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Why	  not	  the	  MSSM?	  
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Why	  not	  the	  MSSM?	  

The	  Higgs	  wants	  to	  be	  light	  

Require	  large	  radia2ve	  contribu2ons	  with	  heavy	  sfermions	  	  
and/or	  large	  mixing	  (bad	  for	  naturalness,	  vacuum	  stability)	  

mtree
h ≤ mZ |cos 2β|

Draper,	  Lee,	  Wagner,	  1312.5743	  
M=1	  TeV	  

M=2	  TeV	  

M=3	  TeV	  

See	  e.g.	  Blinov	  and	  Morrissey,	  1310.4174	  
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Why	  not	  the	  MSSM?	  

There’s	  a	  	  	  	  	  problem	  

Could	  invoke	  e.g.	  Giudice-‐Masiero	  (	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  ,	  but	  the	  	  	  
	  	  	  -‐	  term	  is	  not	  a	  priori	  connected	  with	  SUSY	  breaking	  
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Why	  not	  the	  MSSM?	  

Stops	  aren’t	  light	  

Large	  thermal	  contribu2ons	  from	  light	  stop	  required	  for	  	  
strongly	  first	  order	  PT	  

the tree-level potential (expanded around the background fields), modified by additional
Coleman-Weinberg terms.

At finite temperature and density the physical ground state of the theory is altered by
the interactions of the scalar field φ with the ambient plasma. The vacua of the theory can
then be determined from the finite-temperature effective potential, Veff(φ, T ). In the simple
case involving one background field, it is given by [14]
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where the plus and minus signs correspond to the bosonic and fermionic contributions,
respectively, and the Ni are the associated number of degrees of freedom for the species
i. This expression generalizes straightforwardly to the case of more than one background
field. The functions J± are given by
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with ab = 16π2e3/2−2γE , af = π2e3/2−2γE , and γE the Euler-Mascheroni constant. Note
that the thermal contributions above correspond to momentum integrals of equilibrium
distribution functions for all species in the plasma coupled to φ [14, 38].

2.2 Gauge-Invariance

The finite temperature effective potential is only gauge-invariant at its extrema [107, 108].
Thus, tunneling calculations depending on the potential away from the local minima are
in general gauge-dependent. This will result in a gauge-dependent determination of the
nucleation temperature for the phase transition, Tn, and ultimately the wall velocity. To
avoid this as much as possible, our primary analysis will only consider terms in the effec-
tive potential which are explicitly gauge-invariant. Thus, we will not include the T = 0

Coleman-Weinberg corrections, or the finite temperature cubic and tadpole terms in the
high-temperature effective potential (gauge-dependence in the tadpole may enter at higher
perturbative order [43]). This is precisely the strategy followed by Ref. [43] in analyzing the
phase transition properties of the xSM. The finite-temperature effective potential in this
case becomes
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+ . . .

Carena	  et	  al,	  1207.6330	  

�φ(Tn)�
Tn

� 1

m�t1 � 117 GeV
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Why	  not	  the	  MSSM?	  

Stops	  aren’t	  light	  

Strong	  1st	  order	  PT	  in	  MSSM	  is	  essen2ally	  ruled	  out	  (caveats?)	  

Carena	  et	  al,	  1207.6330	  

�φ(Tn)�
Tn

� 1

m�t1 � 117 GeV

See	  e.g.	  Cur2n	  et	  al,	  1203.2932;	  Cohen	  et	  al	  1203.2924;	  Krizka	  et	  al,	  1212.4856;	  Delgado	  et	  al,	  1212.6847;	  Katz	  et	  al,	  1509.02934;	  
Andrey’s	  talk	  
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Why	  not	  the	  MSSM?	  

We	  haven’t	  seen	  a	  permanent	  EDM	  

Bino-‐Higgsino	  (Cirigliano	  et	  al,	  0910.4589)	  or	  stau	  (JK	  et	  al,	  1206.4100)	  	  sources	  	  
s2ll	  a	  possibility,	  though	  highly	  constrained	  

Likely	  need	  beyond-‐MSSM	  CP-‐viola2on 	  	  	  
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Next-‐to-‐Minimal	  SUSY	  

W = WMSSM|µ=0 + λ�S �Hu · �Hd +
κ

3
�S3
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Next-‐to-‐Minimal	  SUSY	  

Not	  in	  this	  talk:	  also	  accommodates	  new	  CPV	  sources	  (Cheung	  et	  	  
al,	  1201.3781;	  JK	  et	  al,	  1302.4781;	  work	  in	  progress	  with	  Nikita	  Blinov,	  Wei	  Chao,	  Mar2n	  	  

Gonzalez-‐Alonso,	  and	  Michael	  R-‐M)	  

Long	  history	  of	  PT	  studies	  (see	  e.g.	  Pietroni,	  hep-‐ph/9207227;	  Davies	  et	  al,	  hep-‐ph/	  
9603388;	  Huber	  and	  Schmidt,	  hep-‐ph/0003122;	  Funakubo	  et	  al,	  hep-‐ph/0501052;	  Huber	  et	  al,	  hep-‐ph/	  

0608017;	  Carena	  et	  al,	  1110.4378;	  JK	  et	  al,	  1302.4781;	  Huang	  et	  al,	  1405.1152;	  JK	  et	  al,	  1407.4134,	  …)	  

W = WMSSM|µ=0 + λ�S �Hu · �Hd +
κ

3
�S3

No	  µ-‐term	   Larger	  mh	  at	  tree-‐level	   New	  tree-‐level	  terms	  in	  the	  poten2al	  
(light	  stops	  not	  required)	  

mtree
h ≤ mZ cos 2β +

λv2

2
sin2 2β
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What	  do	  we	  want	  to	  know?	  

*Phase	  transi2on	  strength	  in	  viable	  parameter	  space	  

*Bubble	  wall	  profile	  (input	  into	  CPV	  sources)	  

*Bubble	  wall	  velocity	  (input	  into	  CPV	  sources	  and	  diffusion	  eqns)	  

∝ dβ/dt � ∆βvw/Lw

r

Φ

Lw

vw

Strength	  of	  CPV	  sources	  

Baryon	  density	  	  ρB = −nFΓws

2vw

� 0

−∞
nL(x)e

xR/vwdx

9/18/15	   11	  J.	  Kozaczuk	  



Example	  points:	  
Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] -90 -129 -56 -79 -154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] -100.0 -100.0 -103.5 -103.5 -102.0

M �Q3
= M�U3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs [GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

m�χ0
1
[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

�σv� [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

TABLE I. The benchmarks considered in this study exemplifying the different phase transition pos-

sibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters are

chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at the

LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum compat-

ible with LHC searches and other constraints (see text). The wino, gluino, and other sfermion soft

breaking masses (besides M�t) are set to M2 = -600 GeV and M3 = Msf = 1.5 TeV for all bench-

marks. Note that the values of these masses do not significantly affect the scenarios we consider

and can be increased if so desired.

sector using the HiggsBounds 4.1 package [10]. We require all of our points to pass all rele-

vant experimental constraints implemented in NMSSMTools, MicrOmegas, and HiggsBounds,

13

NMSSM	  Parameter	  Space	  

(JK	  et	  al,	  1407.4134)	  
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Standard	  Model-‐like	  Higgs	  
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FIG. 1. Signal strengths for the various Higgs prodution and decay channels for our benchmark

points (labeled 1–5), compared with the global fit in Ref. [12] obtained using current ATLAS, CMS,

and Tevatron data. On the left we consider the diphoton rate arising from vector boson fusion

(VBF) + associated production with a gauge boson (VH), and from gluon gluon fusion (ggF) +

associated production with a top quark pair (ttH). On the right we plot the corresponding results for

vector boson final states. The white star indicates the current best-fit point from Ref. [12], while the

shaded areas correspond to 68%, 95%, and 99.7% C.L. regions from darkest to lightest, respectively.

All the benchmark points lie within the 68% CL regions for the observed signal strengths. The bb̄/ττ

ellipses are not shown, since all the benchmarks lie very close to the best fit point in this plane. All of

our benchmark points feature a very Standard Model-like Higgs in good agreement with observation.

We must also ensure that the rest of the Higgs sector does not violate the current

constraints from LEP, the Tevatron, or the LHC. This is precisely what is checked by

HiggsBounds. In all of our benchmarks, the scalar closest in mass to the SM-like Higgs

is singlet-like, with couplings of order 10% or less of those for a SM Higgs boson with the

same mass. These suppressed couplings make it difficult to detect these states and allow

them to be even lighter than the SM-like Higgs, as will be the case for all the points we

consider. In fact, in the NMSSM, scalars and pseudoscalars can be extremely light and still

compatible with current collider and meson decay limits, provided the mixing is small [31]

(see e.g. Ref. [67] for a more detailed discussion of possible strategies to search for these

18

Based	  on	  global	  fit	  from	  1306.2941	  

Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] -90 -129 -56 -79 -154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] -100.0 -100.0 -103.5 -103.5 -102.0

M �Q3
= M�U3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs [GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

m�χ0
1
[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

�σv� [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

TABLE I. The benchmarks considered in this study exemplifying the different phase transition pos-

sibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters are

chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at the

LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum compat-

ible with LHC searches and other constraints (see text). The wino, gluino, and other sfermion soft

breaking masses (besides M�t) are set to M2 = -600 GeV and M3 = Msf = 1.5 TeV for all bench-

marks. Note that the values of these masses do not significantly affect the scenarios we consider

and can be increased if so desired.

sector using the HiggsBounds 4.1 package [10]. We require all of our points to pass all rele-

vant experimental constraints implemented in NMSSMTools, MicrOmegas, and HiggsBounds,

13

NMSSM	  Parameter	  Space	  
Example	  points:	  
(JK	  et	  al,	  1407.4134)	  
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Light	  singlet-‐like	  states	  	  
(checked	  by	  HiggsBounds
and HiggsSignals)	  

Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] -90 -129 -56 -79 -154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] -100.0 -100.0 -103.5 -103.5 -102.0

M �Q3
= M�U3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs [GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

m�χ0
1
[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

�σv� [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

TABLE I. The benchmarks considered in this study exemplifying the different phase transition pos-

sibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters are

chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at the

LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum compat-

ible with LHC searches and other constraints (see text). The wino, gluino, and other sfermion soft

breaking masses (besides M�t) are set to M2 = -600 GeV and M3 = Msf = 1.5 TeV for all bench-

marks. Note that the values of these masses do not significantly affect the scenarios we consider

and can be increased if so desired.

sector using the HiggsBounds 4.1 package [10]. We require all of our points to pass all rele-

vant experimental constraints implemented in NMSSMTools, MicrOmegas, and HiggsBounds,

13

NMSSM	  Parameter	  Space	  
Example	  points:	  
(JK	  et	  al,	  1407.4134)	  
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Example	  points:	  

Viable	  neutralino	  DM	  candidate	  

Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] -90 -129 -56 -79 -154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] -100.0 -100.0 -103.5 -103.5 -102.0

M �Q3
= M�U3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs [GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

m�χ0
1
[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

�σv� [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

TABLE I. The benchmarks considered in this study exemplifying the different phase transition pos-

sibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters are

chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at the

LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum compat-

ible with LHC searches and other constraints (see text). The wino, gluino, and other sfermion soft

breaking masses (besides M�t) are set to M2 = -600 GeV and M3 = Msf = 1.5 TeV for all bench-

marks. Note that the values of these masses do not significantly affect the scenarios we consider

and can be increased if so desired.

sector using the HiggsBounds 4.1 package [10]. We require all of our points to pass all rele-

vant experimental constraints implemented in NMSSMTools, MicrOmegas, and HiggsBounds,

13

NMSSM	  Parameter	  Space	  

(JK	  et	  al,	  1407.4134)	  
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Relic	  density	  driven	  down	  by	  co-‐
annihila2on	  with	  singlino-‐like	  NLSP	  

Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] -90 -129 -56 -79 -154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] -100.0 -100.0 -103.5 -103.5 -102.0

M �Q3
= M�U3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs [GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

m�χ0
1
[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

�σv� [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

TABLE I. The benchmarks considered in this study exemplifying the different phase transition pos-

sibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters are

chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at the

LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum compat-

ible with LHC searches and other constraints (see text). The wino, gluino, and other sfermion soft

breaking masses (besides M�t) are set to M2 = -600 GeV and M3 = Msf = 1.5 TeV for all bench-

marks. Note that the values of these masses do not significantly affect the scenarios we consider

and can be increased if so desired.

sector using the HiggsBounds 4.1 package [10]. We require all of our points to pass all rele-

vant experimental constraints implemented in NMSSMTools, MicrOmegas, and HiggsBounds,

13

NMSSM	  Parameter	  Space	  
Example	  points:	  
(JK	  et	  al,	  1407.4134)	  
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Below	  current	  limits	  from	  LUX,	  
XENON100,	  IceCube,	  Fermi,	  etc	  

Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] -90 -129 -56 -79 -154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] -100.0 -100.0 -103.5 -103.5 -102.0

M �Q3
= M�U3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs [GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

m�χ0
1
[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

�σv� [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

TABLE I. The benchmarks considered in this study exemplifying the different phase transition pos-

sibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters are

chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at the

LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum compat-

ible with LHC searches and other constraints (see text). The wino, gluino, and other sfermion soft

breaking masses (besides M�t) are set to M2 = -600 GeV and M3 = Msf = 1.5 TeV for all bench-

marks. Note that the values of these masses do not significantly affect the scenarios we consider

and can be increased if so desired.

sector using the HiggsBounds 4.1 package [10]. We require all of our points to pass all rele-

vant experimental constraints implemented in NMSSMTools, MicrOmegas, and HiggsBounds,

13

NMSSM	  Parameter	  Space	  
Example	  points:	  
(JK	  et	  al,	  1407.4134)	  
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Phase	  Transi2ons	  in	  the	  NMSSM	  

What	  we	  found:	  
(JK	  et	  al,	  1407.4134;	  See	  also	  Huang	  et	  al,	  1405.1152	  for	  similar	  conclusions)	  
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What	  we	  found:	  

*One-‐	  or	  two-‐step	  transi2ons	  in	  the	  singlet	  and/or	  SU(2)	  	  
direc2ons	  

Phase	  Transi2ons	  in	  the	  NMSSM	  

(JK	  et	  al,	  1407.4134;	  See	  also	  Huang	  et	  al,	  1405.1152	  for	  similar	  conclusions)	  

9/18/15	   19	  J.	  Kozaczuk	  



What	  we	  found:	  

Phase	  Transi2ons	  in	  the	  NMSSM	  

FIG. 4. Results for strongly first order one-step electroweak phase transitions at different values of

mhs for Sets I (circles), II (diamonds), and III (squares). Shown are the EWPT order parameter,

SU(2) wall width, singlet wall width, and ∆β, which are quantities relevant for investigations of

electroweak baryogenesis. The singlet-like Higgs mass is varied by varying Aκ as described in the

text with all other parameters fixed. The rest of the spectrum varies very little across the scanned

points, with the phenomenology as presented in Table I. Black points have bubble walls that are

guaranteed to be sub-luminal, while the cyan points admit a runaway solution. Note that the late-

time bubble wall profile parameBters are only calculated for walls moving with constant velocity and

friction, and so are not shown for points with runaway solutions.

very attractive feature from the standpoint of electroweak baryogenesis, since large values

can allow for smaller CP-violating phases in the sources, resulting in less stringent bounds

from electric dipole moment experiments. Although at tree-level (at high energies) the

singlet couples in the same way to hu and hd, after integrating out the stops and evolving

the parameters down to the electroweak scale, this is no longer the case. Note that smaller

values of ∆β were found previously for the general NMSSM in Ref. [13] (on the order of 10−3,

30

*Phenomenologically	  
viable	  points	  w/strong	  
first	  order	  EWPT	  

*Narrow	  walls	  

*Large	  Δβ	  

(JK	  et	  al,	  1407.4134)	  

∝ dβ/dt � ∆βvw/Lw

Strength	  of	  CPV	  sources	  

Looking	  promising	  for	  EWB!	  
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A	  Challenge	  for	  Singlet-‐driven	  EWB	  

Generic	  consequence	  of	  addi2onal	  singlet	  field	  direc2ons:	  fast	  	  

bubble	  walls	  

�φ� = 0 �φ� �= 0

Friction ∆VT=0

vw

Figure 1. Illustration of the competing forces acting on the bubble wall that ultimately determine
vw. The steady state wall velocity is such that the vacuum energy difference between the phases
(∆VT=0) is balanced by the friction provided by the interactions of the wall with the plasma.

and solve for T+ in terms of Tn, vw. Previous studies suggest that using the planar approxi-

mation instead of the full solutions to the spherical hydrodynamic equations can reproduce

the full result for the wall velocity to within a few percent [75].

With the temperature T+ and the static properties of the phase transition determined

in this way, we can now consider the asymptotic behavior of the bubble after its formation.

3.3 Wall Equations of Motion

The main object for our analysis will be the bubble wall equations of motion correspond-

ing to the set of scalar fields φi = φh,φs. These can be derived by requiring conservation

of the energy-momentum tensor for the scalar field condensates computed in a WKB ap-

proximation [70], or directly from the Kadanoff-Baym equations [47]. We are interested in

the stationary limit of the equations of motion in the plasma frame; that is, we want to

investigate the bubble wall once it has reached its terminal velocity (if it exists), with the

pressure driving the expansion precisely counterbalanced by the drag force exerted on the

bubble by the plasma. This is illustrated in Fig. 1.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-accelerating)

bubble wall all functions will be depend only on z, the distance from the phase boundary.

Consequently, in the plasma frame, all functions depend only on the coordinate x ≡ z+vwt,

where vw is the wall velocity in the plasma frame and we have assumed that the wall is

moving to the left. In the stationary wall limit, the equations of motion then simplify to

−(1− v2w)φ
��
i +

∂V (φi, T )

∂φi
+
�

j

∂m2
j (φi)

∂φi

�
d3p

(2π)32Ej
δfj(p, x) = 0 (3.9)

where primes indicate differentiation with respect to x. Here the sum is over all fields

coupling to the scalar field φi, Ej is the (space-time–dependent) energy of the particle j,

Ej =
�
p2 +m2

j (x), and δfj is the deviation from the equilibrium distribution function for

the species j.
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-‐Terminal	  velocity	  reached	  when	  fric2on	  from	  plasma	  
	  balances	  the	  vacuum	  energy	  difference	  

-‐Addi2onal	  singlet	  field	  with	  changing	  VEV	  contributes	  to	  ΔV,	  but	  doesn’t	  
experience	  much	  fric2on	  

Bodeker	  +	  Moore,	  0903.4099;	  	  
JK,	  1506.04741	  

�φi +
∂V (φi)

∂φi
+

�

j

∂m2
j (φi)

∂φi

�
d3p

(2π)32Ej
fj(p, z) = 0

9/18/15	   21	  J.	  Kozaczuk	  



Recall	  the	  basic	  picture:	  

B-‐violaIon	  acts	  on	  the	  chiral	  current	  diffusing	  in	  front	  of	  the	  bubble	  

f

�φ� �= 0

B/

, f̄

A	  Challenge	  for	  Singlet-‐driven	  EWB	  
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Recall	  the	  basic	  picture:	  

Bubble	  wall	  catches	  up	  with	  diffusing	  current,	  freezing	  in	  the	  
asymmetry	  

B/

B �= 0

ΓB = 0/

/ΓB �= 0

f, f̄

�φ� �= 0

A	  Challenge	  for	  Singlet-‐driven	  EWB	  
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Efficient	  diffusion	  requires	  slowly	  moving,	  subsonic	  bubble	  walls	  	  
(for	  an	  excep2on,	  see	  Caprini	  +	  No,	  1111.1726	  	  )	  

How	  fast	  do	  we	  expect	  walls	  to	  move	  in	  the	  NMSSM,	  or	  other	  	  

singlet	  models?	  

τcapture > τconversion

⇒ vw <
1

N

D

Lw
∼ 1

N
× (0.1− 0.3) [SM]

Huber	  et	  al,	  hep-‐ph/0101249	  

A	  Challenge	  for	  Singlet-‐driven	  EWB	  
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v w

φh(Tn)/Tn

cs

Set 1
Set 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.6 0.7 0.8 0.9 1 1.1

Figure 1. Wall velocities for the xSM parameter space described in the text. No subsonic solutions
are found with φh(Tn)/Tn � 1 (� 1.1) for the points in Set 1 neglecting (including) the gauge boson
contributions to the finite temperature effective potential and friction. The curves corresponding
to Set 2 would extend beyond φh(Tn)/Tn = 1.1, however the perturbative fluid approximation
begins to break down significantly for stronger transitions, and so we restrict our results to the
region shown. The red dotted line shows the speed of sound in the plasma, above which non-
local electroweak baryogenesis is not possible. Note that we have searched exclusively for subsonic
solutions to the equations of motion.

exists for the gauge-invariant case with φh(Tn)/Tn � 1. Including the gauge-dependent
terms, subsonic solutions can extend up to φh(Tn)/Tn ∼ 1.1, but not higher. We conclude
that viable non-local electroweak baryogenesis in singlet-driven models is incompatible with
very strong first order phase transitions, at least in some cases. This can be at odds with
sphaleron suppression inside the bubble, as seen for Set 1.

Even if a subsonic solution exists, the bubbles tend to expand rather quickly from
the standpoint of successful EWB. For example, previous studies of CP-violating sources
in the MSSM [61–63] suggest that electroweak baryogenesis tends to be most efficient for
vw ∼ 0.01, while Fig. 1 indicates that vw > 0.2 for most points featuring a strongly first
order phase transition. Viable bayogenesis in singlet-driven scenarios may thus require
substantially more CP-violation than in models with slow walls (such as the MSSM with
light stops) to overcome the suppression arising from large vw.

Our methods also allow us to determine the wall widths and offset for the subsonic
configurations. These quantities are important inputs for microphysical calculations of
the baryon asymmetry. The resulting bubble wall profiles for Sets 1 and 2 are shown in
Fig. 2. The offset can change sign, with the singlet field lagging behind that of the SM-like
Higgs for stronger phase transitions. For φh(Tn)/Tn � 1, the wall widths are typically
∼ O(5/T ). This is substantially smaller than typical values in Standard Model-like cases
and consistent with the findings of Ref. [34] in the NMSSM. Thin walls follow from the
large pressure difference due to the changing singlet VEV during the transition. This is in

– 32 –

Huber	  et	  al,	  hep-‐ph/0101249	  

Can	  be	  challenging	  for	  electroweak	  baryogenesis	  

NMSSM	  analysis	  s2ll	  needs	  to	  be	  done	  (include	  Higgsino	  effects,	  addi2onal	  scalars)	  

Generic	  consequence	  of	  addi2onal	  singlet	  field	  direc2ons:	  fast	  	  

bubble	  walls	  
JK,	  1506.04741	  

A	  Challenge	  for	  Singlet-‐driven	  EWB	  
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How	  do	  we	  test	  this	  scenario?	  
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Higgs	  couplings	  can	  provide	  an	  indirect	  test,	  but	  may	  take	  	  

awhile	  

How	  do	  we	  test	  this	  scenario?	  

��

���� ������
5 2 4 3

1

0.9 0.95 1 1.05 1.1

0

1

2

3

Μ�ggF�ttH,ΓΓ�

Μ�VB
F�
V
H
,Γ
Γ�

�� ����������
5
3
1

4
1
2

0.9 0.95 1 1.05 1.1
�1

0

1

2

3

Μ�ggF�ttH,VV�

Μ�VB
F�
V
H
,V
V
�

FIG. 1. Signal strengths for the various Higgs prodution and decay channels for our benchmark

points (labeled 1–5), compared with the global fit in Ref. [12] obtained using current ATLAS, CMS,

and Tevatron data. On the left we consider the diphoton rate arising from vector boson fusion

(VBF) + associated production with a gauge boson (VH), and from gluon gluon fusion (ggF) +

associated production with a top quark pair (ttH). On the right we plot the corresponding results for

vector boson final states. The white star indicates the current best-fit point from Ref. [12], while the

shaded areas correspond to 68%, 95%, and 99.7% C.L. regions from darkest to lightest, respectively.

All the benchmark points lie within the 68% CL regions for the observed signal strengths. The bb̄/ττ

ellipses are not shown, since all the benchmarks lie very close to the best fit point in this plane. All of

our benchmark points feature a very Standard Model-like Higgs in good agreement with observation.

We must also ensure that the rest of the Higgs sector does not violate the current

constraints from LEP, the Tevatron, or the LHC. This is precisely what is checked by

HiggsBounds. In all of our benchmarks, the scalar closest in mass to the SM-like Higgs

is singlet-like, with couplings of order 10% or less of those for a SM Higgs boson with the

same mass. These suppressed couplings make it difficult to detect these states and allow

them to be even lighter than the SM-like Higgs, as will be the case for all the points we

consider. In fact, in the NMSSM, scalars and pseudoscalars can be extremely light and still

compatible with current collider and meson decay limits, provided the mixing is small [31]

(see e.g. Ref. [67] for a more detailed discussion of possible strategies to search for these

18

Based	  on	  global	  fit	  from	  1306.2941	  

See	  e.g.	  Profumo	  et	  al,	  1407.5342	  for	  similar	  conclusions	  in	  the	  real	  singlet	  extension	  of	  the	  
SM	  

Expected	  ILC	  	  
sensi2vity	  ~	  1%	  
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Another	  handle:	  generically	  expect	  light	  singlet-‐like	  states	  

Look	  for	  these!	  Oqen	  difficult,	  but	  some	  excep2ons	  

How	  do	  we	  test	  this	  scenario?	  

From	  Huang	  et	  al,	  1405.1152	  
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Look	  for	  these	  states…	  and	  don’t	  leave	  any	  gaps!	  

How	  do	  we	  test	  this	  scenario?	  

E.g.	  light	  pseudoscalars	  may	  have	  evaded	  LEP	  but	  could	  be	  found	  at	  the	  LHC	  and/or	  	  
100	  TeV	  pp	  collider	  (if	  couplings	  aren’t	  that	  suppressed)!	  

g

g b

b

a

b (b)

g

b (b)

a g

b (b)

b (b)

a

Figure 3. Some of the diagrams contributing to the production of the pseudoscalar, a, at the LHC.
The two rightmost diagrams arise in the 5FS.

where f is an overall scaling factor, and i refers to the produced b’s and a. This is in keeping

with previous analyses in the context of Standard Model-like Higgs production [99, 104–107].

We considered the impact of the scale dependence by varying the overall scaling factor in the

range [1/2, 2], which resulted in a 2-20% change in the production cross section, with larger

effects occurring for smaller values of ma. This is consistent with the range typically found

in the literature [98, 99, 101].

To further validate the results of our leading order calculation, we have compared our

LO result for the dominant (gb(b̄) → b(b̄)a) production mode to the next-to-leading order

(NLO) result calculated in the five flavor scheme implemented in the program MCFM [108] for

several choices for µf,r (we neglect the difference between scalar and pseudoscalar production

which are small [104]). We find that our LO results exhibit reasonable agreement with the

NLO result, falling within a factor of 1–2 across the parameter space we consider. Addition-

ally, there are theoretical uncertainties related to the specific choice of parton distribution

functions, which have been shown to be of order ∼ 5% for low masses [103], as well as some

residual renormalization scheme dependence (MadGraph uses an on-shell scheme, while e.g.

MCFM uses MS). To account for these effects, Appendix C takes a conservative approach and

explores the effect of a factor of 2 over-estimation in our signal and, separately, a factor of

2 under-estimation in the backgrounds. Our overall conclusions are not significantly affected

by this re-scaling, and so we believe them to be quite robust.

For an experimental search, we consider three possible leptonic tagging channels: SR1

requires one electron and one muon; SR2 requires one lepton (e or µ) and one hadronic τ ; SR3

requires two muons. SR1 is motivated by excellent trigger response, while SR2 is motivated

by the larger branching ratios and SR3 is motivated by a resonance search methodology in

the di-muon invariant mass spectrum that allows for the use of data-driven backgrounds. In

all three signal regions, we also require 1-2 b-jet tags, and no light jets, where light jets are

defined as pT > 40 GeV. The signals are therefore inclusive for light jets with pT < 40 GeV,

such as those that are commonly generated from ISR effects. These tagging requirements

significantly suppress fake backgrounds arising from vector boson production in association

with light jets.
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Figure 8. Application of our results to the Z3-symmetric NMSSM. The black (gray) contours corre-

spond to the reach at 100 fb
−1

(1 fb
−1

) for the hard (soft) cut scenarios and low systematics in the

various search channels. The gray points are the result of a Markov Chain Monte Carlo scan of the

parameter space (described in the text) consistent with all existing phenomenological constraints with

no requirements on the LSP relic abundance or annihilation rate with parameters as in Eq. 5.5 and

mA = 550 GeV. The green, blue, and orange points correspond to points capable of explaining the

Fermi signal and consistent with the recent dwarf spheroidal constraints for mA = 500, 550, and 600

GeV, respectively. The red band is an example of the NMSSM parameter space found to be consistent

with the excess in Ref. [16]. The sample point of Table 2 below is indicated with a star. Note that it

may be possible to choose parameters minimizing the haa coupling to fill in the ma < mh/2, gd > 1

region, which we did not attempt in our scan.

fixed

λ = 0.05, µ = 615 GeV, mA = 550 GeV,

M1 = 45 GeV,M2 = 1 TeV,M3 = 2 TeV,

MQ3 = MU3 = 7.5 TeV, At =
√
6MQ3 , MD1,2,3 = 5.5 TeV

(5.5)

with all other soft masses and triscalar couplings at 1 TeV, while varying tanβ, κ, and Aκ.

We required all points to satisfy all existing constraints discussed earlier and implemented in

NMSSMTools. The results of the scans are shown, along with our results for the LHC reach

across the parameter space, in Fig. 8. The gray points were generated without requiring

the lightest supersymmetric particle (LSP) to explain the Galactic Center excess or satisfy

constraints on its relic abundance. The green, blue, and orange points correspond to mA =

500, 550, 600 GeV and feature a bino-like LSP with a relic abundance compatible with WMAP

– 24 –

JK	  and	  Mar2n,	  1501.07275	  	  

See	  also	  Casolino	  et	  al,	  1507.07004;	  …	  

100	  TeV	  reach?	  
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A	  more	  direct	  test:	  mul2-‐Higgs	  produc2on	  at	  the	  LHC	  and	  	  

future	  colliders	  (see	  e.g.	  Cur2n	  et	  al,	  1409.0005;	  Craig	  et	  al,	  1412.0258)	  

Various	  scalar	  self-‐couplings	  can	  be	  correlated	  with	  the	  	  

strength	  of	  the	  EWPT	  in	  singlet	  models	  	  

May	  be	  possible	  to	  conclusively	  test	  a	  significant	  por2on	  of	  	  

the	  parameter	  space	  at	  100	  TeV	  collider	  (work	  in	  progress	  	  
with	  Chien-‐Yi	  Chen	  and	  Ian	  Lewis	  –	  stay	  tuned!)	  

How	  do	  we	  test	  this	  scenario?	  
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-‐Strong	  electroweak	  phase	  transi2ons	  are	  possible	  in	  the	  	  
NMSSM	  parameter	  space	  allowed	  by	  current	  constraints	  

-‐Bubble	  profiles	  look	  promising	  for	  electroweak	  baryogenesis	  

-‐Bubble	  walls	  may	  expand	  too	  quickly	  for	  efficient	  electroweak	  	  
baryogenesis	  in	  some	  cases.	  This	  is	  a	  generic	  problem	  in	  	  
singlet	  extended	  scenarios	  	  

-‐Combina2on	  of	  precision	  Higgs	  studies	  and	  searches	  for	  	  
(mul2-‐)	  scalar	  produc2on	  at	  future	  colliders	  can	  probe	  much	  of	  this	  	  
scenario	  

Takeaways	  
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Determine	  steady-‐state	  expansion	  velocity	  by	  finding	  	  

solu2ons	  to	  the	  condensate	  equa2ons	  of	  mo2on	  

the bubble wall once it has reached its terminal velocity, with the pressure driving the
expansion precisely counterbalanced by the drag force exerted on the bubble by the plasma.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-accelerating)
bubble wall all functions will be depend only on z, the distance from the phase boundary.
Consequently, in the plasma frame, all functions depend only on the coordinate x ≡ z+vwt,
where vw is the wall velocity in the plasma frame and we have assumed that the wall is
moving to the left. In the stationary wall limit, the equations of motion then simplify to

−(1− v2w)φ
��
i +

∂V (φi, T )

∂φi
+
�

j

∂m2
j (φi)

∂φi

�
d3p

(2π)32Ej
δfj(p, x) = 0 (4.1)

where primes indicate differentiation with respect to x. Here the sum is over all fields
with significant couplings to the given scalar field φi, Ej is the (space-time–dependent)
energy of the particle j, Ej =

�
p2 +m2

j (x), and δfj is the deviation from the equilibrium
distribution function for the species j.

Our goal is to solve the above equations of motion for the constant vw and the profiles
φi(x). Doing so requires solving for the properties of the phase transition (temperature,
latent heat, initial bubble profile, etc.), as well as the deviations from equilibrium of the
various species in the plasma, which are responsible for the drag force on the bubble wall.
These tasks will occupy the next several sections of this study.

4.1 Runaway Bubbles and Tree-level Cubic Terms

Before moving on to the case of non-relativistic bubbles (relevant for electroweak baryo-
genesis), we can consider the possibility of ultra-relativistic, “runaway” bubbles []. In this
case, the friction on the bubble from the plasma in the unltra-relativistic limit is too small
to counterbalance the pressure difference between the vacua, which drives the expansion.
Ref. [] showed that this situation is common in singlet-driven transitions, so it is important
to consider this case before moving on to the non-relativistic regime.

A runaway solution to the equations of motion exists provided []

Veff(T = 0,φ+)− Veff(T = 0,φ−) +
�

i

ni
�
m2

i (φ+)−m2
i (φ−)

� � d3p

(2π)32E
f0,i(p,φ+) > 0

(4.2)
at the nucleation temperature. Here, f0 is the equilibrium distribution function of the
species i, and φ± are the field values at the minima of the potential, with the upper sign
corresponding to the high-T (symmetric) phase and the lower sign to the low-T (broken)
phase, respectively. In the high-T limit, there is a simple interpretation of this criterion in
terms of the high-temperature expansion of the thermal potential. In this limit, a runaway
solution will exist if it is energetically favorable to tunnel to the broken phase in the potential
obtained by retaining only the T 2 terms in the effective potential. In other words,

V no cubic
eff (φ+, Tn) > V no cubic

eff (φ−, Tn) ⇒ runaway solution exists. (4.3)

In particular, this implies that if the potential is computed neglecting all non-analytic
finite-T cubic terms (as was done in e.g. Ref. [] and advocated for in Refs. [] to avoid
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the bubble wall once it has reached its terminal velocity, with the pressure driving the
expansion precisely counterbalanced by the drag force exerted on the bubble by the plasma.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-accelerating)
bubble wall all functions will be depend only on z, the distance from the phase boundary.
Consequently, in the plasma frame, all functions depend only on the coordinate x ≡ z+vwt,
where vw is the wall velocity in the plasma frame and we have assumed that the wall is
moving to the left. In the stationary wall limit, the equations of motion then simplify to

−(1− v2w)φ
��
i +

∂V (φi, T )

∂φi
+
�

j

∂m2
j (φi)

∂φi

�
d3p

(2π)32Ej
δfj(p, x) = 0 (4.1)

where primes indicate differentiation with respect to x. Here the sum is over all fields
with significant couplings to the given scalar field φi, Ej is the (space-time–dependent)
energy of the particle j, Ej =

�
p2 +m2

j (x), and δfj is the deviation from the equilibrium
distribution function for the species j.

Our goal is to solve the above equations of motion for the constant vw and the profiles
φi(x). Doing so requires solving for the properties of the phase transition (temperature,
latent heat, initial bubble profile, etc.), as well as the deviations from equilibrium of the
various species in the plasma, which are responsible for the drag force on the bubble wall.
These tasks will occupy the next several sections of this study.

4.1 Runaway Bubbles and Tree-level Cubic Terms

Before moving on to the case of non-relativistic bubbles (relevant for electroweak baryo-
genesis), we can consider the possibility of ultra-relativistic, “runaway” bubbles []. In this
case, the friction on the bubble from the plasma in the unltra-relativistic limit is too small
to counterbalance the pressure difference between the vacua, which drives the expansion.
Ref. [] showed that this situation is common in singlet-driven transitions, so it is important
to consider this case before moving on to the non-relativistic regime.

A runaway solution to the equations of motion exists provided []

Veff(T = 0,φ+)− Veff(T = 0,φ−) +
�

i

ni
�
m2

i (φ+)−m2
i (φ−)

� � d3p

(2π)32E
f0,i(p,φ+) > 0

(4.2)
at the nucleation temperature. Here, f0 is the equilibrium distribution function of the
species i, and φ± are the field values at the minima of the potential, with the upper sign
corresponding to the high-T (symmetric) phase and the lower sign to the low-T (broken)
phase, respectively. In the high-T limit, there is a simple interpretation of this criterion in
terms of the high-temperature expansion of the thermal potential. In this limit, a runaway
solution will exist if it is energetically favorable to tunnel to the broken phase in the potential
obtained by retaining only the T 2 terms in the effective potential. In other words,

V no cubic
eff (φ+, Tn) > V no cubic

eff (φ−, Tn) ⇒ runaway solution exists. (4.3)

In particular, this implies that if the potential is computed neglecting all non-analytic
finite-T cubic terms (as was done in e.g. Ref. [] and advocated for in Refs. [] to avoid
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Solve	  hydrodynamic	  equa2ons	  to	  determine	  the	  temperature	  profile	  

Look	  for	  (subsonic)	  deflagra2on	  solu2ons	  for	  a	  given	  profile	  and	  value	  of	  vw	  

Moore	  +	  Prokopec,	  hep-‐ph/9506475	  

Tn

vfluid

r/t

v+

T+T−

baryon number preservation condition above still contains several implicit assumptions,
discussed in detail in Ref. []. This should be kept in mind for a full calculation of the
baryon asymmetry in a given model.

3.1 Temperature Variations

The nucleation temperature defined above is that of the ambient plasma when bubbles begin
to form efficiently. Once formed, however, the temperature is no longer homogeneous. The
phase transition releases latent heat into the broken phase plasma, while the expansion of a
subsonic bubble heats up the medium in front of it. The temperature in the broken phase
will thus differ from that immediately outside the bubble, which in turn is not the same as
the typical nucleation temperature of the bubble. To relate these various quantities requires
a treatment of the plasma hydrodynamics. These changes in temperature can have large
effects on the expansion of the bubble [], and so we must take them into account.

Far away from the bubble, the relevant temperature is that at which bubble nucleation
occurs, Tn. We wish to obtain the temperature in the vicinity of bubble wall. To do so,
let us consider the wall-plasma system, with the plasma modeled as a perfect relativistic
fluid. Hydrodynamic equations can be obtained by requiring conservation of the wall-fluid
stress-energy tensor,

∂µT
µν = ∂µT

µν
condensate + ∂µT

µν
plasma = 0. (3.3)

We define the “ ‘fluid” or “plasma frame” such that the fluid is at rest far from the bubble
and in its center. This is the frame which we use to define the wall velocity vw and the
wall profile parameters. Solutions to the fluid equations in the plasma frame can typically
be classified as either ‘detonations’, in which the bubble velocity exceeds the sound speed
vs in the plasma, or ‘deflagrations’, in which vw < vs 4. Successful sub-sonic electroweak
baryogenesis requires a deflagration solution, since otherwise diffusion in front of the bubble
is inefficient. We will restrict ourselves to this case.

Consider an expanding bubble with free energy Veff(φ−, T−) inside and Veff(φ+, T+)

immediately outside (‘±’ subscripts will correspond to quantities outside/inside the bubble).
The equations of state (EoS) for the two phases can be written as

p± =
1

3
a±(T )T

4
± − �±(T ), ρ± = a±(T )T

4
± + �±(T ) (3.4)

where

a±(T ) ≡ − 3

4T 3

dVeff [φ±(T ), T ]

dT
, �±(T ) ≡ Veff [φ±(T ), T ] +

1

3
a±(T )T

4 (3.5)

and the upper and lower signs of φ±(T ) corrspond to the field values in the symmetric
and broken phases at T . The above form for the equations, taken from Ref. [41], are
inspired by the so-called ‘Bag EoS’, but involves the temperature-dependent quantities a±,
�±. Fortunately, we can safely neglect the temperature dependence in a±, �±, using their
values at T = Tn. This is because the free energy (and hence a±, �±) are dominated by
light degrees of freedom, which contribute a constant term to the free energy in each phase

4There are also ‘hybrid cases; see Ref. [].
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the bubble wall once it has reached its terminal velocity, with the pressure driving the
expansion precisely counterbalanced by the drag force exerted on the bubble by the plasma.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-accelerating)
bubble wall all functions will be depend only on z, the distance from the phase boundary.
Consequently, in the plasma frame, all functions depend only on the coordinate x ≡ z+vwt,
where vw is the wall velocity in the plasma frame and we have assumed that the wall is
moving to the left. In the stationary wall limit, the equations of motion then simplify to

−(1− v2w)φ
��
i +

∂V (φi, T )

∂φi
+
�

j

∂m2
j (φi)

∂φi

�
d3p

(2π)32Ej
δfj(p, x) = 0 (4.1)

where primes indicate differentiation with respect to x. Here the sum is over all fields
with significant couplings to the given scalar field φi, Ej is the (space-time–dependent)
energy of the particle j, Ej =

�
p2 +m2

j (x), and δfj is the deviation from the equilibrium
distribution function for the species j.

Our goal is to solve the above equations of motion for the constant vw and the profiles
φi(x). Doing so requires solving for the properties of the phase transition (temperature,
latent heat, initial bubble profile, etc.), as well as the deviations from equilibrium of the
various species in the plasma, which are responsible for the drag force on the bubble wall.
These tasks will occupy the next several sections of this study.

4.1 Runaway Bubbles and Tree-level Cubic Terms

Before moving on to the case of non-relativistic bubbles (relevant for electroweak baryo-
genesis), we can consider the possibility of ultra-relativistic, “runaway” bubbles []. In this
case, the friction on the bubble from the plasma in the unltra-relativistic limit is too small
to counterbalance the pressure difference between the vacua, which drives the expansion.
Ref. [] showed that this situation is common in singlet-driven transitions, so it is important
to consider this case before moving on to the non-relativistic regime.

A runaway solution to the equations of motion exists provided []

Veff(T = 0,φ+)− Veff(T = 0,φ−) +
�

i

ni
�
m2

i (φ+)−m2
i (φ−)

� � d3p

(2π)32E
f0,i(p,φ+) > 0

(4.2)
at the nucleation temperature. Here, f0 is the equilibrium distribution function of the
species i, and φ± are the field values at the minima of the potential, with the upper sign
corresponding to the high-T (symmetric) phase and the lower sign to the low-T (broken)
phase, respectively. In the high-T limit, there is a simple interpretation of this criterion in
terms of the high-temperature expansion of the thermal potential. In this limit, a runaway
solution will exist if it is energetically favorable to tunnel to the broken phase in the potential
obtained by retaining only the T 2 terms in the effective potential. In other words,

V no cubic
eff (φ+, Tn) > V no cubic

eff (φ−, Tn) ⇒ runaway solution exists. (4.3)

In particular, this implies that if the potential is computed neglecting all non-analytic
finite-T cubic terms (as was done in e.g. Ref. [] and advocated for in Refs. [] to avoid

– 10 –

Compute	  quasipar2cle	  inetrac2on	  rates	  and	  solve	  Boltzmann	  
equa2ons	  for	  the	  devia2ons	  from	  equilibrium	  

Compute	  in	  effec2ve	  kine2c	  theory	  framework	  	  

Relevant	  states	  are	  top	  quarks,	  gauge,	  Higgs	  and	  singlet	  bosons	  

In the effective kinetic theory, the quasiparticle distribution function for the species i

satisfies the Boltzmann equation

d

dt
fi ≡

�
∂

∂t
+ ż

∂

∂z
+ ṗz

∂

∂pz

�
fi = −C[f ]i (5.2)

in the fluid frame, where C[f ] is a collision integral. The collision integral involves all

interactions of the species i with all other excitations in the plasma. It can be written as

C[f ]i =
�

j

1

2Ep

�
d3kd3p�d3k�

(2π)92Ek2Ep�2Ek�

���Mj
i

���
2
(2π)4δ(p+ k − p� − k�)P (5.3)

where the sum is over all distinct 4-body processes, labeled by j, with the labeling assumed

to be as in Fig. ?? and a = i. The matrix elements include finite-temperature effects

(discussed below) and are summed over helicities, colors, and particle-antiparticle, then

divided by the number of degrees of freedom corresponding to species i, Ni. The population

factor is

P ≡ f1f2(1± f3)(1± f4)− f3f4(1± f1)(1± f2) (5.4)

with the upper (lower) signs corresponding to bosons (fermions) and fj the appropriate

Bose-Einstein or Fermi-Dirac distribution function for particle j,

f =
�
e(E+δj)/T ± 1

�−1
. (5.5)

The Boltzmann equations above apply to all quasiparticles in the plasma satisfying

Eq. 5.1. However, examining Eq. 4.1, we see that only the distribution functions of field

excitations with significant couplings to the relevant scalar fields involved in the phase tran-

sition are required. Since these particles have significant couplings to the Higgs and singlet

scalar fields, we will refer to them as ‘heavy’. Also, δfi = δfi(p, x) has some spacetime-

dependence, arising in part from the spatial variation of the background fluid temperature

and velocity across the bubble wall, as discussed in Sec. 3. The background fluid is in

local thermal equilibrium and comprises all ‘light’ effective degrees of freedom. Note that

quasiparticles with large field-independent masses will be irrelevant for our purposes, since

their distribution functions feature significant Boltzmann suppression. Also, precisely which

fields should be considered ‘heavy’, ‘light’, or irrelevant depends on the given model. For

the singlet-driven scenarios we are concerned with here, the heavy fields will be the top

quarks, gauge, Higgs, and singlet bosons.

To find approximate solutions to the Boltzmann equations for the heavy species and

background, we will utilize the ‘fluid ansatz’, in which case the perturbations are assumed

to take the form

δj = −µj −
E

T
(δTj + δTbg)− pz(δvj + vbg). (5.6)

Here µj , δTj , δvj are the chemical potential, temperature perturbation, and velocity per-

turbation of the species j, respectively, with respect to the plasma. We have assumed that

the fields with small couplings to the scalar condensates {φi} are in thermal equilibrium

bosons [14], and so their distributions should equilibrate more quickly than those for the gauge fields.
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the bubble wall once it has reached its terminal velocity, with the pressure driving the
expansion precisely counterbalanced by the drag force exerted on the bubble by the plasma.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-accelerating)
bubble wall all functions will be depend only on z, the distance from the phase boundary.
Consequently, in the plasma frame, all functions depend only on the coordinate x ≡ z+vwt,
where vw is the wall velocity in the plasma frame and we have assumed that the wall is
moving to the left. In the stationary wall limit, the equations of motion then simplify to

−(1− v2w)φ
��
i +

∂V (φi, T )

∂φi
+
�

j

∂m2
j (φi)

∂φi

�
d3p

(2π)32Ej
δfj(p, x) = 0 (4.1)

where primes indicate differentiation with respect to x. Here the sum is over all fields
with significant couplings to the given scalar field φi, Ej is the (space-time–dependent)
energy of the particle j, Ej =

�
p2 +m2

j (x), and δfj is the deviation from the equilibrium
distribution function for the species j.

Our goal is to solve the above equations of motion for the constant vw and the profiles
φi(x). Doing so requires solving for the properties of the phase transition (temperature,
latent heat, initial bubble profile, etc.), as well as the deviations from equilibrium of the
various species in the plasma, which are responsible for the drag force on the bubble wall.
These tasks will occupy the next several sections of this study.

4.1 Runaway Bubbles and Tree-level Cubic Terms

Before moving on to the case of non-relativistic bubbles (relevant for electroweak baryo-
genesis), we can consider the possibility of ultra-relativistic, “runaway” bubbles []. In this
case, the friction on the bubble from the plasma in the unltra-relativistic limit is too small
to counterbalance the pressure difference between the vacua, which drives the expansion.
Ref. [] showed that this situation is common in singlet-driven transitions, so it is important
to consider this case before moving on to the non-relativistic regime.

A runaway solution to the equations of motion exists provided []

Veff(T = 0,φ+)− Veff(T = 0,φ−) +
�

i

ni
�
m2

i (φ+)−m2
i (φ−)

� � d3p

(2π)32E
f0,i(p,φ+) > 0

(4.2)
at the nucleation temperature. Here, f0 is the equilibrium distribution function of the
species i, and φ± are the field values at the minima of the potential, with the upper sign
corresponding to the high-T (symmetric) phase and the lower sign to the low-T (broken)
phase, respectively. In the high-T limit, there is a simple interpretation of this criterion in
terms of the high-temperature expansion of the thermal potential. In this limit, a runaway
solution will exist if it is energetically favorable to tunnel to the broken phase in the potential
obtained by retaining only the T 2 terms in the effective potential. In other words,

V no cubic
eff (φ+, Tn) > V no cubic

eff (φ−, Tn) ⇒ runaway solution exists. (4.3)

In particular, this implies that if the potential is computed neglecting all non-analytic
finite-T cubic terms (as was done in e.g. Ref. [] and advocated for in Refs. [] to avoid
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�
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