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INTRODUCTION
• Baryogenesis via Leptogenesis

- Due to (B-L)-conserving and (B+L)-violating process makes  
Lepton asymmetry         Baryon asymmetry

- Neutrino physics can show its footprints.  

• Affleck-Dine mechanism
- scalar field dynamics in SUSY: CPV in SUSY breaking parameters

- Along LHu direction: lepton number generation

light neutrino mass required <10-9 eV; neutrinoless double beta decay

• Varying PQ scale

- PQ scale ~ Mp during leptogenesis but fa~109-12 GeV afterwards

neutrino mass ~10-4 eV; suppress axion isocurvature



INTRODUCTION
• Dine-Fischler-Srednicki-Zhitnitsky model

- Dilution from saxion decay determines final lepton(baryon) asymmetry

- SUSY DFSZ model provides strong CP solution, mu-term, also RHN mass

- suppress unwanted lepton number violation during saxion oscillation 14
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FIG. 1: Contours of m⌫1 [eV] on the (µ, fa) plane to reproduce the observed baryon asymmetry. In the left
(right) panel we have taken m� = 5µ (m� = µ/5) while msoft = m� = 10m� (msoft = m� = 50m�). The
light (dark) red shaded region corresponds to T� < 10GeV (1GeV) and the grey shaded region is excluded
by the KamLAND-Zen experiment. The light-gray shaded region is constrained by Planck+BAO [34]. The
light-purple shaded region indicates bound from SN1987A [35]. The blue shaded region corresponds to
µ = (0.01� 1)f2

a/MP .

region shows parameter space where the lightest neutrino mass is larger than the KamLAND-Zen

bound [33]. We also show a bound from Planck+BAO constraint on the sum of neutrino masses,

(
P

m⌫) < 0.17 eV [34]. The light-purple shaded region shows the bound from SN1987A [35]. The

(light-)red shaded region shows parameter space where the saxion decay temperature is smaller

than 1 GeV (10 GeV). The blue shade indicates the region for which µ = (0.01 � 1)f2
a/MP . We

consider fixed TR = 106 GeV since larger TR does not change or does suppress nB/s (see Eq. (28)).

In the case where nB/s is suppressed, it requires a smaller neutrino mass that is less attractive.

From the figure, it is clearly shown that neutrino mass is large for large µ and small fa while it

becomes smaller for small µ and large fa. This feature stems from the saxion decay temperature.

The saxion decay temperature is enhanced by the µ-term while suppressed by fa. It is also of great

importance that small fa is good for obtaining a flatter direction during lepton number generation

as shown in Eq. (6). For µ & 1 TeV and fa . 1010 GeV, our model predicts a rather large neutrino

mass so that it is constrained by recent neutrinoless double beta decay (0⌫��) experiment. For

this constraint, we take a conservative bound from KamLAND-Zen, m⌫ < 0.48 eV [33]. From the

lower-right corner (µ ⇠ 105 GeV, fa ⇠ 1010 GeV) to the upper-left corner (µ ⇠ 102 GeV, fa ⇠ 1012

GeV), the resulting neutrino mass scans over 10�1
� 10�8 eV.
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BARYON ASYMMETRY
Baryon Asymmetry of the Universe:

⌘B is determined both from light element production in Big Bang Nucleosynthesis (BBN)

and also from CMB measurements. Alternatively, this is sometimes expressed as the

baryon-to-entropy ratio
nB

s
' 10�10 (1.7)

where s ' 7.04n� in the present epoch.

Production of the baryon asymmetry of the Universe or BAU requires mechanisms

which satisfy the three Sakharov criteria: 1. baryon number violation, 2. C and CP

violation and 3. a departure from thermal equilibrium. Early proposals such as Planck

scale or GUT scale baryogenesis seem no longer viable since the BAU would have been

inflated away during the inflationary epoch of the Universe. Alternatively, most modern

proposals for developing the BAU take place after the end of the inflationary epoch, at

or after the era of re-heating which occurs around the re-heat temperature TR. In fact,

the SM contains all the ingredients for successful electroweak baryogenesis since baryon

(and lepton) number violating processes can take place at large rates at high temperature

T > Tweak ⇠ 100 GeV via sphaleron processes [43]. Unfortunately, these first order phase

transition e↵ects require a Higgs mass . 50 GeV, and so has been excluded for many years.

By invoking supersymmetry, then new possibilities emerge for electroweak baryogenesis.

However, successful SUSY electroweak baryogenesis seems to require a Higgs mass mh .
113 GeV and a right-handed top-squark m

t̃R
. 115 GeV [44]. These limits can be relaxed

to higher values so long as other sparticle/Higgs masses such as mA � 10 TeV. Such heavy

Higgs masses are not allowed if we stay true to our guidance from naturalness: after all,

Eq. 1.2 requires m2
Hd

/ tan2 � . m
2
Z
/2. For heavy Higgs masses, then mA ⇠ mHd and then

from naturalness we find mA . 4� 8 TeV (depending on tan�) [45].

In Sec. 2, we survey several leptogenesis mechanisms as the most promising baryogen-

esis mechanisms: 1. thermal leptogenesis [46, 47], 2. non-thermal leptogenesis via inflaton

decay [49] 3. leptogenesis from oscillating sneutrino decay [50, 52] and 4. leptogenesis via

an A✏eck-Dine condensate [53, 54, 50].

Each of these processes requires some range of re-heat temperature TR and gravitino

mass m3/2, and indeed some of them run into conflict with the so-called cosmological

gravitino problem [55]. In this case, gravitinos can be thermally produced in the early

universe at a rate proportional to TR [56]. If TR is too high then too much dark matter

arises from thermal gravitino production followed by cascade decays to the LSP. Also, even

if dark matter abundance constraints are respected, if the gravitino is too long-lived, then

it may decay after the onset of BBN thus destroying the successful BBN predictions of the

light element abundances [57, 58, 59].

In the case of natural SUSY with mixed axion-higgsino dark matter, then similar con-

straints arise from axino and saxion production: WIMPs or axions can be overproduced,

or light element abundances can be destroyed by late decaying axinos and saxions. After

a brief review of the several leptogenesis mechanisms in Sec. 2, in Sec. 3 we show con-

straints on leptogenesis in the TR vs. m3/2 planes assuming a natural SUSY spectrum. In

Sec. 4, we show corresponding results in the TR vs. fa planes. We vary the PQ scale fa

from values favored by naturalness fa ⇠ 1010 � 1012 GeV to much higher values. While
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ber can be used to infer the ratio of the number density of baryons to photons in the

Universe, a quantity that is measured independently from the primordial nucleosynthesis

of light elements. The WMAP results [4] are in agreement with the most recent nucle-

osynthesis analysis of the primordial Deuterium abundance, but there are discrepancies

with both the inferred 4He and 7Li values [5]. These latter values, however, may have an

underestimated error [6]. Averaging the WMAP result only with that coming from the

primordial abundance of Deuterium gives:

nB

nγ
≡ ηB = 6.1 ± 0.3 × 10−10. (1)

Why does this ratio have this value?

In this review, we will principally try to address this last question which, as we shall

see, is intimately related to the existence of a primordial matter-antimatter asymmetry.

Nevertheless, we shall try, when germane, to connect our discussion with the broader

issues of what constitutes dark energy and dark matter.

There is good evidence that the Universe is mostly made up of matter, although it is

possible that small amounts of antimatter exist [7]. However, antimatter certainly does

not constitute one of the dominant components of the Universe’s energy density. Indeed,

as Cohen, de Rujula, and Glashow [8] have compellingly argued, if there were to exist

large areas of antimatter in the Universe they could only be at a cosmic distance scale

from us. Thus, along with the question of why nB/nγ has the value given in Eq. (1),

there is a parallel question of why the Universe is predominantly composed of baryons

rather than antibaryons.

In fact, these two questions are interrelated. If the Universe had been matter-

antimatter symmetric at temperatures of O(1 GeV), as the Universe cools further and

the inverse process 2γ → B+B̄ becomes ineffective because of the Boltzmann factor, the

number density of baryons and antibaryons relative to photons would have been reduced

dramatically as a result of the annihilation process B + B̄ → 2γ. A straightforward

calculation gives, in this case, [9]:

nB

nγ
=

nB̄

nγ
≃ 10−18. (2)

Thus, in a symmetric Universe the question is really why observationally nB/nγ is so

large!

It is very difficult to imagine processes at temperatures below a GeV that could

enhance the ratio of the number density of baryons relative to that of photons much

beyond the value this quantity attains when baryon-antibaryon annihilation occurs.2

2An exception is provided by some versions of Affleck-Dine Baryogenesis [10] where a baryon excess

4

observed: cf) if universe were 
symmetric

• Inflation dilutes all pre-existing particles.

Sakharov’s conditions:

• We need a source of B asym. after inflation.

• B violation
• C & CP violation
• departure from thermal equilibrium



B & L VIOLATION
• In the SM, baryon & lepton number are (accidental) symmetry 

at the tree-level.
• Due to chiral nature of leptons & quarks, B & L have anomalies

2.2 B + L Violation in the Standard Model

Due to the chiral nature of the electroweak interactions, baryon and lepton number are

not conserved in the Standard Model [17]. The divergence of the B and L currents,

JB
µ =

1

3

∑

generations

(
qLγµqL + uRγµuR + dRγµdR

)
, (4)

JL
µ =

∑

generations

(
lLγµlL + eRγµeR

)
, (5)

is given by the triangle anomaly,

∂µJB
µ = ∂µJL

µ

=
Nf

32π2

(
−g2W I

µνW̃
Iµν + g′2BµνB̃

µν
)

. (6)

Here Nf is the number of generations, and W I
µ and Bµ are, respectively, the SU(2) and

U(1) gauge fields with gauge couplings g and g′.

As a consequence of the anomaly, the change in baryon and lepton number is related

to the change in the topological charge of the gauge field,

B(tf ) − B(ti) =
∫ tf

ti
dt
∫

d3x∂µJB
µ

= Nf [Ncs(tf ) − Ncs(ti)] , (7)

where

Ncs(t) =
g3

96π2

∫
d3xϵijkϵ

IJKW IiW JjW Kk . (8)

For vacuum to vacuum transitions W Ii is a pure gauge configuration and the Chern-

Simons numbers Ncs(ti) and Ncs(tf ) are integers.

In a non-abelian gauge theory there are infinitly many degenerate ground states,

which differ in their value of the Chern-Simons number, ∆Ncs = ±1,±2, . . .. The corre-

ponding points in field space are separated by a potential barrier whose height is given

by the so-called sphaleron energy Esph [18]. Because of the anomaly, jumps in the Chern-

Simons number are associated with changes of baryon and lepton number,

∆B = ∆L = Nf∆Ncs . (9)

Obviously, in the Standard Model the smallest jump is ∆B = ∆L = ±3.

In the semiclassical approximation, the probability of tunneling between neighboring

vacua is determined by instanton configurations. In the Standard Model, SU(2) instan-

tons lead to an effective 12-fermion interaction

OB+L =
∏

i=1...3

(qLiqLiqLilLi) , (10)
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• At quantum level, (B-L) is conserved but (B+L) is violated.
E

Msph

B = b0−Nf

L = l0−Nf

B = b0

L = l0

B = b0+Nf

L = l0+Nf

[A,ϕ ][Asph, ϕsph ]

Figure 1.1: A Schematic behavior of the energy dependence on the configuration of
the gauge and Higgs fields [A(x),ϕ(x) ] [6]. The minima correspond to topologically
distinct vacua with different baryon (B) and lepton (L) numbers. The configuration
[Asph(x), ϕsph(x) ] represents the saddle point of the energy functional, the sphaleron
solution.

to the next vacuum (B = b0 ± Nf and L = l0 ± Nf) occurs at the rate [6]

Γ = C(T ) T exp

(

−
Msph(T )

T

)

, (1.5)

where dimensionless factor C(T ) depends on the ratio v(T )/T and the coupling constants.4

Msph(T ) represents the free energy of the sphaleron configuration (at temperature T ),

which is given by [31]

Msph(T ) = 4πB(T )
v(T )

g2(T )
, (1.6)

where B(T ) depends on the gauge coupling g2(T ) and the 4-point coupling constant of

the Higgs potential λ(T ) as B = B(λ/g2
2), varying from 1.5 (λ/g2

2 → 0) to 2.7 (λ/g2
2 →

∞) [31]. The rate in Eq. (1.5) should be compared with the Hubble expansion rate

H = (π2g∗/90)1/2 × T 2/MG. (MG = 2.4× 1018 GeV is the reduced Planck scale and g∗ is

defined in Appendix B.2.) Then, it is found that the sphaleron rate in Eq. (1.5) indeed

exceeds the Hubble expansion rate for T > T∗, where T∗ is given by

T∗ ≃ 4πB(T∗)
v(T∗)

g2(T∗)
×
[
ln
(

MG

T∗

)]−1

. (1.7)

4See comments below.

8

(B+L) violating vacuum transition

which describes processes with ∆B = ∆L = 3, such as

uc + dc + cc → d + 2s + 2b + t + νe + νµ + ντ . (11)

The transition rate is determined by the instanton action and one finds [17]

Γ ∼ e−Sinst = e−
4π
α

= O
(
10−165

)
. (12)

Because this rate is extremely small, (B + L)-violating interactions appear to be com-

pletely negligible in the Standard Model. However, this picture changes dramatically

when one is in a thermal bath.

2.3 Sphalerons and the KRS Mechanism

As emphasized in the seminal paper of Kuzmin, Rubakov and Shaposhnikov [13], in the

thermal bath provided by the expanding Universe one can make transitions between the

gauge vacua not by tunneling, but through thermal fluctuations over the barrier. For

temperatures larger than the height of the barrier, the exponential suppresion in the

rate provided by the Boltzmann factor disappears completely. Hence (B+L)-violating

processes can occur at a significant rate and these processes can be in equilibrium in the

expanding Universe.

The finite-temperature transition rate in the electroweak theory is determined by

the sphaleron configuration [18], a saddle point of the field energy of the gauge-Higgs

system. Fluctuations around this saddle point have one negative eigenvalue, which allows

one to extract the transition rate. The sphaleron energy is proportional to vF (T ), the

finite-temperature expectation value of the Higgs field, and one finds

Esph(T ) ≃
8π

g
vF (T ) . (13)

Taking translational and rotational zero-modes into account, one obtains for the transi-

tion rate per unit volume in the Higgs phase [19]

ΓB+L

V
= κ

M7
W

(αT )3
e−βEsph(T ) , (14)

where β = 1/T , MW = g2vF (T )/2 and κ is some constant.

Extrapolating this semiclassical formula to the high-temperature symmetric phase,

where vF (T ) = 0, and using for MW the thermal mass, MW ∼ g2T , one expects in this

phase ΓB+L/V ∼ (αT )4. However, detailed studies have shown that this naive extrapo-

lation from the Higgs to the symmetric phase is not quite correct. The relevant spatial

8

Figure from hep-ph/0212305



B & L VIOLATION
• At high temperature,
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Figure 1.1: A Schematic behavior of the energy dependence on the configuration of
the gauge and Higgs fields [A(x),ϕ(x) ] [6]. The minima correspond to topologically
distinct vacua with different baryon (B) and lepton (L) numbers. The configuration
[Asph(x), ϕsph(x) ] represents the saddle point of the energy functional, the sphaleron
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to the next vacuum (B = b0 ± Nf and L = l0 ± Nf) occurs at the rate [6]

Γ = C(T ) T exp

(

−
Msph(T )

T

)

, (1.5)

where dimensionless factor C(T ) depends on the ratio v(T )/T and the coupling constants.4

Msph(T ) represents the free energy of the sphaleron configuration (at temperature T ),

which is given by [31]

Msph(T ) = 4πB(T )
v(T )

g2(T )
, (1.6)

where B(T ) depends on the gauge coupling g2(T ) and the 4-point coupling constant of

the Higgs potential λ(T ) as B = B(λ/g2
2), varying from 1.5 (λ/g2

2 → 0) to 2.7 (λ/g2
2 →

∞) [31]. The rate in Eq. (1.5) should be compared with the Hubble expansion rate

H = (π2g∗/90)1/2 × T 2/MG. (MG = 2.4× 1018 GeV is the reduced Planck scale and g∗ is

defined in Appendix B.2.) Then, it is found that the sphaleron rate in Eq. (1.5) indeed

exceeds the Hubble expansion rate for T > T∗, where T∗ is given by

T∗ ≃ 4πB(T∗)
v(T∗)

g2(T∗)
×
[
ln
(

MG

T∗

)]−1

. (1.7)

4See comments below.

8

(B+L) violating transition 
via thermal fluctuationscale for non-perturbative fluctuations is the magnetic screening length ∼ 1/(g2T ), but

the corresponding time scale turns out to be 1/(g4T ln g−1), which is larger for small

coupling [20, 21]. As a consequence one obtains for the sphaleron rate in the symmetric

phase

ΓB+L/V ∼ α5 ln α−1T 4. (15)

It turns out that the dynamics of low-frequency gauge fields can be described by

a remarkably simple effective theory, derived by Bödeker [21]. The color magnetic and

electric fields satisfy the equation of motion

D⃗ × B⃗ = σE⃗ − ζ⃗ . (16)

Here ζ⃗ is Gaussian noise, a random vector field with variance

⟨ζi(x)ζj(x
′)⟩ = 2σδijδ

4(x − x′) . (17)

These equations define a stochastic three-dimensional gauge theory. The parameter σ is

the ‘color conductivity’, σ = m2
D/(3γ), where mD ∼ gT is the Debye screening mass and

γ ∼ g2T ln(1/g) is the hard gauge boson damping rate. To leading-log accuracy one has

1/σ ∼ ln g−1. A next-to-leading order analysis yields for the sphaleron rate [22]

ΓB+L

V
= (10.8 ± 0.7)

(
gT

mD

)2

α5T 4

[

ln

(
mD

γ

)

+ 3.041 +

(
1

ln (1/g)

)]

. (18)

The overall coefficient has been determined by a numerical lattice simulation [23]. From

Eq. (18) one easily obtains the temperature range where sphaleron processes are in

thermal equilibrium:

TEW ∼ 100 GeV < T < Tsph ∼ 1012 GeV . (19)

The effective theory describing topological fluctuations of the gauge field in the high-

temperature phase is valid for small coupling, g ≪ 1. Yet for TEW < T < Tsph ∼ 1012 GeV

one has g = O(1). This implies that the electric screening lenth 1/(gT ) and the magnetic

screening length 1/(g2T ) are not well separated and that nonperturbative corrections to

the sphaleron rate, Eq. (18), may be large. This will modify the temperature range given

in Eq. (19), but one expects that the qualitative picture of fluctuations in baryon and

lepton number in the high-temperature phase of the Standard Model will not be affected.

2.4 Electroweak Baryogenesis and its Experimental Con-

straints

An important ingredient in the theory of Baryogenesis is related to the nature of the elec-

troweak transition from the high-temperature symmetric phase to the low-temperature

9

• (B+L) violating interaction is in thermal equilibrium for
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9

• L number can be transferred into B number and vice versa.

“sphaleron”

Figure from hep-ph/0212305



LEPTOGENESIS
• Number for asymmetry

2.5 The Relation Between Baryon and Lepton Asymmetries

In a weakly coupled plasma, one can assign a chemical potential µ to each of the quark,

lepton and Higgs fields. In the Standard Model, with one Higgs doublet H and Nf

generations one then has 5Nf + 1 chemical potentials.5 For a non-interacting gas of

massless particles the asymmetry in the particle and antiparticle number densities is

given by

ni − ni =
gT 3

6

⎧
⎨

⎩
βµi + O

(
(βµi)

3
)

, fermions ,

2βµi + O
(
(βµi)

3
)

, bosons .
(21)

The following analysis is based on these relations for βµi ≪ 1. However, one should keep

in mind that the plasma of the early Universe is very different from a weakly coupled

relativistic gas, owing to the presence of unscreened non-abelian gauge interactions, where

nonperturbative effects are important in some cases.

Quarks, leptons and Higgs bosons interact via Yukawa and gauge couplings and, in

addition, via the nonperturbative sphaleron processes. In thermal equilibrium all these

processes yield constraints between the various chemical potentials [35]. The effective

interaction of Eq. (10) induced by the SU(2) electroweak instantons implies

∑

i

(3µqi + µli) = 0 . (22)

One also has to take the SU(3) Quantum Chromodynamics (QCD) instanton processes

into account [36], which generate an effective interaction between left-handed and right-

handed quarks. The corresponding relation between the chemical potentials reads

∑

i

(2µqi − µui − µdi) = 0 . (23)

A third condition, valid at all temperatures, arises from the requirement that the total

hypercharge of the plasma vanishes. From Eq. (21) and the known hypercharges one

obtains
∑

i

(

µqi + 2µui − µdi − µli − µei +
2

Nf
µH

)

= 0 . (24)

The Yukawa interactions, supplemented by gauge interactions, yield relations be-

tween the chemical potentials of left-handed and right-handed fermions,

µqi − µH − µdj = 0 , µqi + µH − µuj = 0 , µli − µH − µej = 0 . (25)

These relations hold if the corresponding interactions are in thermal equilibrium. In the

temperature range 100 GeV < T < 1012 GeV, which is of interest for Baryogenesis,
5In addition to the Higgs doublet, the two left-handed doublets qi and ℓi and the three right-handed

singlets ui, di, and ei of each generation each have an independent chemical potential.
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• chemical potentials in equilibrium (SM)
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• equations can be expressed by

this is the case for gauge interactions. On the other hand, Yukawa interactions are in

equilibrium only in a more restricted temperature range that depends on the strength of

the Yukawa couplings. In the following we shall ignore this complication which has only

a small effect on our discussion of Leptogenesis.

Using Eq. (21), the baryon number density nB ≡ gBT 2/6 and the lepton number

densities nLi
≡ LigT 2/6 can be expressed in terms of the chemical potentials:

B =
∑

i

(2µqi + µui + µdi) , (26)

Li = 2µli + µei , L =
∑

i

Li . (27)

Consider now the case where all Yukawa interactions are in equilibrium. The asym-

metries Li − B/Nf are then conserved and we have equilibrium between the different

generations, µli ≡ µl, µqi ≡ µq, etc. Using also the sphaleron relation and the hyper-

charge constraint, one can express all chemical potentials, and therefore all asymmetries,

in terms of a single chemical potential that may be chosen to be µl,

µe =
2Nf + 3

6Nf + 3
µl , µd = −

6Nf + 1

6Nf + 3
µl , µu =

2Nf − 1

6Nf + 3
µl ,

µq = −
1

3
µl , µH =

4Nf

6Nf + 3
µl . (28)

The corresponding baryon and lepton asymmetries are

B = −
4Nf

3
µl , L =

14N2
f + 9Nf

6Nf + 3
µl . (29)

This yields the important connection between the B, B − L and L asymmetries [37]

B = cs(B − L); L = (cs − 1)(B − L) , (30)

where cs = (8Nf + 4)/(22Nf + 13). The above relations hold for temperatures T ≫ vF .

In general, the ratio B/(B − L) is a function of vF /T [38].

The relations (30) between B-, (B-L)- and L-number suggest that (B-L)-violation is

needed in order to generate a B-asymmetry.6 Because the (B-L)-current has no anomaly,

the value of B-L at time tf , where the Leptogenesis process is completed, determines the

value of the baryon asymmetry today,

B(t0) = cs (B − L)(tf ) . (31)
6In the case of Dirac neutrinos, which have extremely small Yukawa couplings, one can construct

Leptogenesis models where an asymmetry of lepton doublets is accompanied by an asymmetry of right-

handed neutrinos such that the total L-number is conserved and the (B-L)-asymmetry vanishes [39].
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• Non-zero B & L are generated if (B-L)≠0 in equilibrium

B

L

B = C(B − L)
(equilibrium)

B − L = 0

B − L < 0

B − L > 0

(i)

(ii)

Figure 1.2: The relation between baryon (B) and lepton (L) number. Thin dotted lines
correspond to constant B −L, along which B and L can move via the sphaleron process.
At equilibrium, B and L reach the thick dashed line, which represents B = C(B − L).

lepton asymmetry (and hence B − L asymmetry) is generated in an out-of-equilibrium

way, it is partially converted into baryon asymmetry [9]. (See the arrow (ii) in Fig. 1.2.)

The amount of the baryon asymmetry at equilibrium is obtained from Eq. (1.18) as

nB

s

∣∣∣∣
eq

= C
nB − nL

s

∣∣∣∣
eq

= −C
nL

s

∣∣∣∣
initial

, (1.20)

where we have normalized the number densities by the entropy density, so that they

become constant against the expansion of the universe.

In the case of the MSSM, we have an additional Higgs doublet as well as supersym-

metric partners. Let us calculate the coefficient C in the presence of those particles.

First, the (gaugino)-(fermion)-(sfermion)∗ interactions ensure that the chemical poten-

tial of each sfermion7 is the same as that of the corresponding fermion. (Note that the

chemical potentials of the gauginos vanish since they are Majorana particles.) Next, the

supersymmetric mass term W = µHuHd makes the chemical potentials of the up-type and

7”sfermion” denotes a scalar partner of the fermion.
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Q: How do we generate (B-L)≠0 in the early 
universe?



THERMAL LEPTO.
Decay of thermally produced RHN:

If              , N is abundantly produced.T > mN

it decays through neutrino coupling.

thermal leptogensis mechanism is quite constrained depending on m3/2 and TR, the latter

three mechanisms appear plausible over a wide range of TR, m3/2 and fa values which are

consistent with naturalness. A summary and some conclusions are presented in Sec. 5.

2. Survey of some baryogenesis mechanisms

2.1 Thermal leptogenesis (THL)

Thermal leptogenesis [46, 47, 48] is a baryogenesis mechanism which relies on the intro-

duction of three intermediate mass scale right hand singlet neutrinos Ni (i = 1 � 3) so

that the (type I) see-saw mechanism [31] elegantly generates a very light spectrum of usual

neutrino masses. The superpotential is given by

W 3
1

2
MiNiNi + hi↵NiL↵Hu (2.1)

where we assume a basis for the Ni masses which is diagonal and real. The index ↵

denotes the lepton doublet generations and hi↵ are the neutrino Yukawa couplings. From

the see-saw mechanism, one expects a spectrum of three sub-eV mass Majorana neutrinos

m1, m2 and m3 and three heavy neutrinos M1 < M2 < M3 where in GUT-type theories

one typically expects M3 ⇠ 1015 GeV. If the heavy neutrino masses are hierarchical (as

assumed here) like the quark masses, then one might expect M1/M3 ⇠ mu/mt ⇠ 10�5 and

so perhaps M1 ⇠ 1010 GeV.

After inflation, then it is assumed the Universe re-heats to a temperature TR & M1

thus creating a thermal population of N1s. The N1 decay asymmetrically as N1 ! LHu

vs. L̄H̄u due to interference between tree and loop-level decay diagrams which include CP

violating interactions. The CP asymmetry factor

✏1 ⌘
�(N1 ! LHu)� �(N1 ! L̄H̄u)

�N1

(2.2)

is calculated to be [60]

✏1 '
3

8⇡

M1

hHui
2
m⌫3�e↵ (2.3)

where hHui ' 174 GeV sin� and �e↵ is an e↵ective CP-violating phase which depends on

the MNS matrix elements and which is expected to be �e↵ ⇠ 1. For hierarchical heavy

neutrinos, one expects

✏1 ⇠ 2⇥ 10�10

✓
M1

106 GeV

◆⇣
m⌫3

0.05 eV

⌘
�e↵ . (2.4)

The ultimate lepton asymmetry requires evaluation via a coupled Boltzmann equation

calculation [61]. Once N1 is in thermal equilibrium, its number-density-to-entropy-density

ratio is simply proportional to 1/g⇤ where the degree of freedom g⇤ = 232.5 for MSSM.

The lepton-number-density to entropy ratio is then given by

nL

s
= ✏1

nN1

s
' 

✏1

240
(2.5)

– 6 –

CPV in coupling produces asymmetry

thermal leptogensis mechanism is quite constrained depending on m3/2 and TR, the latter

three mechanisms appear plausible over a wide range of TR, m3/2 and fa values which are

consistent with naturalness. A summary and some conclusions are presented in Sec. 5.

2. Survey of some baryogenesis mechanisms

2.1 Thermal leptogenesis (THL)

Thermal leptogenesis [46, 47, 48] is a baryogenesis mechanism which relies on the intro-

duction of three intermediate mass scale right hand singlet neutrinos Ni (i = 1 � 3) so

that the (type I) see-saw mechanism [31] elegantly generates a very light spectrum of usual

neutrino masses. The superpotential is given by

W 3
1

2
MiNiNi + hi↵NiL↵Hu (2.1)

where we assume a basis for the Ni masses which is diagonal and real. The index ↵

denotes the lepton doublet generations and hi↵ are the neutrino Yukawa couplings. From

the see-saw mechanism, one expects a spectrum of three sub-eV mass Majorana neutrinos

m1, m2 and m3 and three heavy neutrinos M1 < M2 < M3 where in GUT-type theories

one typically expects M3 ⇠ 1015 GeV. If the heavy neutrino masses are hierarchical (as

assumed here) like the quark masses, then one might expect M1/M3 ⇠ mu/mt ⇠ 10�5 and

so perhaps M1 ⇠ 1010 GeV.

After inflation, then it is assumed the Universe re-heats to a temperature TR & M1

thus creating a thermal population of N1s. The N1 decay asymmetrically as N1 ! LHu

vs. L̄H̄u due to interference between tree and loop-level decay diagrams which include CP

violating interactions. The CP asymmetry factor

✏1 ⌘
�(N1 ! LHu)� �(N1 ! L̄H̄u)

�N1

(2.2)

is calculated to be [60]

✏1 '
3

8⇡

M1

hHui
2
m⌫3�e↵ (2.3)

where hHui ' 174 GeV sin� and �e↵ is an e↵ective CP-violating phase which depends on

the MNS matrix elements and which is expected to be �e↵ ⇠ 1. For hierarchical heavy

neutrinos, one expects

✏1 ⇠ 2⇥ 10�10

✓
M1

106 GeV

◆⇣
m⌫3

0.05 eV

⌘
�e↵ . (2.4)

The ultimate lepton asymmetry requires evaluation via a coupled Boltzmann equation

calculation [61]. Once N1 is in thermal equilibrium, its number-density-to-entropy-density

ratio is simply proportional to 1/g⇤ where the degree of freedom g⇤ = 232.5 for MSSM.

The lepton-number-density to entropy ratio is then given by

nL

s
= ✏1

nN1

s
' 

✏1

240
(2.5)

– 6 –

N1

l

H

+ N1
H

l

N

H

l

+

l

H
NN1

l

H

Figure 1: Tree level and one-loop diagrams contributing to heavy neutrino decays whose

interference leads to Leptogenesis.

Once the temperature of the universe drops below the mass M1, the heavy neutrinos are

not able to follow the rapid change of the equilibrium distribution. Hence, the necessary

deviation from thermal equilibrium ensues as a result of having a too large number

density of heavy neutrinos, compared to the equilibrium density. Eventually, however, the

heavy neutrinos decay, and a lepton asymmetry is generated owing to the presence of CP-

violating processes. The CP asymmetry involves the interference between the tree-level

amplitude and the one-loop vertex and self-energy contributions (see Fig. (1)). In a basis,

where the right-handed neutrino mass matrix M is diagonal, one obtains [57] for the CP

asymmetry parameter ε1 assuming hierarchical heavy neutrino masses (M1 ≪ M2, M3):

ε1 ≃
3

16π

1

(hh†)11

∑

i=2,3

Im
[(

hh†
)2

i1

]
M1

Mi
. (55)

In the case of mass differences of order the decay widths, one obtains a significant en-

hancement from the self-energy contribution [58], although the influence of the thermal

bath on this effect is presently unclear.

The CP asymmetry of Eq. (55) can be obtained in a very simple way by first inte-

grating out the heavier neutrinos N2 and N3 in the leptonic Lagrangian. This yields

Leff
ν = h1jNR1ℓLjH −

1

2
M1N c

R1NR1 +
1

2
ηijℓLiHℓLjH + h.c. , (56)

with

ηij =
3∑

k=2

hT
ik

1

Mk
hkj . (57)

The asymmetry ε1 is then obtained from the interference of the Born graph and the one-

loop graph involving the cubic and the quartic couplings. This includes automatically

both, vertex and self-energy corrections [59] and yields an expression for ε1 directly in

terms of the light neutrino mass matrix:

ε1 ≃ −
3

16π

M1

(hh†)11v2
F

Im
(
h∗mνh

†
)

11
. (58)

The CP asymmetry then leads to a (B-L)-asymmetry [12],

YB−L ≃ −YL = −
nL − nL

s
= −κ

ε1

g∗
. (59)
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thermal leptogensis mechanism is quite constrained depending on m3/2 and TR, the latter

three mechanisms appear plausible over a wide range of TR, m3/2 and fa values which are

consistent with naturalness. A summary and some conclusions are presented in Sec. 5.

2. Survey of some baryogenesis mechanisms

2.1 Thermal leptogenesis (THL)

Thermal leptogenesis [46, 47, 48] is a baryogenesis mechanism which relies on the intro-

duction of three intermediate mass scale right hand singlet neutrinos Ni (i = 1 � 3) so

that the (type I) see-saw mechanism [31] elegantly generates a very light spectrum of usual

neutrino masses. The superpotential is given by

W 3
1

2
MiNiNi + hi↵NiL↵Hu (2.1)

where we assume a basis for the Ni masses which is diagonal and real. The index ↵

denotes the lepton doublet generations and hi↵ are the neutrino Yukawa couplings. From

the see-saw mechanism, one expects a spectrum of three sub-eV mass Majorana neutrinos

m1, m2 and m3 and three heavy neutrinos M1 < M2 < M3 where in GUT-type theories

one typically expects M3 ⇠ 1015 GeV. If the heavy neutrino masses are hierarchical (as

assumed here) like the quark masses, then one might expect M1/M3 ⇠ mu/mt ⇠ 10�5 and

so perhaps M1 ⇠ 1010 GeV.

After inflation, then it is assumed the Universe re-heats to a temperature TR & M1

thus creating a thermal population of N1s. The N1 decay asymmetrically as N1 ! LHu

vs. L̄H̄u due to interference between tree and loop-level decay diagrams which include CP

violating interactions. The CP asymmetry factor

✏1 ⌘
�(N1 ! LHu)� �(N1 ! L̄H̄u)

�N1

(2.2)

is calculated to be [60]

✏1 '
3

8⇡

M1

hHui
2
m⌫3�e↵ (2.3)

where hHui ' 174 GeV sin� and �e↵ is an e↵ective CP-violating phase which depends on

the MNS matrix elements and which is expected to be �e↵ ⇠ 1. For hierarchical heavy

neutrinos, one expects

✏1 ⇠ 2⇥ 10�10

✓
M1

106 GeV

◆⇣
m⌫3

0.05 eV

⌘
�e↵ . (2.4)

The ultimate lepton asymmetry requires evaluation via a coupled Boltzmann equation

calculation [61]. Once N1 is in thermal equilibrium, its number-density-to-entropy-density

ratio is simply proportional to 1/g⇤ where the degree of freedom g⇤ = 232.5 for MSSM.

The lepton-number-density to entropy ratio is then given by

nL

s
= ✏1

nN1

s
' 

✏1

240
(2.5)

– 6 –

N in equilibrium; 

where the co-e�cient  accounts for washout e↵ects and the e�ciency of thermal N1

production. Numerical evaluations of  imply  ' 0.05� 0.3.

The induced lepton asymmetry becomes converted to a baryon asymmetry via B- and

L- violating but B � L conserving sphaleron interactions [43, 64]. The ultimate baryon

asymmetry is given by [65]

nB

s
' 0.35

nL

s
' 0.3⇥ 10�10

⇣


0.1

⌘✓
M1

109 GeV

◆⇣
m⌫3

0.05 eV

⌘
�e↵ (2.6)

provided that TR is large enough that the N1 are e�ciently produced by thermal interac-

tions: TR & M1. Naively, this requires TR & 1010 GeV although detailed calculations [61]

allow for TR & 1.5 ⇥ 109 GeV. This rather large lower bound on TR potentially leads to

conflict with the gravitino problem and violation of BBN bounds or overproduction of dark

matter. In the event that late-decaying relics inject entropy after N1 decay is complete,

then nL/s is modified by an entropy-dilution factor r: nL/s ! nL/rs.

It is worth commenting on variant thermal leptogenesis scenarios that can ameliorate

severe TR bound. In a simple scenario of thermal leptogenesis, the flavor dependence is

normally neglected by assuming the alignment of final state lepton and anti-lepton, i.e.,

CP (L) = L̄. In general, however, one can consider the case in which final state lepton

and anti-lepton are not aligned and thus the flavor e↵ect must be taken into account.

Depending on the temperature at which dominant lepton asymmetry is generated, flavor

e↵ect can enhance the final asymmetry by up to an order of magnitude [62]. On the other

hand, one can also consider the case of nearly degenerate right handed neutrinos rather

than hierarchical spectrum. If the mass di↵erence is as small as its decay width, i.e.,

(M1 � M2) ⇠ �N1 , the CP asymmetry factor is resonantly enhanced so that a successful

leptogenesis scenario is possible with O(TeV) right handed neutrino mass [63].

In this work, we examine the viability of various leptogenesis scenarios for natural

SUSY with mixed axion-higgsino dark matter. Nonetheless, we do not specify the structure

of neutrino sector. For a clear discussion, we will consider only simple scenario for the

thermal leptogenesis. If one consider a specific neutrino sector in which flavor and/or

resonant e↵ects are important, bound from thermal leptogenesis may be modified.

2.2 Non-thermal leptogenesis via inflaton decay (NTHL)

As an alternative to thermal leptogenesis, non-thermal leptogenesis posits a large branching

fraction of the inflaton field � into N1N1: � ! N1N1 which is followed by asymmetric N1

decay to (anti-)leptons as before. In this case, the N1 number-density-to-entropy-density

ratio is given by [49, 66]

nN1

s
'

⇢rad

s

n�

⇢�

nN1

n�

(2.7)

=
3

4
TR ⇥

1

m�

⇥ 2Br =
3

2
Br

TR

m�

(2.8)

where ⇢rad is the radiation density once reheating has completed and ⇢� is the energy

density stored in the inflaton field just before inflaton decay. Thus, ⇢rad ' ⇢� and ⇢� '

– 7 –

requires (naively)                               for enough N productionTR & 1.5⇥ 109 GeV

L CPWhen               (out-of-equilibrium decay),              T < mN

nN/s ⇠ 1/g⇤ ⇠ 1/200 nL = ✏1nN

washout factor

Fukugita, Yanagida; Luty; Campbell, Davidson, 
Olive; Buchmuller, Di Bari, Plumacher (02, 02)

Buchmuller, Di Bari, Plumacher (05)

mN1

=



GRAVITINO PROBLEM
Gravitino problem:

gravitinos are thermally produced

4. Cosmology with heavy axino/saxion and a gravitino as LSP

4.1 Two MSSM benchmark models: SUA and SOA

In this section, we will discuss the cosmological implications of heavy axinos and saxions,

concentrating on dark matter properties with the gravitino as the LSP. For definiteness, we

will present most of our results with reference to two commonly used post-LHC8 benchmark

scenarios.

The first, labelled SUA for standard underabundance, is generated from IsaSugra using

NUHM2 parameters m0 = 5000 GeV, m1/2 = 700 GeV, A0 = �8300 GeV and tan� = 10

with µ = 200 GeV andmA = 1 TeV. With such a low µ value, the model has 3% electroweak

fine-tuning with a Higgsino-like eZ1 with mass m eZ1
= 188 GeV where the standard thermal

abundance is given by ⌦std

eZ1
h2 = 0.013, a factor ⇠ 10 below the measured value.

The second benchmark case, labelled SOA for standard overabundance, is a mSUGRA/

CMSSM model with parameters chosen to be m0 = 3500 GeV, m1/2 = 500 GeV, A0 =

�7000 GeV, tan� = 10 with µ > 0. It contains a bino-like eZ1 with m eZ1
= 224.2 GeV and

with a standard relic overabundance ⌦std

eZ1
h2 = 6.8, a factor ⇠ 57 over the measured result.

4.2 Thermal and non-thermal gravitino production

The axino and saxion can be produced e�ciently in the early universe by thermal scattering,

decay and inverse decays which can alter the standard dark matter property. The axino

and saxion thermal production has been studied extensively for the KSVZ case [12, 13, 14]

as well as for the DFSZ case [15, 16, 17]. Depending on the PQ breaking scale, reheat

temperature, and axino mass, it can be either hot, warm or cold dark matter if the axino is

su�ciently light [18]. In such circumstances, the axion-axino mixed dark matter scenario

can also be realized [24]. Along with the axino, the saxion can also play an important

role in cosmology and astrophysics [25]. For conventional gravity mediation models with

a typical mass spectrum, mã ⇠ ms ⇠ m3/2 ⇠ msoft, the LSP is normally the lightest

neutralino, and the decays of the abundant axino and saxino have to be taken into account

as they can a↵ect the neutralino relic density. In such a case, the axion-neutralino mixed

dark matter scenario can be realized either in the KSVZ model [26, 27, 28, 29] or in the

DFSZ model [15, 17, 30, 33, 34].

In this work, we address a di↵erent possibility: the heavy axino/saxion with light

gravitino. As shown in Sec. 2, the axino and saxion can be much heavier than not only the

gravitino but also the MSSM sparticles. In this case, we have two dark matter candidate:

the gravitino and the axion. The axion dark matter is produced from coherent oscillations

during the QCD phase transition. Concerning the gravitino production, there are three

di↵erent sources in our scenario:

• thermal production

The gravitinos are produced from the thermal bath via interactions with MSSM

particles. The gravitino thermal density is given by [35, 36]

⌦TP

eG h2 = 0.21
⇣ meg
1 TeV

⌘2
✓
1 GeV

m3/2

◆✓
TR

108 GeV

◆
(4.1)

– 9 –

decays into LSP with long life-time; either 
producing too much DM or spoiling BBN; 
upper bound for TR

Bolz, Brandenburg, Buchmüller ; Strumia

Figure 4: BBN constraints for the Case 3.

Figure 5: BBN constraints for the Case 4.
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AFFLECK-DINE
• Scalar field with B (or L) number,
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• Many particle physics models lead to significant production of entropy at relatively late
times (Cohen, Kaplan and Nelson, 1993). This dilutes whatever baryon number existed previously. Co-
herent production can be extremely efficient, and in many models, it is precisely this late dilution which yields
the small baryon density observed today.

In the rest of this section, we discuss Affleck-Dine baryogenesis in some detail.

B. Baryogenesis Through a Coherent Scalar Field:

In supersymmetric theories, the ordinary quarks and leptons are accompanied by scalar fields. These scalar fields
carry baryon and lepton number. A coherent field, i.e., a large classical value of such a field, can in principle carry a
large amount of baryon number. As we will see, it is quite plausible that such fields were excited in the early universe.

To understand the basics of the mechanism, consider first a model with a single complex scalar field. Take the
lagrangian to be

L = |∂µφ|2 − m2|φ|2 (62)

This lagrangian has a symmetry, φ → eiαφ, and a corresponding conserved current, which we will refer to as baryon
number:

jµ
B = i(φ∗∂µφ− φ∂µφ∗). (63)

It also possesses a “CP” symmetry:

φ↔ φ∗. (64)

With supersymmetry in mind, we will think of m as of order MW .
If we focus on the behavior of spatially constant fields, φ(x⃗, t) = φ(t), this system is equivalent to an isotropic

harmonic oscillator in two dimensions. This remains the case if we add higher order terms which respect the phase
symmetry. In supersymmetric models, however, we expect that higher order terms will break the symmetry. In the
isotropic oscillator analogy, this corresponds to anharmonic terms which break the rotational invariance. With a
general initial condition, the system will develop some non-zero angular momentum. If the motion is damped, so that
the amplitude of the oscillations decreases, these rotationally non-invariant terms will become less important with
time.

Let us add interactions in the following way, which will closely parallel what happens in the supersymmetric case.
Include a set of quartic couplings:

LI = λ|φ|4 + ϵφ3φ∗ + δφ4 + c.c. (65)

These interactions clearly violate “B”. For general complex ϵ and δ, they also violate CP . In supersymmetric theories,
as we will shortly see, the couplings λ, ϵ, δ . . . will be extremely small, O(M2

W /M2
p ) or O(M2

W /M2
GUT

).
In order that these tiny couplings lead to an appreciable baryon number, it is necessary that the fields, at some

stage, were very large. To see how the cosmic evolution of this system can lead to a non-zero baryon number, first note
that at very early times, when the Hubble constant, H ≫ m, the mass of the field is irrelevant. It is thus reasonable
to suppose that at this early time φ = φo ≫ 0; later we will describe some specific suggestions as to how this might
come about. How does the field then evolve? First ignore the quartic interactions. In a gravitational background, the
equation of motion for the field is

D2
µφ+

∂V

∂φ
= 0, (66)

where Dµ is the covariant derivative. For a spatially homogeneous field, φ(t), in a Robertson-Walker background, this
becomes

φ̈+ 3Hφ̇+
∂V

∂φ
= 0. (67)

At very early times, H ≫ m, and so the system is highly overdamped and essentially frozen at φo. At this point,
B = 0. However, once the universe has aged enough that H ≪ m, φ begins to oscillate. Substituting H = 1

2t or
H = 2

3t for the radiation and matter dominated eras, respectively, one finds that

φ =

{
φo

(mt)3/2 sin(mt) (radiation)
φo

(mt) sin(mt) (matter).
(68)
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• small quartic couplings
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At very early times, H ≫ m, and so the system is highly overdamped and essentially frozen at φo. At this point,
B = 0. However, once the universe has aged enough that H ≪ m, φ begins to oscillate. Substituting H = 1

2t or
H = 2

3t for the radiation and matter dominated eras, respectively, one finds that

φ =

{
φo

(mt)3/2 sin(mt) (radiation)
φo

(mt) sin(mt) (matter).
(68)

B CP  (for complex couplings)

• Eq. of motion
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• Many particle physics models lead to significant production of entropy at relatively late
times (Cohen, Kaplan and Nelson, 1993). This dilutes whatever baryon number existed previously. Co-
herent production can be extremely efficient, and in many models, it is precisely this late dilution which yields
the small baryon density observed today.

In the rest of this section, we discuss Affleck-Dine baryogenesis in some detail.

B. Baryogenesis Through a Coherent Scalar Field:

In supersymmetric theories, the ordinary quarks and leptons are accompanied by scalar fields. These scalar fields
carry baryon and lepton number. A coherent field, i.e., a large classical value of such a field, can in principle carry a
large amount of baryon number. As we will see, it is quite plausible that such fields were excited in the early universe.

To understand the basics of the mechanism, consider first a model with a single complex scalar field. Take the
lagrangian to be

L = |∂µφ|2 − m2|φ|2 (62)

This lagrangian has a symmetry, φ → eiαφ, and a corresponding conserved current, which we will refer to as baryon
number:

jµ
B = i(φ∗∂µφ− φ∂µφ∗). (63)

It also possesses a “CP” symmetry:

φ↔ φ∗. (64)

With supersymmetry in mind, we will think of m as of order MW .
If we focus on the behavior of spatially constant fields, φ(x⃗, t) = φ(t), this system is equivalent to an isotropic

harmonic oscillator in two dimensions. This remains the case if we add higher order terms which respect the phase
symmetry. In supersymmetric models, however, we expect that higher order terms will break the symmetry. In the
isotropic oscillator analogy, this corresponds to anharmonic terms which break the rotational invariance. With a
general initial condition, the system will develop some non-zero angular momentum. If the motion is damped, so that
the amplitude of the oscillations decreases, these rotationally non-invariant terms will become less important with
time.

Let us add interactions in the following way, which will closely parallel what happens in the supersymmetric case.
Include a set of quartic couplings:

LI = λ|φ|4 + ϵφ3φ∗ + δφ4 + c.c. (65)

These interactions clearly violate “B”. For general complex ϵ and δ, they also violate CP . In supersymmetric theories,
as we will shortly see, the couplings λ, ϵ, δ . . . will be extremely small, O(M2

W /M2
p ) or O(M2

W /M2
GUT

).
In order that these tiny couplings lead to an appreciable baryon number, it is necessary that the fields, at some

stage, were very large. To see how the cosmic evolution of this system can lead to a non-zero baryon number, first note
that at very early times, when the Hubble constant, H ≫ m, the mass of the field is irrelevant. It is thus reasonable
to suppose that at this early time φ = φo ≫ 0; later we will describe some specific suggestions as to how this might
come about. How does the field then evolve? First ignore the quartic interactions. In a gravitational background, the
equation of motion for the field is
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= 0, (66)
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In either case, the energy behaves, in terms of the scale factor, R(t), as

E ≈ m2φ2
o(

Ro

R
)3 (69)

i.e. it decreases like R3, as would the energy of pressureless dust. One can think of this oscillating field as a coherent
state of φ particles with p⃗ = 0.

Now let’s consider the effects of the quartic couplings. Since the field amplitude damps with time, their significance
will decrease with time. Suppose, initially, that φ = φo is real. Then the imaginary part of φ satisfies, in the
approximation that ϵ and δ are small,

φ̈i + 3Hφ̇i + m2φi ≈ Im(ϵ+ δ)φ3
r . (70)

For large times, the right hand falls as t−9/2, whereas the left hand side falls off only as t−3/2. As a result, just as in
our mechanical analogy, baryon number (angular momentum) violation becomes negligible. The equation goes over
to the free equation, with a solution of the form

φi = ar
Im(ϵ+ δ)φ3

o

m2(mt)3/4
sin(mt + δr) (radiation), φi = am

Im(ϵ+ δ)φ3
o

m3t
sin(mt + δm) (matter), (71)

in the radiation and matter dominated cases, respectively. The constants δm, δ4, am and ar can easily be obtained
numerically, and are of order unity:

ar = 0.85 am = 0.85 δr = −0.91 δm = 1.54. (72)

But now we have a non-zero baryon number; substituting in the expression for the current,

nB = 2arIm(ϵ+ δ)
φ2

o

m(mt)2
sin(δr + π/8) (radiation) nB = 2amIm(ϵ+ δ)

φ2
o

m(mt)2
sin(δm) (matter). (73)

Two features of these results should be noted. First, if ϵ and δ vanish, nB vanishes. If they are real, and φo is
real, nB vanishes.It is remarkable that the lagrangian parameters can be real, and yet φo can be complex, still giving
rise to a net baryon number. We will discuss plausible initial values for the fields later, after we have discussed
supersymmetry breaking in the early universe. Finally, we should point out that, as expected, nB is conserved at late
times.

This mechanism for generating baryon number could be considered without supersymmetry. In that case, it begs
several questions:

• What are the scalar fields carrying baryon number?

• Why are the φ4 terms so small?

• How are the scalars in the condensate converted to more familiar particles?

In the context of supersymmetry, there is a natural answer to each of these questions. First, as we have stressed,
there are scalar fields carrying baryon and lepton number. As we will see, in the limit that supersymmetry is unbroken,
there are typically directions in the field space in which the quartic terms in the potential vanish. Finally, the scalar
quarks and leptons will be able to decay (in a baryon and lepton number conserving fashion) to ordinary quarks.

C. Flat Directions and Baryogenesis

To discuss the problem of baryon number generation, we first want to examine the theory in a limit in which we
ignore the soft SUSY-breaking terms. After all, at very early times, H ≫ MW , and these terms are irrelevant. We
want to ask whether in a model like the MSSM, some fields can have large vev’s, i.e. whether there are directions in
the field space for which the potential vanishes. Before considering the full MSSM, it is again helpful to consider a
simpler model, in this case a theory with gauge group U(1), and two chiral fields, φ+ and φ− with opposite charge.
We take the superpotential simply to vanish. In this case the potential is

V =
1

2
D2 D = g(φ+∗φ+ − φ−∗φ−) (74)
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� =
�o
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�o

(mt)
sin(mt) (matter)

�i =ar
Im(✏+ �)�3
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m2(mt)3/4
sin(mt+ �r) (radiation)

am
Im(✏+ �)�3

o

m2(mt)
sin(mt+ �m) (matter)

• Baryon number nB =2ar
Im(✏+ �)�4

o

m(mt)3/2
sin(�r + ⇡/8) (radiation)

2am
Im(✏+ �)�4

o

m(mt)2
sin(�m) (matter)
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AD LEPTOGENESIS
To realize AD mechanism, we need

• light scalar (flat direction) carrying B or L number
• small B (or L) and CP violating quartic potential

In SUSY model,
• LHu direction is flat (in SUSY limit)
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But D, and the potential, vanish if φ+ = φ− = v. It is not difficult to work out the spectrum in a vacuum of non-zero
v. One finds that there is one massless chiral field, and a massive vector field containing a massive gauge boson, a
massive Dirac field, and a massive scalar.

Consider, now, a somewhat more elaborate example. Let us take the MSSM and give expectation values to the
Higgs and the slepton fields of eqn. (46):

Hu =

(
0
v

)
L1 =

(
v
0

)
. (75)

The F term vanishes in this direction, since the potentially problematic HuL term in the superpotential is absent
by R parity (the other possible contributions vanish because Q = HU = 0). It is easy to see that the D-term for
hypercharge vanishes,

DY = g′ 2(|Hu|2 − |L|2) = 0. (76)

To see that the D terms for SU(2) vanishes, one can work directly with the Pauli matrices, or use, instead, the
following device which works for a general SU(N) group. Just as one defines a matrix-valued gauge field,

(Aµ)i
j = Aa

µ(T a)i
j , (77)

one defines

(D)i
j = Da(T a)i

j . (78)

Then, using the SU(N) identity,

(T a)i
j(T

a)k
l = δi

lδ
k
j −

1

N
δi

jδ
k
l (79)

the contribution to (D)i
j from a field, φ, in the fundamental representation is simply

(D)i
j = φi∗φj −

1

N
|φ|2δi

j . (80)

In the present case, this becomes

(D)i
j =

(
|v|2 0
0 |v|2

)
−

1

2
|v|2

(
2 0
0 2

)
= 0. (81)

What is particularly interesting about this direction is that the field carries a lepton number. As we have seen,
producing a lepton number is for all intents and purposes like producing a baryon number.

Non-renormalizable, higher dimension terms, with more fields, can lift the flat direction. For example, the quartic
term in the superpotential:

L4 =
1

M
(HuL)2 (82)

respects all of the gauge symmetries and is invariant under R-parity. It gives rise to a potential

Vlift =
Φ6

M2
(83)

where Φ is the superfield whose vev parameterizes the flat direction.
There are many more flat directions, and many of these do carry baryon or lepton number.4 A flat direction with

both baryon and lepton number excited is the following:

First generation : Q1
1 = b ū2 = a L2 = b Second : d̄1 =

√
|b|2 + |a|2 Third : d̄3 = a. (84)

4 The flat directions in the MSSM have been cataloged by Gherghetta, Kolda and Martin (1996).

• quartic can be generated

From these relations, one finds the lepton-number-to-entropy ratio:

nL

s
= ✏1

⇢N1

M1

1

s
=

3

4
✏1
TN1

M1

' 1.5⇥ 10�10

✓
TN1

106 GeV

◆⇣
m⌫3

0.05 eV

⌘
�e↵ . (2.15)

The baryon asymmetry is obtained via sphaleron process, and thus baryon number is given

by
nB

s
' 0.35

nL

s
. (2.16)

Thus, enough baryon number can be generated for TN1 & 106 GeV.

In this scenario, it is interesting that the e↵ective reheat temperature is O(TN1) for

thermal relic particles, since sneutrino domination dilutes pre-existing particles when it

decays [52].2 Therefore, in the numerical analyses of Sec’s. 3 and 4, we consider TN1 a reheat

temperature for production of gravitinos, axinos and saxions in the case of leptogenesis from

oscillating sneutrino decay.

2.4 A✏eck-Dine leptogenesis (ADL)

The last mechanism for baryogenesis is known as A✏eck-Dine (AD) [53, 54] leptogenesis.

AD leptogenesis makes use of the LHu flat direction in the scalar potential [67, 54, 68].

This direction is lucrative in that it is not plagued by Q-balls which are problematic for

flat directions carrying baryon number [69] and also because the rate for baryogenesis can

be linked to the mass of the lightest neutrino, leading to a possible consistency check via

observations of neutrinoless double beta decay (0⌫��) [70].

In the case of the LHu flat direction, F -flatness is only broken by higher dimensional

operators which also give rise to neutrino mass via the see-saw mechanism [31]:

W 3
1

2Mi

(LiHu)(LiHu) (2.17)

where Mi is the heavy neutrino mass scale.3 The most e�cient direction is that for which

i = 1 corresponding to the lightest neutrino mass: m⌫1 ⇠ hHui
2
/M1 in a basis where the

neutrino mass matrix is diagonal. The A✏eck-Dine field � then occurs as

L̃1 =
1
p
2

 
�

0

!
Hu =

1
p
2

 
0

�

!
. (2.18)

The scalar potential is given by

V = VSB + VH + VTH + VF (2.19)

2
It is assumed that inflaton decay after sneutrino oscillation starts. If sneutrino oscillation starts after

inflaton decay, e↵ective reheat temperature is given by 2TN1(TR/TRC ) where TRC is the temperature at

which sneutrino oscillation starts.

3
Here Mi contains neutrino Yukawa coupling, i.e., 1/Mi = y2

⌫i/MNi , so it can be larger than MP for

small y⌫i
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where

VSB = m
2
�
|�|

2 +
mSUSY

8M
(am�

4 + h.c.) (2.20)

VH = �cHH
2
|�|

2 +
H

8M
(aH�

4 + h.c.) (2.21)

VTH =
X

fk|�|<T

ckf
2
k
T
2
|�|

2 +
9↵2

s(T )

8
T
4 ln

✓
|�|

2

T 2

◆
and (2.22)

VF =
1

4M2
|�|

6
. (2.23)

The first contribution VSB is the SUSY breaking contribution where m
2
�
= (µ2 + m

2
Hu

+

m
2
L
)/2 [71]. In natural SUSY, we expect |µ| ⇠ |mHu | ⇠ mZ in contrast to mL ⇠ mSUSY ⇠

2 � 10 TeV in accord with LHC8 limits.4 The second contribution arises from SUSY

breaking during inflation [54] where 3H2
I
m

2
GUT ' |F�|

2 with HI being the Hubble constant

during inflation and where F� is the inflaton F -term which fuels inflation and � is the

inflaton field. In the expression VH , the coe�cient cH may be > 0 for a non-flat Kahler

metric (which is to be expected in general). This term provides an instability of the

potential at |�| = 0 and for cH > 0, then a large VEV of � can form with value h�i ⇠
p
MHI

where HI � m� and where arg(�) = [(� arg(aH)+ (2n+1)⇡]/4 for n = 0� 3. The second

term in VH is the Hubble-induced trilinear SUSY breaking term. The term VF is the up-

lifting F -term contribution arising from the higher-dimensional operator 2.17. Lastly, the

term VTH arises from thermal e↵ects [72, 73]. The first term is generated when the light

particle species which couple to the AD field are produced in the thermal plasma, while

the second term is generated by e↵ective gauge coupling running from heavy e↵ective mass

of particles which couple to the AD field. Here, fk represents the Yukawa/gauge couplings

of � and ck is expected ⇠ 1.

The equation of motion for the AD field is given by

�̈+ 3H�̇+
@V

@�⇤ = 0 (2.24)

which is the usual equation for a damped harmonic oscillator. Once the AD condensate

forms, then the universe continues expansion and the Hubble-induced terms decrease. The

minimum of the potential decreases as does the value of the condensate. When H decreases

to a value [74]

Hosc = max

"
m�, Hi,↵2TR

✓
9MP

8M

◆1/2
#

(2.25)

(where Hi = min
h

1
f
4
i

MPT
2
R

M2 , (c2
i
f
4
i
MPT

2
R
)1/3

i
) then the AD field begins to oscillate, and a

non-zero lepton number arises: nL = i

2(�̇
⇤
�� �

⇤
�̇) governed by

ṅL + 3HnL =
mSUSY

2M
Im(am�

4) +
H

2M
Im(aH�

4). (2.26)

4
In gravity mediation, it is natural to have mSUSY ⇠ m3/2. In our benchmark study in Sec. 3, however,

mSUSY for SUSY particle spectrum is fixed while physical gravitino mass m3/2 varies from 1 TeV to 100

TeV.
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L CP

linked to (lightest) neutrino mass

m⌫1 ⇠ v2

M
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AD mechanism via LHu:
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2
/M1 in a basis where the

neutrino mass matrix is diagonal. The A✏eck-Dine field � then occurs as

L̃1 =
1
p
2

 
�

0

!
Hu =

1
p
2

 
0

�

!
. (2.18)

The scalar potential is given by

V = VSB + VH + VTH + VF (2.19)

2
It is assumed that inflaton decay after sneutrino oscillation starts. If sneutrino oscillation starts after

inflaton decay, e↵ective reheat temperature is given by 2TN1(TR/TRC ) where TRC is the temperature at

which sneutrino oscillation starts.

3
Here Mi contains neutrino Yukawa coupling, i.e., 1/Mi = y2

⌫i/MNi , so it can be larger than MP for

small y⌫i
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W =
1

8M
�4

where

VSB = m2
φ|φ|2 +

mSUSY

8M
(amφ4 + h.c.) (2.20)

VH = −cHH2|φ|2 + H

8M
(aHφ4 + h.c.) (2.21)

VTH =
∑

fk|φ|<T

ckf
2
kT

2|φ|2 + 9α2
s(T )

8
T 4 ln

(
|φ|2

T 2

)
and (2.22)

VF =
1

4M2
|φ|6. (2.23)

The first contribution VSB is the SUSY breaking contribution where m2
φ = (µ2 + m2

Hu
+

m2
L)/2 [71]. In natural SUSY, we expect |µ| ∼ |mHu | ∼ mZ in contrast to mL ∼ mSUSY ∼

2 − 10 TeV in accord with LHC8 limits.4 The second contribution arises from SUSY

breaking during inflation [54] where 3H2
Im

2
GUT ≃ |Fχ|2 with HI being the Hubble constant

during inflation and where Fχ is the inflaton F -term which fuels inflation and χ is the

inflaton field. In the expression VH , the coefficient cH may be > 0 for a non-flat Kahler

metric (which is to be expected in general). This term provides an instability of the

potential at |φ| = 0 and for cH > 0, then a large VEV of φ can form with value ⟨φ⟩ ∼
√
MHI

where HI ≫ mφ and where arg(φ) = [(− arg(aH)+ (2n+1)π]/4 for n = 0− 3. The second

term in VH is the Hubble-induced trilinear SUSY breaking term. The term VF is the up-

lifting F -term contribution arising from the higher-dimensional operator 2.17. Lastly, the

term VTH arises from thermal effects [72, 73]. The first term is generated when the light

particle species which couple to the AD field are produced in the thermal plasma, while

the second term is generated by effective gauge coupling running from heavy effective mass

of particles which couple to the AD field. Here, fk represents the Yukawa/gauge couplings

of φ and ck is expected ∼ 1.

The equation of motion for the AD field is given by

φ̈+ 3Hφ̇+
∂V

∂φ∗ = 0 (2.24)

which is the usual equation for a damped harmonic oscillator. Once the AD condensate

forms, then the universe continues expansion and the Hubble-induced terms decrease. The

minimum of the potential decreases as does the value of the condensate. When H decreases

to a value [74]

Hosc = max

[
mφ, Hi,α2TR

(
9MP

8M

)1/2
]

(2.25)

(where Hi = min
[

1
f4
i

MPT 2
R

M2 , (c2i f
4
i MPT 2

R)
1/3
]
) then the AD field begins to oscillate, and a

non-zero lepton number arises: nL = i
2(φ̇

∗φ− φ∗φ̇) governed by

ṅL + 3HnL =
mSUSY

2M
Im(amφ4) +

H

2M
Im(aHφ4). (2.26)

4In gravity mediation, it is natural to have mSUSY ∼ m3/2. In our benchmark study in Sec. 3, however,

mSUSY for SUSY particle spectrum is fixed while physical gravitino mass m3/2 varies from 1 TeV to 100

TeV.
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Eq. of motion:

The first term on the RHS of Eq. 2.26 is dominant and using d/dt(R3
nL) = R

3
ṅL +

3R3
HnL we can integrate from early times up to t = 1/Hosc to find

nL =
mSUSY

2M
Im(am�

4)tosc

'
1

3
(mSUSY|am|)MHosc�ph (2.27)

where �ph = sin(4 arg �+arg am). In the second line of the above equation, we have used the

relations, �(tosc) ⇠
p
HoscM and tosc = 2/(3Hosc) for an oscillating field/matter-dominated

universe. During the inflaton-oscillation-dominated era, produced lepton number is diluted

by (H/Hosc)2 factor. The entropy density at TR is determined by the relation 3M2
P
H

2
R
=

⇢rad = s⇥3TR/4 where HR is the Hubble parameter at TR. The lepton-number-to-entropy

ratio is conserved once the era of re-heat is completed:

nL

s
=

MTR

12M2
P

✓
mSUSY|am|

Hosc

◆
�ph. (2.28)

This quantity has the virtue of being TR independent if Hosc is determined by the third

(thermal) contribution in Eq. 2.25 [74]. The lepton asymmetry is then converted to a

baryon asymmetry via sphaleron interactions

nB

s
' 0.35

nL

s
. (2.29)

Replacing M by hHui
2
/m⌫1 , then it is found [74] that a baryon-to-entropy ratio nB/s ⇠

10�10 can be developed roughly independent of TR for TR & 105 GeV for m⌫1 ⇠ 10�9 eV

and for mSUSY|am| ⇠ 1 TeV.

3. Constraints in the TR vs. m3/2 plane for various fa

To compute the mixed axion-WIMP dark matter abundance in SUSY axion models, we

adopt the eight-coupled Boltzmann equation computation of Ref’s [75, 76, 37]. In that

treatment, one begins at temperature T = TR and tracks the energy densities of radia-

tion, WIMPs, gravitinos, axinos, saxions (CO- and thermally-produced) and axions (CO-,

thermally- and saxion decay-produced). Whereas WIMPs quickly reach thermal equilib-

rium at T = TR, the axinos, saxions, axions and gravitinos do not, even though they are

still produced thermally. In SUSY KSVZ, the axino, axion and saxion thermal production

rates are all proportional to TR [38] while in SUSY DFSZ model they are largely indepen-

dent of TR [40]. The calculation depends sensitively on the sparticle mass spectrum, on

the re-heat temperature TR, on the gravitino mass m3/2 and on the PQ model (KSVZ or

DFSZ), the PQ parameters fa, the axion mis-alignment angle ✓i, the saxion angle ✓s (where

the initial saxion field value is given as s = ✓sfa) and on a parameter ⇠s which accounts

for the model-dependent saxion-to-axion coupling [26]. Here, we adopt the choices ⇠s = 0

(s ! aa, ãã decays turned o↵) or ⇠s = 1 (s ! aa, ãã decays turned on).

In order to solve the coupled Boltzmann equations, it is important to know the axino,

saxion and gravitino decay rates. The gravitino decay rates are adopted from Ref. [77]
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(s ! aa, ãã decays turned o↵) or ⇠s = 1 (s ! aa, ãã decays turned on).
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Figure 3.2: The contour plot of the baryon asymmetries nB/s in the mν1–TR plane. The
lines represent the contour plots for nB/s = 10−9, 10−10, 0.4 × 10−10, 10−11, and 10−12

from the left to the right.

is light, like in gauge-mediated SUSY breaking models [45].11 This is the reason why we

have assumed gravity-mediated SUSY-breaking and m3/2 ≃ 1 TeV.

Fig. 3.2 shows the contour plot of the produced baryon asymmetry in the mν1–TR

plane, given by the analytic formula Eq. (3.41). Here, we have taken mφ = m3/2 = 1 TeV,

|am| = 1 and δph = 1, and we have used the relation mν1 = ⟨Hu⟩2 /Meff . (Although the

big-bang nucleosynthesis constraint on the gravitino abundance requires TR
<∼ 109 GeV

for m3/2 = 1 TeV, we have plotted the contour in Fig. 3.2 up to TR ≤ 1011 GeV, keeping

in mind that even TR ≃ 1011 GeV can be allowed for a slightly heavier gravitino, say,

m3/2 ∼ 3 TeV. See Sec. 1.5.)

A remarkable observation here is that the present baryon asymmetry nB/s is deter-

mined almost independently of the reheating temperature for a wide range of TR
>∼ 105 GeV.

In particular, for a relatively high reheating temperature TR
>∼ 108 GeV, the baryon asym-

11If we introduce a gauged U(1)B−L, however, the LHu flat direction can produce enough lepton
asymmetry even with a light gravitino. See Sec. 3.4.

90

• Successful leptogenesis requires m⌫1 ⇠ 10�9 eV

Asaka, Fujii, Hamaguchi

30 14. Neutrino mixing

where

JCP = Im
(

Uµ3 U∗
e3 Ue2 U∗

µ2

)

, (14.41)

is the “rephasing invariant” associated with the Dirac CP violation phase in U . It is
analogous to the rephasing invariant associated with the Dirac CP violating phase in
the CKM quark mixing matrix [64]. It is clear from Eq. (14.40) that JCP controls the
magnitude of CP violation effects in neutrino oscillations in the case of 3-neutrino mixing.

If sin(∆m2
ij/(2p)L) ∼= 0 for (ij) = (32), or (21), or (13), we get A

(l′l)
CP

∼= 0. Thus, if as
a consequence of the production, propagation and/or detection of neutrinos, effectively
oscillations due only to one non-zero neutrino mass squared difference take place, the CP

violating effects will be strongly suppressed. In particular, we get A
(l′l)
CP = 0, unless all

three ∆m2
ij ≠ 0, (ij) = (32), (21), (13).

If the number of massive neutrinos n is equal to the number of neutrino flavours,
n = 3, one has as a consequence of the unitarity of the neutrino mixing matrix:
∑

l′=e,µ,τ P (νl → νl′) = 1, l = e, µ, τ ,
∑

l=e,µ,τ P (νl → νl′) = 1, l′ = e, µ, τ .
Similar “probability conservation” equations hold for P (ν̄l → ν̄l′). If, however, the
number of light massive neutrinos is bigger than the number of flavour neutrinos as
a consequence, e.g., of a flavour neutrino - sterile neutrino mixing, we would have
∑

l′=e,µ,τ P (νl → νl′) = 1 − P (νl → ν̄sL), l = e, µ, τ , where we have assumed the
existence of just one sterile neutrino. Obviously, in this case

∑

l′=e,µ,τ P (νl → νl′) < 1 if
P (νl → ν̄sL) ≠ 0. The former inequality is used in the searches for oscillations between
active and sterile neutrinos.

Consider next neutrino oscillations in the case of one neutrino mass squared difference
“dominance”: suppose that |∆m2

j1| ≪ |∆m2
n1|, j = 2, ..., (n − 1), |∆m2

n1|L/(2p) !1 and

|∆m2
j1|L/(2p) ≪ 1, so that exp[i(∆m2

j1 L/(2p)] ∼= 1, j = 2, ..., (n − 1). Under these
conditions we obtain from Eq. (14.35) and Eq. (14.36), keeping only the oscillating terms
involving ∆m2

n1:

P (νl(l′) → νl′(l))
∼= P (ν̄l(l′) → ν̄l′(l))

∼= δll′ − 2|Uln|2
[

δll′ − |Ul′n|
2
]

(1 − cos
∆m2

n1

2p
L) . (14.42)

It follows from the neutrino oscillation data discussed in Section 14.2 that in the
case of 3-neutrino mixing, one of the two independent neutrino mass squared differences,
∆m2

21 > 0, is much smaller than the absolute value of the second one, |∆m2
31|:

∆m2
21 ≪ |∆m2

31|. The data, as we have seen, imply:

∆m2
21

∼= 7.4 × 10−5 eV2 ,

|∆m2
31| ∼= 2.5 × 10−3 eV2 ,

∆m2
21/|∆m2

31| ∼= 0.03 . (14.43)
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three ∆m2
ij ≠ 0, (ij) = (32), (21), (13).

If the number of massive neutrinos n is equal to the number of neutrino flavours,
n = 3, one has as a consequence of the unitarity of the neutrino mixing matrix:
∑

l′=e,µ,τ P (νl → νl′) = 1, l = e, µ, τ ,
∑

l=e,µ,τ P (νl → νl′) = 1, l′ = e, µ, τ .
Similar “probability conservation” equations hold for P (ν̄l → ν̄l′). If, however, the
number of light massive neutrinos is bigger than the number of flavour neutrinos as
a consequence, e.g., of a flavour neutrino - sterile neutrino mixing, we would have
∑

l′=e,µ,τ P (νl → νl′) = 1 − P (νl → ν̄sL), l = e, µ, τ , where we have assumed the
existence of just one sterile neutrino. Obviously, in this case

∑

l′=e,µ,τ P (νl → νl′) < 1 if
P (νl → ν̄sL) ≠ 0. The former inequality is used in the searches for oscillations between
active and sterile neutrinos.

Consider next neutrino oscillations in the case of one neutrino mass squared difference
“dominance”: suppose that |∆m2

j1| ≪ |∆m2
n1|, j = 2, ..., (n − 1), |∆m2

n1|L/(2p) !1 and

|∆m2
j1|L/(2p) ≪ 1, so that exp[i(∆m2

j1 L/(2p)] ∼= 1, j = 2, ..., (n − 1). Under these
conditions we obtain from Eq. (14.35) and Eq. (14.36), keeping only the oscillating terms
involving ∆m2

n1:

P (νl(l′) → νl′(l))
∼= P (ν̄l(l′) → ν̄l′(l))

∼= δll′ − 2|Uln|2
[

δll′ − |Ul′n|
2
]

(1 − cos
∆m2

n1

2p
L) . (14.42)

It follows from the neutrino oscillation data discussed in Section 14.2 that in the
case of 3-neutrino mixing, one of the two independent neutrino mass squared differences,
∆m2

21 > 0, is much smaller than the absolute value of the second one, |∆m2
31|:

∆m2
21 ≪ |∆m2

31|. The data, as we have seen, imply:

∆m2
21

∼= 7.4 × 10−5 eV2 ,

|∆m2
31| ∼= 2.5 × 10−3 eV2 ,

∆m2
21/|∆m2

31| ∼= 0.03 . (14.43)
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AD LEPTOGENESIS WITH PQ
• Scale of M (RHN mass) can be generated by PQ breaking

3

saxion decay is dependent on the µ-term. Therefore the resulting baryon asymmetry after saxion

decay is linked to electroweak fine-tuning, which is determined by the µ-term.

In Sec. II, we analyze AD leptogenesis along the LHu flat direction with a dynamical PQ break-

ing scale and then estimate the baryon asymmetry taking account of the dilution from saxion decay.

In Sec. III, we investigate the dynamics of PQ breaking scalar fields and then examine conservation

of lepton asymmetry during the saxion oscillation. In Sec. IV we present the main results in the

form of contours of required m⌫1 values in the µ vs. fa plane, which show a relation between the

baryon asymmetry and the electroweak fine-tuning. In Sec. V, we discuss some cosmological impli-

cations of the PQ sector: the axion isocurvature perturbation and axino production. We conclude

in Sec. VI.

II. AFFLECK-DINE LEPTOGENESIS WITH DYNAMICAL PECCEI-QUINN

SYMMETRY BREAKING

In this section, we show how dynamical PQ symmetry breaking accommodates enough baryon

asymmetry and a relatively large neutrino mass.

A. The model

We consider the neutrino sector for AD leptogenesis and the PQ breaking sector, which are

described by the following superpotential,

W = WAD +WPQ, (1)

WAD =
1

2
�XNN + y⌫NLHu, WPQ = ⌘Z(XY � f

2) +
gµY

2

MP

HuHd, (2)

where N is the RHN, L is the lepton doublet, Hu (Hd) is the up-type (down-type) Higgs doublet,

X and Y are the PQ fields, Z is a singlet scalar, �, ⌘ and gµ represent numerical coe�cients, f

denotes the (present) PQ breaking scale and MP the reduced Planck scale. The PQ charges and

lepton numbers of these fields are given in Table I.

When X obtains a large field value, the RHN becomes massive and can be integrated out to

obtain the e↵ective superpotential:

WAD,e↵ = �
1

2

y
2
⌫(LHu)2

�X
. (3)
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X Y Z N L Hu Hd

PQ �2 2 0 1 1 �2 �2

L 0 0 0 �1 1 0 0

TABLE I: U(1) charges of the fields.

The neutrino mass is generated by the see-saw mechanism at low energy hXi ⇠ f :

m⌫1 =
y
2
⌫hHui

2

�f
'

v
2

Me↵
, (4)

where v ' 174 GeV and

Me↵ =
v
2

m⌫1
= 3.0⇥ 1017 GeV

✓
10�4 eV

m⌫1

◆
. (5)

Here and in the following, we assume that the lepton asymmetry is generated along the flattest

LHu direction, which corresponds to the smallest neutrino mass m⌫1 . As will become clear, X

is di↵erent from its low-energy vacuum expectation value (VEV) f in the early universe.2 In

particular, X is shown to be fixed at X = X0(⇠ MP ) until the saxion begins to oscillate (see

Sec. III). Thus one can also define an e↵ective scale in the early universe as

y
2
⌫

�X0
=

1

Me↵

✓
f

X0

◆
⌘

1

M⇤
. (6)

In a di↵erent way, M⇤ is expressed by

M⇤ = 7.2⇥ 1023GeV

✓
10�4 eV

m⌫1

◆✓
1012 GeV

f

◆✓
X0

MP

◆
. (7)

Thus M⇤ is much larger than Me↵ , which modifies the ordinary relation between low-energy neu-

trino mass and the e�ciency of AD leptogenesis [12].

In what follows, we consider the dynamics of the AD field �, which parameterizes the LHu

D-flat direction as

L =
1
p
2

0

@�

0

1

A , Hu =
1
p
2

0

@0

�

1

A . (8)

2
For simplicity, we assume that X = Y = f at the present universe.

once X has large vev (~f)

• AD leptogenesis works with M~<X>
PQ breaking determines RHN mass; lepton number & light 
neutrino mass

6

so is a massless mode corresponding to the axion of the spontaneously broken PQ symmetry. In

the limit of �0 ⌧ X0, the massive mode is mostly a�-like and the massless mode is mostly aX -like.

B. Baryon asymmetry along LHu direction

Now let us evaluate the lepton number generated through the AD mechanism. The massive

phase mode automatically cancels the imaginary part of the Hubble induced A-term potential,

so it does not significantly contribute to lepton number generation. Thus, as in ordinary AD

leptogenesis, lepton number is determined by the ordinary A-term which depends on the hidden

sector SUSY breaking (i.e., gravitino mass in gravity mediation). The lepton number obeys the

equation,4

ṅL + 3HnL '
msoft

2M⇤
Im(am�

4). (16)

The baryon number to entropy ratio is obtained as [13]

nB

s
' 0.029

M⇤TR

M
2
P

✓
msoft|am|

Hosc

◆
�ph, (17)

where �ph represents an e↵ective CP violating phase, and Hosc is the Hubble parameter when the

� field starts to oscillate. Taking account of thermal e↵ects on the AD potential [18, 19], the latter

is determined by

Hosc ' max

"
m�, Hi, ↵STR

✓
agMP

M⇤

◆1/2
#
, (18)

where

Hi = min


1

f
4
i

MPT
2
R

M2
⇤

, (c2i f
4
i MPT

2
R)

1/3

�
. (19)

Here, the fi are coupling constants of � with particles in thermal background, ci and ag(= 1.125)

are real positive constants of order unity, and TR is the reheating temperature after inflation.

From Eq. (18), Hosc is nearly m� when the temperature is small. In the case of a large reheat

temperature, the � oscillation can commence earlier due to thermal e↵ects which result in the

4
While the lepton number is violated by the (LHu)

2
term in the superpotential after integrating out N , the PQ

number is exactly conserved (except for the small instanton e↵ect).

4
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so is a massless mode corresponding to the axion of the spontaneously broken PQ symmetry. In

the limit of �0 ⌧ X0, the massive mode is mostly a�-like and the massless mode is mostly aX -like.

B. Baryon asymmetry along LHu direction

Now let us evaluate the lepton number generated through the AD mechanism. The massive

phase mode automatically cancels the imaginary part of the Hubble induced A-term potential,

so it does not significantly contribute to lepton number generation. Thus, as in ordinary AD

leptogenesis, lepton number is determined by the ordinary A-term which depends on the hidden

sector SUSY breaking (i.e., gravitino mass in gravity mediation). The lepton number obeys the

equation,4

ṅL + 3HnL '
msoft

2M⇤
Im(am�

4). (16)

The baryon number to entropy ratio is obtained as [13]
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M⇤TR

M
2
P

✓
msoft|am|

Hosc
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where �ph represents an e↵ective CP violating phase, and Hosc is the Hubble parameter when the

� field starts to oscillate. Taking account of thermal e↵ects on the AD potential [18, 19], the latter

is determined by

Hosc ' max
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f
4
i

MPT
2
R

M2
⇤

, (c2i f
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Here, the fi are coupling constants of � with particles in thermal background, ci and ag(= 1.125)

are real positive constants of order unity, and TR is the reheating temperature after inflation.

From Eq. (18), Hosc is nearly m� when the temperature is small. In the case of a large reheat

temperature, the � oscillation can commence earlier due to thermal e↵ects which result in the

4
While the lepton number is violated by the (LHu)

2
term in the superpotential after integrating out N , the PQ

number is exactly conserved (except for the small instanton e↵ect).

7

second and third terms inside the bracket of Eq. (18). The detailed physical aspects are explained

in Ref. [20] and references therein. If m� = 10 TeV and M⇤ = 7.2⇥1023 GeV, such early oscillation

occurs for TR & 107 GeV.

For an illustration, we show a formula for a case where the early oscillation does not occur. In

such a case, Hosc = m�, so the baryon-number-to-entropy ratio becomes

nB

s
' 3.6⇥ 10�8

�ph

✓
TR

107 GeV

◆✓
10�4 eV

m⌫1

◆✓
1012 GeV

f

◆✓
X0

MP

◆
, (20)

where we also assume m� = |am|msoft. In this scenario, however, saxion will dominate the universe,

and its decay produces entropy dilution. In order to obtain the final baryon asymmetry after saxion

decay, the entropy dilution must be taken into account. We will consider the entropy production

in the following subsection.

Before closing this subsection, let us comment on the possible lepton number violation during

the saxion oscillation. Since the field value of X can become small during its oscillation, the e↵ect

of the lepton number violation, induced by the e↵ective superpotential (3) or the corresponding

A-term, may become large. Here, as shown in Sec. III, the µ-term interaction in Eq. (2),

Wµ =
gµY

2

MP

HuHd , (21)

plays an important role. Assuming mX ⌧ m�, the lepton number violation during the saxion

oscillation is small enough to maintain the generated lepton asymmetry by the AD mechanism. As

we shall see in the next subsection, the µ-term interaction (21) also plays a key role to determine

the saxion decay, and hence the final baryon asymmetry.

C. Saxion decay in DFSZ model

We have discussed how the dynamical PQ breaking scale can enhance the baryon asymmetry.

For the final result, one crucial point to consider is the entropy production from saxion decay. In

the DFSZ model, saxion interactions with the standard model particles and their superpartners

are realized in the µ-term interaction (21). Once X and Y settle down to the current value of the

PQ symmetry breaking scale, X ⇠ Y ⇠ f , this superpotential generates the µ-term,

µ ⇠
gµf

2

MP

, (22)

(scale for AD mechanism)

• If PQ scale during AD ~ MP and becomes f afterwards,
AD leptogenesis is possible for sizable neutrino mass 
~10-4 eV

�0 ⇠
p

HM⇤
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• Hubble induced potential realizes such a scenario.
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For the case where saxion dominantly decays into Higgsinos,

nB

s
= 1.1⇥ 10�12

�ph

✓
10�4 eV

m⌫1

◆✓
1012 GeV

fa

◆2✓
X0

MP

◆�1✓90

g⇤

◆1/4 ⇣
µ

TeV

⌘⇣
m�

10 TeV

⌘1/2
, (29)

or for the case where saxion dominantly decays into light Higgs and gauge bosons,

nB

s
= 3.0⇥ 10�12

�ph

✓
10�4 eV

m⌫1

◆✓
1012 GeV

fa

◆2✓
X0

MP

◆�1✓90

g⇤

◆1/4 ⇣
µ

TeV

⌘2
✓
100 GeV

m�

◆1/2

.

(30)

From this it is easily seen that the observed baryon-number-to-entropy-ratio can be obtained for

relatively large neutrino mass m⌫1 = 10�4 eV if the PQ breaking scale is near the Planck scale in

the beginning and settles to 1011 GeV at the present universe.

We will see numerical results for some example parameter regions in Sec. IV.

III. DYNAMICS OF PQ BREAKING FIELDS

In this section, we discuss the dynamics of the PQ breaking fields in order to investigate the

realization of the Planck scale PQ breaking in the early stage and lepton number conservation at

the late stage.

A. PQ breaking at the Planck scale

Let us first examine the scalar potential of X and Y for large H to check if the PQ scale is

O(MP ). We have to consider the supergravity potential which is given by

V = e
K/M

2
P

✓
DiWK

ij̄
Dj̄W

⇤
�

3

M
2
P

|W |
2

◆
, (31)

where DiW = Wi + KiW/M
2
P
. We assume that the e↵ect of the AD field � is negligible. The

Kähler potential and superpotential are given by

K = |X|
2 + |Y |

2 + |Z|
2 + |I|

2 +
b

M
2
P

|I|
2
|X|

2
, (32)

W = ⌘Z(XY � f
2), (33)

where I is the inflaton field. Note that only X has non-minimal coupling with the inflaton in K.

If b > 1, one can obtain a negative Hubble-induced mass term for X and thus X develops a large

9
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where I is the inflaton field. Note that only X has non-minimal coupling with the inflaton in K.

If b > 1, one can obtain a negative Hubble-induced mass term for X and thus X develops a large

I: inflaton
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VEV. Let us see the scalar potential in detail.

In this discussion, Z obtains a mass of |X| and |Y | (> f), so its VEV is zero up to of the order

of the gravitino mass: O(m3/2). Thus we can safely neglect the dynamics of Z. If I ⌧ MP during

inflation, the inflaton energy is dominantly determined by the F -term potential, i.e. KI ⌧ MP ,

|W |/MP ⌧ WI and DIW ' WI ' FI . One can simplify the inflaton potential: V (I) ⇠ |FI |
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Let us define hXi = x and hY i = y. The extremum condition is obtained as
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From the second equation, we find that

xy = f
2 or xy

2
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2
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Since the second solution leads to a trivial solution x = y = 0 we select the first solution. From

Eq. (35), we obtain the solution for x,

x =
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For b > 1, x develops an O(MP ) VEV as long as |FI |
2
/M

2
P

� m
2
3/2. It is also evident that X

obtains a (negative) mass squared of the order of H2 during the inflaton domination.

B. Saxion oscillation and lepton number conservation

As argued in the previous subsection, X stays at X ⇠ MP until the Hubble parameter drops

down to m3/2. After that, the saxion begins a coherent oscillation around the minimum x ⇠ y ⇠ f

with an initial amplitude of ⇠ MP . Since the scalar field orthogonal to the F -flat direction (saxion)

has a mass of ⇠ f , which is much higher than the soft mass scale, we can safely set XY = f
2 to

integrate out either X or Y . Then the scalar potential along the F -flat direction XY = f
2 and

hXi = (1� 1/b)1/2MP for
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From the second equation, we find that

xy = f
2 or xy
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Since the second solution leads to a trivial solution x = y = 0 we select the first solution. From

Eq. (35), we obtain the solution for x,
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For b > 1, x develops an O(MP ) VEV as long as |FI |
2
/M

2
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3/2. It is also evident that X

obtains a (negative) mass squared of the order of H2 during the inflaton domination.

B. Saxion oscillation and lepton number conservation

As argued in the previous subsection, X stays at X ⇠ MP until the Hubble parameter drops

down to m3/2. After that, the saxion begins a coherent oscillation around the minimum x ⇠ y ⇠ f

with an initial amplitude of ⇠ MP . Since the scalar field orthogonal to the F -flat direction (saxion)

has a mass of ⇠ f , which is much higher than the soft mass scale, we can safely set XY = f
2 to

integrate out either X or Y . Then the scalar potential along the F -flat direction XY = f
2 and

(H2 � m
2
3/2)

• When H~m3/2, PQ field (saxion) starts oscillation with 
amplitude MP.

saxion-dominated universe after reheating
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• Along flat direction XY = f2

X0 ⇠ MP X0 ⇠ MP

H � m3/2 H ⇠ m3/2

"saxion oscillation"



SAXION OSCILLATION
• Saxion oscillates along XY = f2

X

Y

f

X0 ⇠ MP

When X is very small,

3

saxion decay is dependent on the µ-term. Therefore the resulting baryon asymmetry after saxion

decay is linked to electroweak fine-tuning, which is determined by the µ-term.

In Sec. II, we analyze AD leptogenesis along the LHu flat direction with a dynamical PQ break-

ing scale and then estimate the baryon asymmetry taking account of the dilution from saxion decay.

In Sec. III, we investigate the dynamics of PQ breaking scalar fields and then examine conservation

of lepton asymmetry during the saxion oscillation. In Sec. IV we present the main results in the

form of contours of required m⌫1 values in the µ vs. fa plane, which show a relation between the

baryon asymmetry and the electroweak fine-tuning. In Sec. V, we discuss some cosmological impli-

cations of the PQ sector: the axion isocurvature perturbation and axino production. We conclude

in Sec. VI.

II. AFFLECK-DINE LEPTOGENESIS WITH DYNAMICAL PECCEI-QUINN

SYMMETRY BREAKING

In this section, we show how dynamical PQ symmetry breaking accommodates enough baryon

asymmetry and a relatively large neutrino mass.

A. The model

We consider the neutrino sector for AD leptogenesis and the PQ breaking sector, which are

described by the following superpotential,

W = WAD +WPQ, (1)

WAD =
1

2
�XNN + y⌫NLHu, WPQ = ⌘Z(XY � f

2) +
gµY

2

MP

HuHd, (2)

where N is the RHN, L is the lepton doublet, Hu (Hd) is the up-type (down-type) Higgs doublet,

X and Y are the PQ fields, Z is a singlet scalar, �, ⌘ and gµ represent numerical coe�cients, f

denotes the (present) PQ breaking scale and MP the reduced Planck scale. The PQ charges and

lepton numbers of these fields are given in Table I.

When X obtains a large field value, the RHN becomes massive and can be integrated out to

obtain the e↵ective superpotential:

WAD,e↵ = �
1

2

y
2
⌫(LHu)2

�X
. (3)valid?
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second and third terms inside the bracket of Eq. (18). The detailed physical aspects are explained

in Ref. [20] and references therein. If m� = 10 TeV and M⇤ = 7.2⇥1023 GeV, such early oscillation

occurs for TR & 107 GeV.

For an illustration, we show a formula for a case where the early oscillation does not occur. In

such a case, Hosc = m�, so the baryon-number-to-entropy ratio becomes

nB

s
' 3.6⇥ 10�8

�ph

✓
TR

107 GeV

◆✓
10�4 eV

m⌫1

◆✓
1012 GeV

f

◆✓
X0

MP

◆
, (20)

where we also assume m� = |am|msoft. In this scenario, however, saxion will dominate the universe,

and its decay produces entropy dilution. In order to obtain the final baryon asymmetry after saxion

decay, the entropy dilution must be taken into account. We will consider the entropy production

in the following subsection.

Before closing this subsection, let us comment on the possible lepton number violation during

the saxion oscillation. Since the field value of X can become small during its oscillation, the e↵ect

of the lepton number violation, induced by the e↵ective superpotential (3) or the corresponding

A-term, may become large. Here, as shown in Sec. III, the µ-term interaction in Eq. (2),

Wµ =
gµY

2

MP

HuHd , (21)

plays an important role. Assuming mX ⌧ m�, the lepton number violation during the saxion

oscillation is small enough to maintain the generated lepton asymmetry by the AD mechanism. As

we shall see in the next subsection, the µ-term interaction (21) also plays a key role to determine

the saxion decay, and hence the final baryon asymmetry.

C. Saxion decay in DFSZ model

We have discussed how the dynamical PQ breaking scale can enhance the baryon asymmetry.

For the final result, one crucial point to consider is the entropy production from saxion decay. In

the DFSZ model, saxion interactions with the standard model particles and their superpartners

are realized in the µ-term interaction (21). Once X and Y settle down to the current value of the

PQ symmetry breaking scale, X ⇠ Y ⇠ f , this superpotential generates the µ-term,

µ ⇠
gµf

2

MP

, (22)

• DFSZ plays a role

Veff � g2uf
8

M2
P

����
�

X2

����
2

During saxion oscillation, AD field     

Xmin ⇠ f2

MP

✓
gµ|�|
mX

◆1/2
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Using nL ⇠ msoft�
2, we obtain

�nL

nL

⇠
y
2
⌫

�

�
2

mXXmax
. (44)

Since �
2 in the numerator decreases faster than Xmax in the denominator, this takes a maximum

value just after the X begins to oscillate H ⇠ mX .

✓
�nL

nL
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H⇠mX

⇠
y
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⌫

�

�
2
H=mX

mXMP

. (45)

This must be smaller than 1 to ensure the conservation of lepton number. If thermal e↵ects are

neglected and mX ⌧ m�, we have �
2
H=mX

⇠ m�M⇤(mX/m�)2 and it becomes

✓
�nL

nL

◆

H⇠mX

⇠
mX

m�

⌧ 1 . (46)

Thus, the lepton number violation during the saxion oscillation can be neglected as far asmX ⌧ m�

is satisfied.

IV. BARYON NUMBER AND SUSY SCALE

We have discussed how PQ symmetry breaking accommodates the baryon asymmetry with a

sizable neutrino mass when the PQ scale varies during and after inflation. In this scenario, the

entropy dilution from saxion decay indeed plays a substantial role for determining the final value

of the baryon asymmetry. The saxion decay rate depends on its mass and the µ-term as shown

in Eqs. (23) and (25). In many cases, the saxion mass and µ-term are related to the soft SUSY

breaking scale. In particular, µ-term is a measure of fine-tuning of the electroweak symmetry

breaking. Therefore, it leads us to discuss the soft SUSY scale and fine-tuning from the measured

baryon asymmetry.

Since the saxion is linked to the axion which is the Nambu-Goldstone boson of broken PQ

symmetry, it is massless in the supersymmetric limit. When SUSY is broken, however, the saxion

(and also the axino) acquires a mass. The saxion mass is typically of the gravitino mass order

although it can be either larger or smaller than the gravitino mass in some models [20–23]. On the

other hand, as shown in the Sec. III B, the saxion mass (i.e. mX) is required to be smaller than

the AD field mass in order to not spoil lepton number generation. In this regard, we consider a

rather small saxion mass compared to the AD field mass, i.e. m� ⇠ mX . m�/10.

� mX

RHN mass is much larger than soft mass scale
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In this section, we show how dynamical PQ symmetry breaking accommodates enough baryon

asymmetry and a relatively large neutrino mass.

A. The model

We consider the neutrino sector for AD leptogenesis and the PQ breaking sector, which are

described by the following superpotential,

W = WAD +WPQ, (1)

WAD =
1

2
�XNN + y⌫NLHu, WPQ = ⌘Z(XY � f

2) +
gµY

2

MP

HuHd, (2)

where N is the RHN, L is the lepton doublet, Hu (Hd) is the up-type (down-type) Higgs doublet,

X and Y are the PQ fields, Z is a singlet scalar, �, ⌘ and gµ represent numerical coe�cients, f

denotes the (present) PQ breaking scale and MP the reduced Planck scale. The PQ charges and

lepton numbers of these fields are given in Table I.

When X obtains a large field value, the RHN becomes massive and can be integrated out to

obtain the e↵ective superpotential:
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• Lepton number violation during saxion oscillation  

(after AD works)
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the AD field � reads

V ' m
2
X |X|

2 +m
2
�
|�|

2 +m
2
Y

f
4

|X|2
+

g
2
µf

8

M
2
P

����
�

X2

����
2

, (39)

where mX and mY are the soft SUSY breaking mass of X and Y , respectively. The last term

comes from Wµ (21). The third and fourth terms act as the e↵ective potential for X and they

prevent X from being very small during the oscillation. Let us denote by Xmax the maximum value

of X during each X oscillation, which adiabatically becomes smaller due to the Hubble expansion

(Xmax / a
�3/2). Then we can define Xmin, the minimum value of X during each oscillation. For a

large AD field value �, the last term is important to determine Xmin. Thus we can evaluate Xmin

as

Xmin ⇠ max

"
f
2

Xmax

✓
gµXmax|�|

MPmX

◆1/2

,
mY

mX

f
2

Xmax

#
. (40)

Since Xmax ⇠ MP and |�| � mX just after the saxion oscillation, Xmin is generically much larger

than the soft mass scale, meaning that the RHN masses cannot be as small as the soft mass

during saxion oscillation and hence the procedure to integrate out the RHN to obtain the e↵ective

potential of the AD field is justified.

Now let us consider the lepton number violation after the X begins to oscillate. The lepton

number follows:

ṅL + 3HnL =
y
2
⌫msoft

�X
Im(am�

4). (41)

As discussed above, X oscillates between Xmax and Xmin in a time scale m
�1
X

where Xmin is given

by Eq. (40). The most dangerous L violation may happen around X ⇠ Xmin at which the L-

violating operator becomes large. The time interval �t during which X ⇠ Xmin is estimated from

the equation of motion

Ẍ ⇠
µ
2
f
4
�
2

X5
! Xmin ⇠ Ẍ(�t)2 ! �t ⇠

X
3
min

µf2�
. (42)

During this time interval, the L number changes as

�nL ⇠
y
2
⌫msoft�

4

�X
�t ⇠

y
2
⌫

�

gµmsoft�
4
f
2

µmXMPXmax
. (43)

When X is small, it could make large Lepton number change 

DFSZ prevents X from being too small Xmin ⇠ f2

MP

✓
gµ|�|
mX

◆1/2

• Total Lepton number change is 
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Using nL ⇠ msoft�
2, we obtain
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Since �
2 in the numerator decreases faster than Xmax in the denominator, this takes a maximum

value just after the X begins to oscillate H ⇠ mX .
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H=mX

mXMP
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This must be smaller than 1 to ensure the conservation of lepton number. If thermal e↵ects are

neglected and mX ⌧ m�, we have �
2
H=mX

⇠ m�M⇤(mX/m�)2 and it becomes

✓
�nL

nL

◆

H⇠mX

⇠
mX

m�

⌧ 1 . (46)

Thus, the lepton number violation during the saxion oscillation can be neglected as far asmX ⌧ m�

is satisfied.

IV. BARYON NUMBER AND SUSY SCALE

We have discussed how PQ symmetry breaking accommodates the baryon asymmetry with a

sizable neutrino mass when the PQ scale varies during and after inflation. In this scenario, the

entropy dilution from saxion decay indeed plays a substantial role for determining the final value

of the baryon asymmetry. The saxion decay rate depends on its mass and the µ-term as shown

in Eqs. (23) and (25). In many cases, the saxion mass and µ-term are related to the soft SUSY

breaking scale. In particular, µ-term is a measure of fine-tuning of the electroweak symmetry

breaking. Therefore, it leads us to discuss the soft SUSY scale and fine-tuning from the measured

baryon asymmetry.

Since the saxion is linked to the axion which is the Nambu-Goldstone boson of broken PQ

symmetry, it is massless in the supersymmetric limit. When SUSY is broken, however, the saxion

(and also the axino) acquires a mass. The saxion mass is typically of the gravitino mass order

although it can be either larger or smaller than the gravitino mass in some models [20–23]. On the

other hand, as shown in the Sec. III B, the saxion mass (i.e. mX) is required to be smaller than

the AD field mass in order to not spoil lepton number generation. In this regard, we consider a

rather small saxion mass compared to the AD field mass, i.e. m� ⇠ mX . m�/10.
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This must be smaller than 1 to ensure the conservation of lepton number. If thermal e↵ects are

neglected and mX ⌧ m�, we have �
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⇠ m�M⇤(mX/m�)2 and it becomes
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Thus, the lepton number violation during the saxion oscillation can be neglected as far asmX ⌧ m�

is satisfied.

IV. BARYON NUMBER AND SUSY SCALE

We have discussed how PQ symmetry breaking accommodates the baryon asymmetry with a

sizable neutrino mass when the PQ scale varies during and after inflation. In this scenario, the

entropy dilution from saxion decay indeed plays a substantial role for determining the final value

of the baryon asymmetry. The saxion decay rate depends on its mass and the µ-term as shown

in Eqs. (23) and (25). In many cases, the saxion mass and µ-term are related to the soft SUSY

breaking scale. In particular, µ-term is a measure of fine-tuning of the electroweak symmetry

breaking. Therefore, it leads us to discuss the soft SUSY scale and fine-tuning from the measured

baryon asymmetry.

Since the saxion is linked to the axion which is the Nambu-Goldstone boson of broken PQ

symmetry, it is massless in the supersymmetric limit. When SUSY is broken, however, the saxion

(and also the axino) acquires a mass. The saxion mass is typically of the gravitino mass order

although it can be either larger or smaller than the gravitino mass in some models [20–23]. On the

other hand, as shown in the Sec. III B, the saxion mass (i.e. mX) is required to be smaller than

the AD field mass in order to not spoil lepton number generation. In this regard, we consider a

rather small saxion mass compared to the AD field mass, i.e. m� ⇠ mX . m�/10.
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This must be smaller than 1 to ensure the conservation of lepton number. If thermal e↵ects are

neglected and mX ⌧ m�, we have �
2
H=mX

⇠ m�M⇤(mX/m�)2 and it becomes
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Thus, the lepton number violation during the saxion oscillation can be neglected as far asmX ⌧ m�

is satisfied.

IV. BARYON NUMBER AND SUSY SCALE

We have discussed how PQ symmetry breaking accommodates the baryon asymmetry with a

sizable neutrino mass when the PQ scale varies during and after inflation. In this scenario, the

entropy dilution from saxion decay indeed plays a substantial role for determining the final value

of the baryon asymmetry. The saxion decay rate depends on its mass and the µ-term as shown

in Eqs. (23) and (25). In many cases, the saxion mass and µ-term are related to the soft SUSY

breaking scale. In particular, µ-term is a measure of fine-tuning of the electroweak symmetry

breaking. Therefore, it leads us to discuss the soft SUSY scale and fine-tuning from the measured

baryon asymmetry.

Since the saxion is linked to the axion which is the Nambu-Goldstone boson of broken PQ

symmetry, it is massless in the supersymmetric limit. When SUSY is broken, however, the saxion

(and also the axino) acquires a mass. The saxion mass is typically of the gravitino mass order

although it can be either larger or smaller than the gravitino mass in some models [20–23]. On the

other hand, as shown in the Sec. III B, the saxion mass (i.e. mX) is required to be smaller than
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neccessary for AD before saxion oscillation



SAXION DECAY

• Saxion decay dilutes generated lepton number

• Saxion decay is determined by

7

second and third terms inside the bracket of Eq. (18). The detailed physical aspects are explained

in Ref. [20] and references therein. If m� = 10 TeV and M⇤ = 7.2⇥1023 GeV, such early oscillation

occurs for TR & 107 GeV.

For an illustration, we show a formula for a case where the early oscillation does not occur. In

such a case, Hosc = m�, so the baryon-number-to-entropy ratio becomes

nB

s
' 3.6⇥ 10�8

�ph

✓
TR

107 GeV

◆✓
10�4 eV

m⌫1

◆✓
1012 GeV

f

◆✓
X0

MP

◆
, (20)

where we also assume m� = |am|msoft. In this scenario, however, saxion will dominate the universe,

and its decay produces entropy dilution. In order to obtain the final baryon asymmetry after saxion

decay, the entropy dilution must be taken into account. We will consider the entropy production

in the following subsection.

Before closing this subsection, let us comment on the possible lepton number violation during

the saxion oscillation. Since the field value of X can become small during its oscillation, the e↵ect

of the lepton number violation, induced by the e↵ective superpotential (3) or the corresponding

A-term, may become large. Here, as shown in Sec. III, the µ-term interaction in Eq. (2),

Wµ =
gµY

2

MP

HuHd , (21)

plays an important role. Assuming mX ⌧ m�, the lepton number violation during the saxion

oscillation is small enough to maintain the generated lepton asymmetry by the AD mechanism. As

we shall see in the next subsection, the µ-term interaction (21) also plays a key role to determine

the saxion decay, and hence the final baryon asymmetry.

C. Saxion decay in DFSZ model

We have discussed how the dynamical PQ breaking scale can enhance the baryon asymmetry.

For the final result, one crucial point to consider is the entropy production from saxion decay. In

the DFSZ model, saxion interactions with the standard model particles and their superpartners

are realized in the µ-term interaction (21). Once X and Y settle down to the current value of the

PQ symmetry breaking scale, X ⇠ Y ⇠ f , this superpotential generates the µ-term,

µ ⇠
gµf

2

MP

, (22)
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and also interactions between the axion superfield and the Higgs supermultiplets.

Through this interaction, the saxion dominantly decays into Higgsino states if they are kine-

matically allowed. Its decay rate is approximately given by [36]5

�(� ! 2 eH) '
1

4⇡

✓
µ

fa

◆2

m�. (23)

Note that we have used here fa = 2f under assumption of X = Y = f in the present universe, so

quantities related to axion dark matter is determined by fa/NDW (NDW: domain wall number) as

the usual normalization. The decay temperature is

T
(m�>2µ)
� ' 25 GeV

✓
90

g⇤

◆1/4 ⇣
µ

TeV

⌘✓
1012 GeV

fa

◆⇣
m�

10 TeV

⌘1/2
. (24)

If saxion decays into Higgsino states are disallowed, it dominantly decays into the light Higgs and

gauge bosons. The decay rate in such a case is given by

�(� ! hh,W
+
W

�
, ZZ) '

2

⇡

µ
4

f2
a

1

m�

, (25)

and the decay temperature becomes

T
(m�<2µ)
� ' 70 GeV

✓
90

g⇤

◆1/4 ⇣
µ

TeV

⌘2
✓
1012 GeV

fa

◆✓
100 GeV

m�

◆1/2

. (26)

From the above decay temperature for each case, one finds the entropy dilution factor

� = max

"
1

8
TR

✓
X0

MP

◆2 4

3T�

, 1

#
. (27)

Here we have included the case where TR is small so that the saxion decays before the reheating

process is over. The final baryon asymmetry is determined by the amount of asymmetry when the

AD mechanism completes, Eq. (17) and by the dilution factor, Eq. (27):

⇣
nB

s

⌘

final
= 0.029

M⇤TR

M
2
P

✓
msoft|am|

Hosc

◆
�ph ⇥

1

�
. (28)

5
In the numerical calculation in Sec.IV, we use the saxion decay rates including phase space and mixings in [36].
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(dilution factor)
9

For the case where saxion dominantly decays into Higgsinos,

nB

s
= 1.1⇥ 10�12

�ph

✓
10�4 eV

m⌫1

◆✓
1012 GeV

fa

◆2✓
X0

MP

◆�1✓90

g⇤

◆1/4 ⇣
µ

TeV

⌘⇣
m�

10 TeV

⌘1/2
, (29)

or for the case where saxion dominantly decays into light Higgs and gauge bosons,

nB

s
= 3.0⇥ 10�12

�ph

✓
10�4 eV

m⌫1

◆✓
1012 GeV

fa

◆2✓
X0

MP

◆�1✓90

g⇤

◆1/4 ⇣
µ

TeV

⌘2
✓
100 GeV

m�

◆1/2

.

(30)

From this it is easily seen that the observed baryon-number-to-entropy-ratio can be obtained for

relatively large neutrino mass m⌫1 = 10�4 eV if the PQ breaking scale is near the Planck scale in

the beginning and settles to 1011 GeV at the present universe.

We will see numerical results for some example parameter regions in Sec. IV.

III. DYNAMICS OF PQ BREAKING FIELDS

In this section, we discuss the dynamics of the PQ breaking fields in order to investigate the

realization of the Planck scale PQ breaking in the early stage and lepton number conservation at

the late stage.

A. PQ breaking at the Planck scale

Let us first examine the scalar potential of X and Y for large H to check if the PQ scale is

O(MP ). We have to consider the supergravity potential which is given by

V = e
K/M

2
P

✓
DiWK

ij̄
Dj̄W

⇤
�

3

M
2
P

|W |
2

◆
, (31)

where DiW = Wi + KiW/M
2
P
. We assume that the e↵ect of the AD field � is negligible. The

Kähler potential and superpotential are given by

K = |X|
2 + |Y |

2 + |Z|
2 + |I|

2 +
b

M
2
P

|I|
2
|X|

2
, (32)

W = ⌘Z(XY � f
2), (33)

where I is the inflaton field. Note that only X has non-minimal coupling with the inflaton in K.

If b > 1, one can obtain a negative Hubble-induced mass term for X and thus X develops a large

µ(msax)-dependent!

• Saxion osc. with ~MP dominates the Universe.



AXION ISOCURVATURE
PQ is broken during inflation and never restored
• Isocurvature pert.

16

It significantly suppresses the axion isocurvature perturbation [39–42]. Since the massless axion

mode almost consists of the phase component of X for |X| � f , the e↵ective PQ scale during

inflation is simply given by |X| = Xinf ⇠ MP .8

The magnitude of CDM isocurvature perturbation is then given by

PSCDM ' r
2

✓
Hinf

⇡Xinf✓a

◆2

. (49)

where Hinf denotes the Hubble scale during inflation, ✓a denotes the initial misalignment angle of

the axion and r denotes the fraction of present axion energy density in the matter energy density:

r ⌘ (⌦ah
2)/(⌦mh

2). The final axion density is given by [45]

⌦ah
2
' 0.18 ✓2a

✓
fa/NDW

1012GeV

◆1.19

. (50)

Here we have assumed that there is no dilution of the axion density due to the saxion decay. The

Planck constraint on the uncorrelated isocurvature perturbation [46] reads

Hinf . 7⇥ 1013GeV ✓
�1
a

✓
1012GeV

fa/NDW

◆1.19✓
Xinf

MP

◆
. (51)

This constraint is easily satisfied for most inflation models since Xinf = X0 ⇠ MP in our scenario.

B. Axino production

The axino is the fermionic superpartner of the axion, consisting of the fermionic components

of X and Y with a small mixture of higgsino. It obtains a mass of mã = ⌘ hZi ' m3/2. It has

a relatively long lifetime if it is not the lightest SUSY particle (LSP) [47–49]. Its decay width is

approximately given by

�ã ⇠
2

⇡

µ
2
mã

f2
a

, (52)

which is comparable to the saxion. Thus the axino can have significant impacts on cosmology.

The dominant axino production process is the thermal one.9 The axino thermal production

in the DFSZ model comes from the combination of higgsino decay/inverse decay, scatterings of

8
If Hu or Hd has a larger field value than X, the e↵ective PQ scale is given by |Hu| or |Hd| [43, 44]. This is not

the case in our model.
9
The direct saxion decay into the axino pair can be kinematically forbidden for m� < 2mã.
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FIG. 1: Contours of m⌫1 [eV] on the (µ, fa) plane to reproduce the observed baryon asymmetry. In the left
(right) panel we have taken m� = 5µ (m� = µ/5) while msoft = m� = 10m� (msoft = m� = 50m�). The
light (dark) red shaded region corresponds to T� < 10GeV (1GeV) and the grey shaded region is excluded
by the KamLAND-Zen experiment. The light-gray shaded region is constrained by Planck+BAO [34]. The
light-purple shaded region indicates bound from SN1987A [35]. The blue shaded region corresponds to
µ = (0.01� 1)f2

a/MP .

region shows parameter space where the lightest neutrino mass is larger than the KamLAND-Zen

bound [33]. We also show a bound from Planck+BAO constraint on the sum of neutrino masses,

(
P

m⌫) < 0.17 eV [34]. The light-purple shaded region shows the bound from SN1987A [35]. The

(light-)red shaded region shows parameter space where the saxion decay temperature is smaller

than 1 GeV (10 GeV). The blue shade indicates the region for which µ = (0.01 � 1)f2
a/MP . We

consider fixed TR = 106 GeV since larger TR does not change or does suppress nB/s (see Eq. (28)).

In the case where nB/s is suppressed, it requires a smaller neutrino mass that is less attractive.

From the figure, it is clearly shown that neutrino mass is large for large µ and small fa while it

becomes smaller for small µ and large fa. This feature stems from the saxion decay temperature.

The saxion decay temperature is enhanced by the µ-term while suppressed by fa. It is also of great

importance that small fa is good for obtaining a flatter direction during lepton number generation

as shown in Eq. (6). For µ & 1 TeV and fa . 1010 GeV, our model predicts a rather large neutrino

mass so that it is constrained by recent neutrinoless double beta decay (0⌫��) experiment. For

this constraint, we take a conservative bound from KamLAND-Zen, m⌫ < 0.48 eV [33]. From the

lower-right corner (µ ⇠ 105 GeV, fa ⇠ 1010 GeV) to the upper-left corner (µ ⇠ 102 GeV, fa ⇠ 1012

GeV), the resulting neutrino mass scans over 10�1
� 10�8 eV.

• Contours for nB/s=10-10.



SUMMARY

• Simple AD leptogenesis along LHu requires very light neutrino.

• If AD leptogenesis works with varying PQ scale, successful 
leptogenesis is possible with (relatively) large neutrino mass.

• Non-minimal Kähler for a PQ field realizes varying PQ scale.

• DFSZ is good to suppress unwanted L violation during saxion 
oscillation; Saxion decay determines the final BAU.

• Axion isocurvature is suppressed.
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FIG. 3: Effective Majorana neutrino mass ⟨mββ⟩ as a function of
the lightest neutrino mass mlightest. The dark shaded regions are
the predictions based on best-fit values of neutrino oscillation pa-
rameters for the normal hierarchy (NH) and the inverted hierarchy
(IH), and the light shaded regions indicate the 3σ ranges calculated
from the oscillation parameter uncertainties [29, 30]. The horizon-
tal bands indicate 90% C.L. upper limits on ⟨mββ⟩ with 136Xe from
KamLAND-Zen (this work), and with other nuclei from Ref. [2, 26–
28], considering an improved phase space factor calculation [17, 18]
and commonly used NME calculations [19–25]. The side-panel
shows the corresponding limits for each nucleus as a function of the
mass number.

nism is dominated by exchange of a pure-Majorana Standard
Model neutrino. The shaded regions include the uncertain-
ties in Uei and the neutrino mass splitting, for each hierar-
chy. Also drawn are the experimental limits from the 0νββ
decay searches for each nucleus [2, 26–28]. The upper limit
on ⟨mββ⟩ from KamLAND-Zen is the most stringent, and it
also provides the strongest constraint onmlightest considering
extreme cases of the combination of CP phases and the uncer-

tainties from neutrino oscillation parameters [29, 30]. We ob-
tain a 90% C.L. upper limit ofmlightest < (180− 480)meV.

In conclusion, we have demonstrated effective background
reduction in the Xe-loaded liquid scintillator by purifica-
tion, and enhanced the 0νββ decay search sensitivity in
KamLAND-Zen. Our search constrains the mass scale to lie
below ∼100meV, and the most advantageous nuclear matrix
element calculations indicate an effective Majorana neutrino
mass limit near the bottom of the quasi-degenerate neutrino
mass region. The current KamLAND-Zen search is limited by
backgrounds from 214Bi, 110mAg, muon spallation and par-
tially by the tail of 2νββ decays. In order to improve the
search sensitivity, we plan to upgrade the KamLAND-Zen ex-
periment with a larger Xe-LS volume loaded with 800 kg of
enriched Xe, corresponding to a twofold increase in 136Xe,
contained in a larger balloon with lower radioactive back-
ground contaminants. If further radioactive background re-
duction is achieved, the background will be dominated by
muon spallation, which can be further reduced by optimiza-
tion of the spallation cut criteria. Such an improved search
will allow ⟨mββ⟩ to be probed below 50meV, starting to con-
strain the inverted mass hierarchy region under the assump-
tion that neutrinos are Majorana particles. The sensitivity of
the experiment can be pushed further by improving the en-
ergy resolution to minimize the leakage of the 2νββ tail into
the 0νββ analysis window. Such improvement is the target of
a future detector upgrade.
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