger neutrino masses is perhaps
one of the most well-motivated extensions to base ⇤CDM con-
sidered in this paper. There has also been significant interest
recently in larger neutrino masses as a possible way to lower
�8, the late-time fluctuation amplitude, and thereby reconcile
Planck with weak lensing measurements and the abundance of
rich clusters (see Sects. 5.5 and 5.6). Though model dependent,
neutrino mass constraints from cosmology are already signifi-
cantly stronger than those from tritium beta decay experiments
(see e.g., Drexlin et al. 2013).

Here we give constraints assuming three species of degener-
ate massive neutrinos, neglecting the small di↵erences in mass
expected from the observed mass splittings. At the level of sensi-
tivity of Planck this is an accurate approximation, but note that it
does not quite match continuously on to the base ⇤CDM model
(which assumes two massless and one massive neutrino withP

m⌫ = 0.06 eV). We assume that the neutrino mass is con-
stant, and that the distribution function is Fermi-Dirac with zero
chemical potential.

Masses well below 1 eV have only a mild e↵ect on the shape
of the CMB power spectra, since they became non-relativistic af-
ter recombination. The e↵ect on the background cosmology can
be compensated by changes in H0 to ensure the same observed
acoustic peak scale ✓⇤. There is, however, some sensitivity of
the CMB anisotropies to neutrino masses as the neutrinos start
to become less relativistic at recombination (modifying the early
ISW e↵ect), and from the late-time e↵ect of lensing on the power
spectrum. The Planck power spectrum (95 %) constraints are
X

m⌫ < 0.72 eV Planck TT+lowP ; (54a)
X

m⌫ < 0.21 eV Planck TT+lowP+BAO ; (54b)
X

m⌫ < 0.49 eV Planck TT,TE,EE+lowP ; (54c)
X

m⌫ < 0.17 eV Planck TT,TE,EE+lowP+BAO . (54d)

The Planck TT+lowP constraint has a broad tail to high masses,
as shown in Fig. 29, which also illustrates the acoustic scale
degeneracy with H0. Larger masses imply a lower �8 through
the e↵ects of neutrino free streaming on structure formation,
but the larger masses also require a lower Hubble constant,
leading to possible tensions with direct measurements of H0.
Masses below about 0.4 eV can provide an acceptable fit to
the direct H0 measurements, and adding the BAO data helps
to break the acoustic scale degeneracy and tightens the con-
straint on

P
m⌫ substantially. Adding Planck polarization data at

40

95% C.L. assuming ΛCDM (Planck 2015 results XIII)

WMAP+HST+CMASS (conservative): ∑mv<0.36 eV 
  (95% C.L. De Putter et al 2012)



Current limits: effect of dark energy EOS

DE with constant EOS+CDM+flatness (wCDM) 
 WMAP7+H0+BAO (SDSS): ∑mv<1.3 eV 
 WMAP7+SNe (constitution)+BAO (SDSS): ∑mv<0.9 eV 
 WMAP7+LRGs (SDSS)+H0: ∑mv<0.8 eV 
 Previous+SNe (constitution): ∑mv<0.5 eV 
  (95% C.L. WMAP collaboration) 
!
 Planck (including lensing)+WMAPpol+SDSS DR9: ∑mv<0.48 eV 
  (95% C.L. Guisarma et al 2013)



Current limits: complementarity of data sets 
— the case of Ly-α forest + CMB data

Palanque-Delabrouille et al 2015 
(BOSS + Planck 2015)

any mass value, neutrinos leave a signature on the CMB angular power spectrum through the inte-
grated Sachs-Wolf e↵ect and through lensing [3, 4]. The latest limit on

P
m⌫ from CMB data alone

is at the level of 0.7 eV [5].
Ly↵ data alone have sensitivity to

P
m⌫ at the level of about 1 eV due to the fact that the

scales probed by Ly↵ forests are in the region where the ratio of the power spectra for massive to
massless neutrinos is quite flat (cf. Figure 1). However, a tight constraint on

P
m⌫ can be obtained

by combining CMB data, which probe the initial power spectrum una↵ected by
P

m⌫, and Ly↵ data,
which probe the suppressed power spectrum. Thus, Ly↵ measures the power spectrum level, defined
by �8 and ⌦m, CMB provides the correlations between these parameters and

P
m⌫, and the joint

use of these two probes significantly improves the constraint on
P

m⌫ compared to what either probe
alone can achieve.
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Figure 1: Linear theory prediction for the matter power spectra with massive neutrinos, normalized
to the corresponding massless neutrino case. The grey zone delimits the range of k covered by the 1D
Ly↵ flux power spectrum from the BOSS survey.

The layout of the paper is as follows. The first part of section 2 presents the upgrades in the Ly↵,
CMB and Baryon Acoustic Oscillation (BAO) data sets used for this work. The second part summa-
rizes a number of improvements in the methodology: changes in the accounting of the uncertainties
of the hydrodynamical simulations, and updates of the likelihood parameters to allow for additional
freedom in the IGM model or in the instrumental systematic e↵ects. The main objective of section 3.1
is to present what Ly↵ data alone have to say about cosmology. The base model we consider is a flat
⇤CDM cosmology with massive neutrinos, thereafter referred to as the base ⇤CDM⌫ cosmology.
We start by giving the constraints measured on the five relevant parameters (�8, ns, ⌦m, H0,

P
m⌫),

and we briefly discuss the values of the ‘nuisance’ parameters. In section 3.2, we include additional
data, namely several configurations of CMB data and, occasionally, BAO measurements. We present
the results obtained on the parameters of our base ⇤CDM⌫ cosmology with various combinations of
these data sets. Finally, we discuss extensions to the base ⇤CDM⌫ cosmology. We present how Ly↵

– 2 –
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Figure 2: 1D Ly↵ forest power spectrum from the SDSS-III/BOSS DR9 data. The solid curves show
the best-fit model obtained in section 3.1 when considering Ly↵ data alone. The oscillations in
these model predictions (and, presumably, in the measurements) arise principally from Ly↵-Si III
correlations, which occur at a wavelength separation �� = 9.2Å.

on cosmological parameters are included in the present work with their full correlation with CMB
data. Both CMB and BAO constraints are taken from the Markov Chains publicly available through
the o�cial Planck Legacy Archive at http://pla.esac.esa.int.

2.2 Changes in the methodology and models

We interpret the 1D Ly↵-flux power spectrum using a likelihood built around three categories of
parameters which are floated in the minimization procedure. The first category describes the cosmo-
logical model in the simplest case of ⇤CDM assuming a flat Universe. The second category models
the astrophysics within the IGM, and the relationship between the gas temperature and its density.
The purpose of the third category is to describe the imperfections of our measurement of the 1D
power spectrum. This likelihood allows us to compare the measurement to the power spectrum pre-
dicted from hydrodynamical simulations. The changes in the simulation model or in the likelihood
compared to Paper I are described below.

2.2.1 Sample variance

A sample variance is expected on large scales since the size of the simulation volume is similar to the
largest modes measured. We improved our estimate of its contribution to the simulation uncertainties
by computing, for each mode, the variance of the di↵erence from average of the 1D Ly↵-flux power
spectrum for five simulations run with exactly the same cosmological and astrophysical parameters
but di↵erent random seeds to initiate the distribution of particles (cf. Fig. 3). As expected, this
test shows an excess of variance at small k, compared to the uncertainty measured within each run,
which we model by a function of the form (a + b exp(�ck))2 where k is the wavenumber, a = 0.004,
b = 0.023 and c = �356.6. This additional variance is added in quadrature to the simulation statistical
variance.

– 5 –



Palanque-Delabrouille et al 2015

3.2 ⇤CDM⌫ cosmology from Ly↵ data and other probes

In this section, we combine the Ly↵ likelihood (imposing no constraint on H0) with the likelihood
of Planck 2015 data that we derive from the central values and covariance matrices available in the
o�cial 2015 Planck repository. As in the previous section, we focus on the base ⇤CDM⌫ model,
and we derive constraints on �8, ns, ⌦m, H0 and

P
m⌫. Results are shown in table. 5. Column (1)

is the same as column (2) of table 4 and recalls the results for Ly↵ alone. Column (2) is for the
combined set of Ly↵ and the base configuration we chose for Planck data, i.e. TT+lowP (cf. details
in Sec. 2.1.2). The last two columns (columns 3–4) include BAO data in addition, and in column
(4) we extend the CMB measurements to TT+TE+EE+lowP. We illustrate the main 2D contours on
cosmological parameters in figures 6 and 7.

Table 5: Best-fit value and 68% confidence levels of the cosmological parameters of the model fitted
to the flux power spectrum P(ki, z j) measured with the BOSS Ly↵ data combined with several other
data sets.

(1) Ly↵ (2) Ly↵ (3) Ly↵ (4) Ly↵
Parameter + HGaussian

0 + Planck TT+lowP + Planck TT+lowP + Planck TT+TE+EE+lowP

(H0 = 67.3 ± 1.0) + BAO + BAO

�8 0.831 ± 0.031 0.833 ± 0.011 0.845 ± 0.010 0.842 ± 0.014
ns 0.938 ± 0.010 0.960 ± 0.005 0.959 ± 0.004 0.960 ± 0.004
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Figure 6: 2D confidence level contours for the (�8, ns) , (⌦m,
P

m⌫) and (�8,
P

m⌫) cosmological
parameters. The 68% and 95% confidence contours are obtained with di↵erent combinations of the
BOSS Ly↵ data presented in section 3.1 of the Gaussian constraint H0 = 67.4 ± 1.4 km s�1 Mpc�1

and of Planck 2015 data (TT+lowP).

The main point to note is the excellent agreement between the results derived from the combina-
tion of Ly↵ data with di↵erent sets of CMB and BAO data (columns 2–4). The consistency between
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Figure 9: Constraints on the scalar spectral index ns, the running dns/d ln k, and
P

m⌫. Left and
middle: 68% and 95% confidence contours obtained for four combinations – Planck 2015 TT+lowP
data alone, then adding BOSS Ly↵, high-` polarization from Planck (TE and EE) and finally BAO
data. Left plot is for ⇤CDM with running, middle plot for ⇤CDM⌫ with running. Right: the tensor-
to-scalar ratio r is floated. The 68% and 95% confidence contours are obtained for four combina-
tions – Planck 2015 TT+lowP, Planck 2015 TT+lowP and BOSS Ly↵, Planck 2015 TT+lowP and
BICEP2/Keck Array and finally all the above together.

constrain the tensor-to-scalar ratio, r, which is directly related to the inflation field. Even if Ly↵ data
alone cannot measure r, it can be used in combination with CMB to improve the uncertainty on r
over what CMB alone can do, thanks to the correlations of r with the other cosmological parameters
and the tightened constraints Ly↵ provides on the latter. The improvement appears on the left plot of
figure 10 (blue and red curves).

The uncertainty on r can also be reduced by direct measurement of the large-scale B-modes in
CMB polarization. We therefore include the BICEP2/Keck-Array-Planck (BKP) joint analysis [16].
The gain provided by the B-modes for CMB data alone is visible on the left plot of figure 10 by
comparing the blue and the purple curves. As shown in the right plot of Fig. 9, however, the BKP
data has no impact on the measurement of dns/d ln k. The addition of Ly↵ yields further improvement,
illustrated as the green curve in both plots. We obtain an upper limit r < 0.098 at 95% CL, letting the
running dns/d ln k free.

The parameters of the scalar and tensor power spectra may be estimated in the framework of
slow-roll inflation (see [36–38]) from the value of the Hubble parameter and the hierarchy of its
time derivatives. In the context of the Hubble flow-functions (HFF), these parameters are defined
as: "1 = �Ḣ/H2, and "i+1 = �"̇i/(H"i) with i � 1. The scalar spectral index ns, the tensor spectral
index nt and the running of the scalar spectral index dns/d ln k can be related to the three slow-roll
parameters "1, "2 and "3 by the following equations:

ns � 1 = �2"1 � "2 � 2"2
1 � (2C + 3)"1"2 �C"2"3, (3.2)

nt = �2"1 � 2"2
1 � 2(C + 1)"1"2, (3.3)

dns/d ln k = �2"1"2 � "2"3, (3.4)

where C ' �0.7296. The tensor-to-scalar power ratio r can be derived from the tensor index nt
through the consistency relation nt = �r(2 � r/8 � ns)/8, obtained at second order when inflation is
driven by a single slow-rolling scalar field.

The middle plot of figure 10 shows the 2D contours for two slow-roll parameters "1 and "2, let-
ting free the running index "3. This approach is equivalent, in frequentist interpretation, to marginal-
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with a tensor-to-scalar ratio r = 0. The corresponding 2D contours are illustrated in figure 9, left plot.

ns = 0.965 ± 0.007 dns/d ln k = �0.0084+0.0082
�0.0081 Planck (TT + lowP)

ns = 0.964 ± 0.005 dns/d ln k = �0.0178+0.0054
�0.0048 Planck (TT + lowP) + Ly↵

ns = 0.960 ± 0.004 dns/d ln k = �0.0149+0.0050
�0.0048 Planck (TT,TE,EE + lowP) + Ly↵

ns = 0.961 ± 0.004 dns/d ln k = �0.0152+0.0050
�0.0045 Planck (TT,TE,EE + lowP) + BAO + Ly↵

Allowing a running of ns improves the fit �2 by ⇠ 10 compared to the results obtained for the
same set of data but without running. This is driven by the fact that a negative running of order 10�2

is favored both by Planck data alone, and by the tension on ns between Planck and Ly↵ data sets. The
four di↵erent combinations of Planck, Ly↵ and BAO data shown above all indicate a preference for a
negative running at the ⇠ 3� level. When allowing for running, the best-fit value of ns is in excellent
agreement with the value favored by Planck data alone. The best-fit value of dns/d ln k is also in
agreement (at about 1 �) with the value measured from CMB data alone by the Planck collaboration,
although the origin of this detection is to first order only dependent on the di↵erent values of ns in Ly↵
and CMB data, and not on the value of running measured from either probe alone (see discussion in
Sec. 3.5). The detection of running in the combined fit, however, could be the result of a coincidence
between a ⇠ 1 � e↵ect in Planck, due to the mismatch between the high and low multipoles in the
temperature power spectrum on the one hand, and a ⇠ 2.3 � e↵ect in Ly↵ data, possibly coming from
an unidentified systematic bias on the other hand.

As the global �2 is clearly improved by letting dns/d ln k free, it is interesting to study the impact
of this extra parameter on the determination of

P
m⌫ in the base ⇤CDM⌫ model with running. As

shown on the middle plot of the figure 9, the correlation between dns/d ln k and
P

m⌫ is small. In the
table below, we give the values of

P
m⌫ and of dns/d ln k for the four configurations already studied.

⌃m⌫ < 0.65 eV (95%CL) dns/d ln k = �0.0078+0.0084
�0.0083 Planck (TT + lowP)

⌃m⌫ < 0.19 eV (95%CL) dns/d ln k = �0.0178+0.0054
�0.0052 Planck (TT + lowP) + Ly↵

⌃m⌫ < 0.19 eV (95%CL) dns/d ln k = �0.00135+0.0046
�0.0050 Planck (TT,TE,EE + lowP) + Ly↵

⌃m⌫ < 0.12 eV (95%CL) dns/d ln k = �0.00141+0.0047
�0.0048 Planck (TT,TE,EE + lowP) + BAO + Ly↵

We obtain an impressive improvement on the bound on
P

m⌫ by including Ly↵ on top of CMB data.
However, the gain is slightly lower than when dns/d ln k is fixed to zero. It may be an indication
that part of the improvement obtained with Ly↵ data is due to the small tension on the value of ns
between CMB and Ly↵. Finally, even with dns/d ln k as an additional free parameter, we obtain the
same constraint

P
m⌫ < 0.12 eV (95% C.L.) when combining the three probes CMB, Ly↵ and BAO.

Letting r free does not change qualitatively the constraint on dns/d ln k, as shown in the table
below and as illustrated in the right plot of figure 9. In the combination, we also introduce the
BICEP2/Keck Array-Planck (BKP) data set for reasons explained hereafter.

ns = 0.967 ± 0.007 dns/d ln k = �0.0126+0.0098
�0.0087 Planck (TT + lowP)

ns = 0.966 ± 0.006 dns/d ln k = �0.0206+0.0054
�0.0056 Planck (TT + lowP) + Ly↵

ns = 0.966 ± 0.006 dns/d ln k = �0.0117+0.0085
�0.0086 Planck (TT + lowP) + BKP

ns = 0.967 ± 0.005 dns/d ln k = �0.0200+0.0054
�0.0053 Planck (TT + lowP) + BKP + Ly↵

The CMB and Ly↵measurements provide a powerful probe of cosmic inflation through the two
parameters ns and dns/d ln k as explained before. In addition, CMB polarization makes it possible to
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with a tensor-to-scalar ratio r = 0. The corresponding 2D contours are illustrated in figure 9, left plot.

ns = 0.965 ± 0.007 dns/d ln k = �0.0084+0.0082
�0.0081 Planck (TT + lowP)

ns = 0.964 ± 0.005 dns/d ln k = �0.0178+0.0054
�0.0048 Planck (TT + lowP) + Ly↵

ns = 0.960 ± 0.004 dns/d ln k = �0.0149+0.0050
�0.0048 Planck (TT,TE,EE + lowP) + Ly↵

ns = 0.961 ± 0.004 dns/d ln k = �0.0152+0.0050
�0.0045 Planck (TT,TE,EE + lowP) + BAO + Ly↵

Allowing a running of ns improves the fit �2 by ⇠ 10 compared to the results obtained for the
same set of data but without running. This is driven by the fact that a negative running of order 10�2

is favored both by Planck data alone, and by the tension on ns between Planck and Ly↵ data sets. The
four di↵erent combinations of Planck, Ly↵ and BAO data shown above all indicate a preference for a
negative running at the ⇠ 3� level. When allowing for running, the best-fit value of ns is in excellent
agreement with the value favored by Planck data alone. The best-fit value of dns/d ln k is also in
agreement (at about 1 �) with the value measured from CMB data alone by the Planck collaboration,
although the origin of this detection is to first order only dependent on the di↵erent values of ns in Ly↵
and CMB data, and not on the value of running measured from either probe alone (see discussion in
Sec. 3.5). The detection of running in the combined fit, however, could be the result of a coincidence
between a ⇠ 1 � e↵ect in Planck, due to the mismatch between the high and low multipoles in the
temperature power spectrum on the one hand, and a ⇠ 2.3 � e↵ect in Ly↵ data, possibly coming from
an unidentified systematic bias on the other hand.

As the global �2 is clearly improved by letting dns/d ln k free, it is interesting to study the impact
of this extra parameter on the determination of

P
m⌫ in the base ⇤CDM⌫ model with running. As

shown on the middle plot of the figure 9, the correlation between dns/d ln k and
P

m⌫ is small. In the
table below, we give the values of

P
m⌫ and of dns/d ln k for the four configurations already studied.

⌃m⌫ < 0.65 eV (95%CL) dns/d ln k = �0.0078+0.0084
�0.0083 Planck (TT + lowP)

⌃m⌫ < 0.19 eV (95%CL) dns/d ln k = �0.0178+0.0054
�0.0052 Planck (TT + lowP) + Ly↵

⌃m⌫ < 0.19 eV (95%CL) dns/d ln k = �0.00135+0.0046
�0.0050 Planck (TT,TE,EE + lowP) + Ly↵

⌃m⌫ < 0.12 eV (95%CL) dns/d ln k = �0.00141+0.0047
�0.0048 Planck (TT,TE,EE + lowP) + BAO + Ly↵

We obtain an impressive improvement on the bound on
P

m⌫ by including Ly↵ on top of CMB data.
However, the gain is slightly lower than when dns/d ln k is fixed to zero. It may be an indication
that part of the improvement obtained with Ly↵ data is due to the small tension on the value of ns
between CMB and Ly↵. Finally, even with dns/d ln k as an additional free parameter, we obtain the
same constraint

P
m⌫ < 0.12 eV (95% C.L.) when combining the three probes CMB, Ly↵ and BAO.

Letting r free does not change qualitatively the constraint on dns/d ln k, as shown in the table
below and as illustrated in the right plot of figure 9. In the combination, we also introduce the
BICEP2/Keck Array-Planck (BKP) data set for reasons explained hereafter.

ns = 0.967 ± 0.007 dns/d ln k = �0.0126+0.0098
�0.0087 Planck (TT + lowP)

ns = 0.966 ± 0.006 dns/d ln k = �0.0206+0.0054
�0.0056 Planck (TT + lowP) + Ly↵

ns = 0.966 ± 0.006 dns/d ln k = �0.0117+0.0085
�0.0086 Planck (TT + lowP) + BKP

ns = 0.967 ± 0.005 dns/d ln k = �0.0200+0.0054
�0.0053 Planck (TT + lowP) + BKP + Ly↵

The CMB and Ly↵measurements provide a powerful probe of cosmic inflation through the two
parameters ns and dns/d ln k as explained before. In addition, CMB polarization makes it possible to

– 18 –

with a tensor-to-scalar ratio r = 0. The corresponding 2D contours are illustrated in figure 9, left plot.
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~ 3σ preference for negative running 
~ 2σ with older Ly-α data (Minor and Kaplinghat 2014). 

Current limits: complementarity of data sets 
— the case of Ly-α forest + CMB data



Near Term CMB Lensing Experiments
Atacama Cosmology 
Telescope  
Polarization (ACTPol)

South Pole Telescope  
Polarization 
(SPTPol→SPT-3G)

Near: ACTPol and SPTPol: σ(Σmν) ~ 100 meV; σ(Neff) ~ 0.12 

Mid: SPT-3G forecast to σ(Σmν) ~ 74 meV; σ(Neff) ~ 0.076 

 (Benson et al arXiv:1407.2973; CMB 2015 at U Minnesotta)                



Key degeneracies for the future: spatial 
curvature of the universe

Degeneracy between neutrino mass and curvature in 
lensing measurements. Smith, Hu and Kaplinghat, PRD 2004; PRD 
2006. 

If neutrino mass measurement is known to 0.1 eV 
accuracy, then it helps in the determination of curvature 
(0.3%) and dark energy equation of state from next 
generation ground based CMB experiments, Planck and 
SNAP. Smith, Hu and Huterer, ApJL 2007



Key degeneracies for the future: unknown 
expansion history of the universe

Parameterizing our ignorance of H(z) in terms of early DE, 
we find this to be a significant source of degeneracy. (De 
Putter, Zahn, Linder PRD 2009, Joudaki and Kaplinghat, PRD 2012) 

This degeneracy can be tamed if other data sets are used. 
Specifically the cosmic shear and CMB lensing 
degeneracies are not aligned and the addition of these two 
data sets can extend the reach to the 40 meV level.



Complementarity of data sets: the future

Joudaki and Kaplinghat PRD 2012
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FIG. 9. Parameter degeneracies with early dark energy density (Ωe) in a flat universe (also see Table IV) for Planck
measurements of temperature and CMB lensing spectra [TT, EE, TE, κcκc, κcT] (dot-dashed, black), along with
LSST tomographic weak lensing spectra [κκ] (dotted, blue) and tomographic galaxy spectra [gg] (dashed, turquoise).
Constraints from SNe are too weak to be visible in the shown parameter regions. The error ellipses from the combination
of all these probes (including SNe), incorporating all cross-correlations (see Eqn. 48) is shown as (solid, red) curves.
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in curvature. In Table X, we present results where
the CMB constraints are derived from a future exper-
iment like the proposed 2m EPIC [100, 101] (compare
to Table VI). Table VII differs from Table VI in its
neglect of SNe measurements. Lastly, Table IX differs
from Table VI in that we neglect cross-correlations
between the observables (i.e. neglecting all correla-
tions between T , E, κc, κ, g, except for tomographic
cross-correlations within κ).
We now explore each of these tables in greater de-

tail. Table IV shows us that the dominant constraint
on the fraction of dark energy at early times is drawn
from the CMB (in particular TT and to some extent
Tκc) due to its deep redshift information. At a value
of σ(Ωe) = 8.6 × 10−3 (Table IV), the Planck CMB
temperature and polarization constraint is within a
percent of the critical density. In general, EDE is
best constrained by the CMB, followed by weak lens-
ing tomography, galaxy tomography and SNe in that
order. For comparison, the low-redshift lensing con-
straint from LSST on Ωe is a factor of four (factor of
six for JDEM) weaker than from the CMB. If we im-
pose a nonlinear cutoff to the convergence spectra at
ℓmax = 1000, the situation becomes more dire, as the
LSST and JDEM lensing constraints become worse by
another factor of three. Similarly, the galaxy tomog-
raphy constraint from LSST on Ωe is a factor of five
(factor of nine for JDEM) weaker than the CMB con-
straint, and the LSST SN constraint is a factor of 70
weaker (factor of 30 for JDEM) than the CMB.
Nevertheless, once the six observables (T , E, κc, κ,

g, s) and all relevant cross-correlations (see Eqns. 47-
48) from Planck (or EPIC) and LSST (or JDEM) are
analyzed in a combined setting, the constraint on Ωe

improves by a factor of four over the CMB constraint.
The combined constraints are equally strong regard-
less of the choice of LSST or JDEM for the non-CMB
observations (κ, g, s). For a JDEM-like experiment,
the cross-correlations improve the Ωe constraints by a
factor of about 2.
As expected, we find the late-redshift parameters

more strongly constrained by the non-CMB probes.
For example, in a universe where we allow for the ex-
istence of early dark energy, the LSST weak lensing
constraints on the present DE density (Ωd0) and EOS
(w0) of 1% and 6% are much better than the con-
straints obtained from just CMB lensed data of about
7% and 20% on present DE density and EOS (Table
IV). Galaxy tomography measurements with LSST
constrain Ωd0 and w0 to 5% and 10%, respectively,
whereas the strongest SN constraints are derived from
JDEM, at 10% and 5% for Ωd0 and w0 respectively.
When we combine the probes of lensing and galaxy to-
mography, SNe, and CMB, the parameter constraints
improve by a factor of seven in w0 and factor of four
in Ωd0 compared to the constraints from the strongest
single probe, here weak lensing from LSST.
The results of the joint analysis don’t change sig-

nificantly when we relax the assumption of spatial

FIG. 10. Error ellipses showing degeneracies between cur-
vature (Ωk), early dark energy density (Ωe) and sum of
neutrino masses (

∑
mν). The curves have the same mean-

ing as in Fig. 9. Note the strong degeneracy between cur-
vature and sum of neutrino masses for CMB data (black,
dot-dashed) that was pointed out in Ref. [152]. This de-
generacy is broken when information on curvature from
measures of cosmological distances are included, as shown
by the solid (red) contour. The constraints in the plane of
Ωe and

∑
mν are shown in Fig. 9.

flatness. The exception to this statement is Ωd0 for
JDEM, which degrades by about a factor of 2 for the
case where EDE density is fixed (see Table V). This
is because for JDEM Ωd0 is most strongly constrained
by SNe measurements, which require a tight bound on
the curvature. In the joint analysis, the curvature den-
sity is constrained to 6× 10−4 of the critical density,
which is an order of magnitude stronger than solely
with the CMB temperature and lensing. The ability
to measure curvature down to this level is an exciting
possibility that has been highlighted previously [156].
Our constraints on the curvature in the joint analysis,
and from combining the CMB exclusively with galax-
ies or weak lensing in Fig. VIII, are consistent with the
results in Refs. [156, 157], even with the introduction
of early dark energy.

The sum of neutrino masses is most strongly con-
strained by the CMB temperature and lensing spectra
(including their cross-correlation), at the level of 0.20
eV when the curvature is fixed (Table IV). When cur-
vature is allowed to vary, the sum of neutrino mass
constraint degrades to 0.22 eV. There is a strong de-
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FIG. 11. Bands show the allowed values for the sum of
neutrino masses as a function of the lightest neutrino mass
eigenstate. The branch with higher values is for the in-
verted mass hierarchy. We have used the constraints on the
neutrino mass squared differences from the Particle Data
Group [153] to create bands of the allowed regions. The 3
horizontal lines show the 1σ Fisher matrix error estimates
for the cases PK+Ωk (0.22 eV, Table VI), PK−Ωe (0.15
eV, Table V) and PKLκLgLs + Ωk (0.04 eV, Table VI).

cross-correlations we have introduced. For compari-
son, considering only one probe, the constraint degra-
dation could be up to a factor of 3 in dark energy and
neutrino mass parameters (Table IV). This insensitiv-
ity to nonlinear scales is maintained even without SN
measurements (Table VII).
Comparing Table IV with Table VI, i.e. compar-

ing constraints for a flat universe with a universe
that allows for a possible non-zero curvature, shows
the CMB temperature, polarization, and lensing con-
straints on Ωk from Planck improve by an order of
magnitude when accounting for future weak lensing,
galaxy clustering, and supernova measurements from
LSST or JDEM. The SN measurements are, as ex-
pected, most sensitive to the curvature prior, exhibit-
ing significant degradations in parameters across the
board. This motivates the consistent use of a CMB
curvature prior for SN measurements. The parame-
ter that the SN observations with a JDEM-like sur-
vey measure well is the dark energy EOS (the relative
weakness of SNe from LSST is explained in Sec. II I).
Tables VI and VII show that the neglect of SN obser-
vations has < 10% impact on the cosmological con-
straints for LSST, whereas for a JDEM survey the
dark energy parameters degrade by up to 50% with-
out SN measurements. The same features are found
in the scenarios with an ℓmax = 1000 nonlinear cutoff
in multipole space.
Tables VI and IX show that most parameters im-

prove by 20% − 40% when cross-correlations are in-
cluded for LSST. The cross-correlations have a greater
impact for JDEM than for LSST. In particular, the
early dark energy density, baryon and CDM densities,
and sum of neutrino mass constraints improve by up
to factor of 2 with cross-correlations, the curvature

FIG. 12. Error ellipses showing degeneracies between the
sum of neutrino masses (

∑
mν) and the effective num-

ber of neutrinos (Neff) in a flat universe, where we have
marginalized over the early dark energy density. The
curves have the same meaning as in Fig. 9. Even for
our extended parameter spaces, the CMB temperature as
measured by Planck will be able to determine the possible
existence of extra relativistic species, while the combina-
tion of experimental probes is extremely helpful in pinning
down the sum of neutrino masses.

density constraint improves by factor of 3 (also for
LSST), while the improvement in the other parame-
ters are at the same 20%−40% level as for LSST. Nat-
urally, when we weaken the parameter constraints by
imposing ℓmax = 1000 in galaxy and lensing tomog-
raphy, the impact of the cross-correlations increases
somewhat (e.g. an additional 20% in early dark energy
and sum of neutrino masses for JDEM). These quanti-
tative comparisons between a full covariance and one
without cross-correlations largely hold true indepen-
dently of the SN sample. In the final analysis with
all cross-correlations, both JDEM and LSST are ex-
pected to provide similar parameter constraints even
though the individual constraints and systematics are
different.
We now turn attention to the impact of keeping

EDE fixed. In Table V we explore the case where EDE
exists but is kept fixed for the Fisher matrix analysis.
We expect this to mimic the analysis where the exis-
tence of EDE is neglected. We explore biases resulting
from such a scenario in the ensuing section. We expect
the constraints in this limit (of keeping Ωe fixed) to
match the constraints in a non-EDE cosmology, i.e.,
the standard case with Ωe = 0. Table V shows that
the CMB temperature and polarization constraints on
cosmology are nearly unaffected (∼< 10% differences)
by the removal of EDE. The removal of EDE improves
the sum of neutrino masses by 30%, and most other
parameter constraints by ∼< 10% when CMB lensing
is included.
If we turn to the non-CMB probes, we find that sig-

nificant degeneracies with Ωe exist for the dark energy
parameters, sum of neutrino masses, and the param-
eters determining the normalization, spectral index,
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