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Why	
  not	
  the	
  MSSM?	
  

The	
  Higgs	
  wants	
  to	
  be	
  light	
  

Require	
  large	
  radia2ve	
  contribu2ons	
  with	
  heavy	
  sfermions	
  	
  
and/or	
  large	
  mixing	
  (bad	
  for	
  naturalness,	
  vacuum	
  stability)	
  

mtree
h ≤ mZ |cos 2β|

Draper,	
  Lee,	
  Wagner,	
  1312.5743	
  
M=1	
  TeV	
  

M=2	
  TeV	
  

M=3	
  TeV	
  

See	
  e.g.	
  Blinov	
  and	
  Morrissey,	
  1310.4174	
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Why	
  not	
  the	
  MSSM?	
  

There’s	
  a	
  	
  	
  	
  	
  problem	
  

Could	
  invoke	
  e.g.	
  Giudice-­‐Masiero	
  (	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  ,	
  but	
  the	
  	
  	
  
	
  	
  	
  -­‐	
  term	
  is	
  not	
  a	
  priori	
  connected	
  with	
  SUSY	
  breaking	
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Why	
  not	
  the	
  MSSM?	
  

Stops	
  aren’t	
  light	
  

Large	
  thermal	
  contribu2ons	
  from	
  light	
  stop	
  required	
  for	
  	
  
strongly	
  first	
  order	
  PT	
  

the tree-level potential (expanded around the background fields), modified by additional
Coleman-Weinberg terms.

At finite temperature and density the physical ground state of the theory is altered by
the interactions of the scalar field φ with the ambient plasma. The vacua of the theory can
then be determined from the finite-temperature effective potential, Veff(φ, T ). In the simple
case involving one background field, it is given by [14]
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where the plus and minus signs correspond to the bosonic and fermionic contributions,
respectively, and the Ni are the associated number of degrees of freedom for the species
i. This expression generalizes straightforwardly to the case of more than one background
field. The functions J± are given by
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with ab = 16π2e3/2−2γE , af = π2e3/2−2γE , and γE the Euler-Mascheroni constant. Note
that the thermal contributions above correspond to momentum integrals of equilibrium
distribution functions for all species in the plasma coupled to φ [14, 38].

2.2 Gauge-Invariance

The finite temperature effective potential is only gauge-invariant at its extrema [107, 108].
Thus, tunneling calculations depending on the potential away from the local minima are
in general gauge-dependent. This will result in a gauge-dependent determination of the
nucleation temperature for the phase transition, Tn, and ultimately the wall velocity. To
avoid this as much as possible, our primary analysis will only consider terms in the effec-
tive potential which are explicitly gauge-invariant. Thus, we will not include the T = 0

Coleman-Weinberg corrections, or the finite temperature cubic and tadpole terms in the
high-temperature effective potential (gauge-dependence in the tadpole may enter at higher
perturbative order [43]). This is precisely the strategy followed by Ref. [43] in analyzing the
phase transition properties of the xSM. The finite-temperature effective potential in this
case becomes
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+ . . .

Carena	
  et	
  al,	
  1207.6330	
  

�φ(Tn)�
Tn

� 1

m�t1 � 117 GeV

9/18/15	
   6	
  J.	
  Kozaczuk	
  



Why	
  not	
  the	
  MSSM?	
  

Stops	
  aren’t	
  light	
  

Strong	
  1st	
  order	
  PT	
  in	
  MSSM	
  is	
  essen2ally	
  ruled	
  out	
  (caveats?)	
  

Carena	
  et	
  al,	
  1207.6330	
  

�φ(Tn)�
Tn

� 1

m�t1 � 117 GeV

See	
  e.g.	
  Cur2n	
  et	
  al,	
  1203.2932;	
  Cohen	
  et	
  al	
  1203.2924;	
  Krizka	
  et	
  al,	
  1212.4856;	
  Delgado	
  et	
  al,	
  1212.6847;	
  Katz	
  et	
  al,	
  1509.02934;	
  
Andrey’s	
  talk	
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Why	
  not	
  the	
  MSSM?	
  

We	
  haven’t	
  seen	
  a	
  permanent	
  EDM	
  

Bino-­‐Higgsino	
  (Cirigliano	
  et	
  al,	
  0910.4589)	
  or	
  stau	
  (JK	
  et	
  al,	
  1206.4100)	
  	
  sources	
  	
  
s2ll	
  a	
  possibility,	
  though	
  highly	
  constrained	
  

Likely	
  need	
  beyond-­‐MSSM	
  CP-­‐viola2on 	
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Next-­‐to-­‐Minimal	
  SUSY	
  

W = WMSSM|µ=0 + λ�S �Hu · �Hd +
κ

3
�S3
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Next-­‐to-­‐Minimal	
  SUSY	
  

Not	
  in	
  this	
  talk:	
  also	
  accommodates	
  new	
  CPV	
  sources	
  (Cheung	
  et	
  	
  
al,	
  1201.3781;	
  JK	
  et	
  al,	
  1302.4781;	
  work	
  in	
  progress	
  with	
  Nikita	
  Blinov,	
  Wei	
  Chao,	
  Mar2n	
  	
  

Gonzalez-­‐Alonso,	
  and	
  Michael	
  R-­‐M)	
  

Long	
  history	
  of	
  PT	
  studies	
  (see	
  e.g.	
  Pietroni,	
  hep-­‐ph/9207227;	
  Davies	
  et	
  al,	
  hep-­‐ph/	
  
9603388;	
  Huber	
  and	
  Schmidt,	
  hep-­‐ph/0003122;	
  Funakubo	
  et	
  al,	
  hep-­‐ph/0501052;	
  Huber	
  et	
  al,	
  hep-­‐ph/	
  

0608017;	
  Carena	
  et	
  al,	
  1110.4378;	
  JK	
  et	
  al,	
  1302.4781;	
  Huang	
  et	
  al,	
  1405.1152;	
  JK	
  et	
  al,	
  1407.4134,	
  …)	
  

W = WMSSM|µ=0 + λ�S �Hu · �Hd +
κ

3
�S3

No	
  µ-­‐term	
   Larger	
  mh	
  at	
  tree-­‐level	
   New	
  tree-­‐level	
  terms	
  in	
  the	
  poten2al	
  
(light	
  stops	
  not	
  required)	
  

mtree
h ≤ mZ cos 2β +

λv2

2
sin2 2β
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What	
  do	
  we	
  want	
  to	
  know?	
  

*Phase	
  transi2on	
  strength	
  in	
  viable	
  parameter	
  space	
  

*Bubble	
  wall	
  profile	
  (input	
  into	
  CPV	
  sources)	
  

*Bubble	
  wall	
  velocity	
  (input	
  into	
  CPV	
  sources	
  and	
  diffusion	
  eqns)	
  

∝ dβ/dt � ∆βvw/Lw

r

Φ

Lw

vw

Strength	
  of	
  CPV	
  sources	
  

Baryon	
  density	
  	
  ρB = −nFΓws

2vw

� 0

−∞
nL(x)e

xR/vwdx
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Example	
  points:	
  
Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] -90 -129 -56 -79 -154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] -100.0 -100.0 -103.5 -103.5 -102.0

M �Q3
= M�U3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs [GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

m�χ0
1
[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

�σv� [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

TABLE I. The benchmarks considered in this study exemplifying the different phase transition pos-

sibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters are

chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at the

LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum compat-

ible with LHC searches and other constraints (see text). The wino, gluino, and other sfermion soft

breaking masses (besides M�t) are set to M2 = -600 GeV and M3 = Msf = 1.5 TeV for all bench-

marks. Note that the values of these masses do not significantly affect the scenarios we consider

and can be increased if so desired.

sector using the HiggsBounds 4.1 package [10]. We require all of our points to pass all rele-

vant experimental constraints implemented in NMSSMTools, MicrOmegas, and HiggsBounds,

13

NMSSM	
  Parameter	
  Space	
  

(JK	
  et	
  al,	
  1407.4134)	
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Standard	
  Model-­‐like	
  Higgs	
  

��

���� ������
5 2 4 3

1

0.9 0.95 1 1.05 1.1

0

1

2

3

Μ�ggF�ttH,ΓΓ�

Μ�VB
F�
V
H
,Γ
Γ�

�� ����������
5
3
1

4
1
2

0.9 0.95 1 1.05 1.1
�1

0

1

2

3

Μ�ggF�ttH,VV�

Μ�VB
F�
V
H
,V
V
�

FIG. 1. Signal strengths for the various Higgs prodution and decay channels for our benchmark

points (labeled 1–5), compared with the global fit in Ref. [12] obtained using current ATLAS, CMS,

and Tevatron data. On the left we consider the diphoton rate arising from vector boson fusion

(VBF) + associated production with a gauge boson (VH), and from gluon gluon fusion (ggF) +

associated production with a top quark pair (ttH). On the right we plot the corresponding results for

vector boson final states. The white star indicates the current best-fit point from Ref. [12], while the

shaded areas correspond to 68%, 95%, and 99.7% C.L. regions from darkest to lightest, respectively.

All the benchmark points lie within the 68% CL regions for the observed signal strengths. The bb̄/ττ

ellipses are not shown, since all the benchmarks lie very close to the best fit point in this plane. All of

our benchmark points feature a very Standard Model-like Higgs in good agreement with observation.

We must also ensure that the rest of the Higgs sector does not violate the current

constraints from LEP, the Tevatron, or the LHC. This is precisely what is checked by

HiggsBounds. In all of our benchmarks, the scalar closest in mass to the SM-like Higgs

is singlet-like, with couplings of order 10% or less of those for a SM Higgs boson with the

same mass. These suppressed couplings make it difficult to detect these states and allow

them to be even lighter than the SM-like Higgs, as will be the case for all the points we

consider. In fact, in the NMSSM, scalars and pseudoscalars can be extremely light and still

compatible with current collider and meson decay limits, provided the mixing is small [31]

(see e.g. Ref. [67] for a more detailed discussion of possible strategies to search for these

18

Based	
  on	
  global	
  fit	
  from	
  1306.2941	
  

Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] -90 -129 -56 -79 -154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] -100.0 -100.0 -103.5 -103.5 -102.0

M �Q3
= M�U3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs [GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

m�χ0
1
[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

�σv� [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

TABLE I. The benchmarks considered in this study exemplifying the different phase transition pos-

sibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters are

chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at the

LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum compat-

ible with LHC searches and other constraints (see text). The wino, gluino, and other sfermion soft

breaking masses (besides M�t) are set to M2 = -600 GeV and M3 = Msf = 1.5 TeV for all bench-

marks. Note that the values of these masses do not significantly affect the scenarios we consider

and can be increased if so desired.

sector using the HiggsBounds 4.1 package [10]. We require all of our points to pass all rele-

vant experimental constraints implemented in NMSSMTools, MicrOmegas, and HiggsBounds,

13

NMSSM	
  Parameter	
  Space	
  
Example	
  points:	
  
(JK	
  et	
  al,	
  1407.4134)	
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Light	
  singlet-­‐like	
  states	
  	
  
(checked	
  by	
  HiggsBounds

and HiggsSignals)	
  

Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] -90 -129 -56 -79 -154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] -100.0 -100.0 -103.5 -103.5 -102.0

M �Q3
= M�U3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs [GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

m�χ0
1
[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

�σv� [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

TABLE I. The benchmarks considered in this study exemplifying the different phase transition pos-

sibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters are

chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at the

LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum compat-

ible with LHC searches and other constraints (see text). The wino, gluino, and other sfermion soft

breaking masses (besides M�t) are set to M2 = -600 GeV and M3 = Msf = 1.5 TeV for all bench-

marks. Note that the values of these masses do not significantly affect the scenarios we consider

and can be increased if so desired.

sector using the HiggsBounds 4.1 package [10]. We require all of our points to pass all rele-

vant experimental constraints implemented in NMSSMTools, MicrOmegas, and HiggsBounds,

13

NMSSM	
  Parameter	
  Space	
  
Example	
  points:	
  
(JK	
  et	
  al,	
  1407.4134)	
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Example	
  points:	
  

Viable	
  neutralino	
  DM	
  candidate	
  

Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] -90 -129 -56 -79 -154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] -100.0 -100.0 -103.5 -103.5 -102.0

M �Q3
= M�U3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs [GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

m�χ0
1
[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

�σv� [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

TABLE I. The benchmarks considered in this study exemplifying the different phase transition pos-

sibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters are

chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at the

LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum compat-

ible with LHC searches and other constraints (see text). The wino, gluino, and other sfermion soft

breaking masses (besides M�t) are set to M2 = -600 GeV and M3 = Msf = 1.5 TeV for all bench-

marks. Note that the values of these masses do not significantly affect the scenarios we consider

and can be increased if so desired.

sector using the HiggsBounds 4.1 package [10]. We require all of our points to pass all rele-

vant experimental constraints implemented in NMSSMTools, MicrOmegas, and HiggsBounds,
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Relic	
  density	
  driven	
  down	
  by	
  co-­‐
annihila2on	
  with	
  singlino-­‐like	
  NLSP	
  

Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] -90 -129 -56 -79 -154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] -100.0 -100.0 -103.5 -103.5 -102.0

M �Q3
= M�U3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs [GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

m�χ0
1
[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

�σv� [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

TABLE I. The benchmarks considered in this study exemplifying the different phase transition pos-

sibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters are

chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at the

LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum compat-

ible with LHC searches and other constraints (see text). The wino, gluino, and other sfermion soft

breaking masses (besides M�t) are set to M2 = -600 GeV and M3 = Msf = 1.5 TeV for all bench-

marks. Note that the values of these masses do not significantly affect the scenarios we consider

and can be increased if so desired.

sector using the HiggsBounds 4.1 package [10]. We require all of our points to pass all rele-

vant experimental constraints implemented in NMSSMTools, MicrOmegas, and HiggsBounds,

13

NMSSM	
  Parameter	
  Space	
  
Example	
  points:	
  
(JK	
  et	
  al,	
  1407.4134)	
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Below	
  current	
  limits	
  from	
  LUX,	
  
XENON100,	
  IceCube,	
  Fermi,	
  etc	
  

Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] -90 -129 -56 -79 -154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] -100.0 -100.0 -103.5 -103.5 -102.0

M �Q3
= M�U3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs [GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

m�χ0
1
[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

�σv� [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

TABLE I. The benchmarks considered in this study exemplifying the different phase transition pos-

sibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters are

chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at the

LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum compat-

ible with LHC searches and other constraints (see text). The wino, gluino, and other sfermion soft

breaking masses (besides M�t) are set to M2 = -600 GeV and M3 = Msf = 1.5 TeV for all bench-

marks. Note that the values of these masses do not significantly affect the scenarios we consider

and can be increased if so desired.

sector using the HiggsBounds 4.1 package [10]. We require all of our points to pass all rele-

vant experimental constraints implemented in NMSSMTools, MicrOmegas, and HiggsBounds,
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Phase	
  Transi2ons	
  in	
  the	
  NMSSM	
  

What	
  we	
  found:	
  
(JK	
  et	
  al,	
  1407.4134;	
  See	
  also	
  Huang	
  et	
  al,	
  1405.1152	
  for	
  similar	
  conclusions)	
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What	
  we	
  found:	
  

*One-­‐	
  or	
  two-­‐step	
  transi2ons	
  in	
  the	
  singlet	
  and/or	
  SU(2)	
  	
  
direc2ons	
  

Phase	
  Transi2ons	
  in	
  the	
  NMSSM	
  

(JK	
  et	
  al,	
  1407.4134;	
  See	
  also	
  Huang	
  et	
  al,	
  1405.1152	
  for	
  similar	
  conclusions)	
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What	
  we	
  found:	
  

Phase	
  Transi2ons	
  in	
  the	
  NMSSM	
  

FIG. 4. Results for strongly first order one-step electroweak phase transitions at different values of

mhs for Sets I (circles), II (diamonds), and III (squares). Shown are the EWPT order parameter,

SU(2) wall width, singlet wall width, and ∆β, which are quantities relevant for investigations of

electroweak baryogenesis. The singlet-like Higgs mass is varied by varying Aκ as described in the

text with all other parameters fixed. The rest of the spectrum varies very little across the scanned

points, with the phenomenology as presented in Table I. Black points have bubble walls that are

guaranteed to be sub-luminal, while the cyan points admit a runaway solution. Note that the late-

time bubble wall profile parameBters are only calculated for walls moving with constant velocity and

friction, and so are not shown for points with runaway solutions.

very attractive feature from the standpoint of electroweak baryogenesis, since large values

can allow for smaller CP-violating phases in the sources, resulting in less stringent bounds

from electric dipole moment experiments. Although at tree-level (at high energies) the

singlet couples in the same way to hu and hd, after integrating out the stops and evolving

the parameters down to the electroweak scale, this is no longer the case. Note that smaller

values of ∆β were found previously for the general NMSSM in Ref. [13] (on the order of 10−3,

30

*Phenomenologically	
  
viable	
  points	
  w/strong	
  
first	
  order	
  EWPT	
  

*Narrow	
  walls	
  

*Large	
  Δβ	
  

(JK	
  et	
  al,	
  1407.4134)	
  

∝ dβ/dt � ∆βvw/Lw

Strength	
  of	
  CPV	
  sources	
  

Looking	
  promising	
  for	
  EWB!	
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A	
  Challenge	
  for	
  Singlet-­‐driven	
  EWB	
  

Generic	
  consequence	
  of	
  addi2onal	
  singlet	
  field	
  direc2ons:	
  fast	
  	
  

bubble	
  walls	
  

�φ� = 0 �φ� �= 0

Friction ∆VT=0

vw

Figure 1. Illustration of the competing forces acting on the bubble wall that ultimately determine
vw. The steady state wall velocity is such that the vacuum energy difference between the phases
(∆VT=0) is balanced by the friction provided by the interactions of the wall with the plasma.

and solve for T+ in terms of Tn, vw. Previous studies suggest that using the planar approxi-

mation instead of the full solutions to the spherical hydrodynamic equations can reproduce

the full result for the wall velocity to within a few percent [75].

With the temperature T+ and the static properties of the phase transition determined

in this way, we can now consider the asymptotic behavior of the bubble after its formation.

3.3 Wall Equations of Motion

The main object for our analysis will be the bubble wall equations of motion correspond-

ing to the set of scalar fields φi = φh,φs. These can be derived by requiring conservation

of the energy-momentum tensor for the scalar field condensates computed in a WKB ap-

proximation [70], or directly from the Kadanoff-Baym equations [47]. We are interested in

the stationary limit of the equations of motion in the plasma frame; that is, we want to

investigate the bubble wall once it has reached its terminal velocity (if it exists), with the

pressure driving the expansion precisely counterbalanced by the drag force exerted on the

bubble by the plasma. This is illustrated in Fig. 1.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-accelerating)

bubble wall all functions will be depend only on z, the distance from the phase boundary.

Consequently, in the plasma frame, all functions depend only on the coordinate x ≡ z+vwt,

where vw is the wall velocity in the plasma frame and we have assumed that the wall is

moving to the left. In the stationary wall limit, the equations of motion then simplify to

−(1− v2w)φ
��
i +

∂V (φi, T )

∂φi
+
�

j

∂m2
j (φi)

∂φi

�
d3p

(2π)32Ej
δfj(p, x) = 0 (3.9)

where primes indicate differentiation with respect to x. Here the sum is over all fields

coupling to the scalar field φi, Ej is the (space-time–dependent) energy of the particle j,

Ej =
�
p2 +m2

j (x), and δfj is the deviation from the equilibrium distribution function for

the species j.
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-­‐Terminal	
  velocity	
  reached	
  when	
  fric2on	
  from	
  plasma	
  
	
  balances	
  the	
  vacuum	
  energy	
  difference	
  

-­‐Addi2onal	
  singlet	
  field	
  with	
  changing	
  VEV	
  contributes	
  to	
  ΔV,	
  but	
  doesn’t	
  
experience	
  much	
  fric2on	
  

Bodeker	
  +	
  Moore,	
  0903.4099;	
  	
  
JK,	
  1506.04741	
  

�φi +
∂V (φi)

∂φi
+

�

j

∂m2
j (φi)

∂φi

�
d3p

(2π)32Ej
fj(p, z) = 0
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Recall	
  the	
  basic	
  picture:	
  

B-­‐violaIon	
  acts	
  on	
  the	
  chiral	
  current	
  diffusing	
  in	
  front	
  of	
  the	
  bubble	
  

f

�φ� �= 0

B/

, f̄

A	
  Challenge	
  for	
  Singlet-­‐driven	
  EWB	
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Recall	
  the	
  basic	
  picture:	
  

Bubble	
  wall	
  catches	
  up	
  with	
  diffusing	
  current,	
  freezing	
  in	
  the	
  
asymmetry	
  

B/

B �= 0

ΓB = 0/

/ΓB �= 0

f, f̄

�φ� �= 0

A	
  Challenge	
  for	
  Singlet-­‐driven	
  EWB	
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Efficient	
  diffusion	
  requires	
  slowly	
  moving,	
  subsonic	
  bubble	
  walls	
  	
  
(for	
  an	
  excep2on,	
  see	
  Caprini	
  +	
  No,	
  1111.1726	
  	
  )	
  

How	
  fast	
  do	
  we	
  expect	
  walls	
  to	
  move	
  in	
  the	
  NMSSM,	
  or	
  other	
  	
  

singlet	
  models?	
  

τcapture > τconversion

⇒ vw <
1

N

D

Lw
∼ 1

N
× (0.1− 0.3) [SM]

Huber	
  et	
  al,	
  hep-­‐ph/0101249	
  

A	
  Challenge	
  for	
  Singlet-­‐driven	
  EWB	
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v w

φh(Tn)/Tn

cs

Set 1
Set 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.6 0.7 0.8 0.9 1 1.1

Figure 1. Wall velocities for the xSM parameter space described in the text. No subsonic solutions
are found with φh(Tn)/Tn � 1 (� 1.1) for the points in Set 1 neglecting (including) the gauge boson
contributions to the finite temperature effective potential and friction. The curves corresponding
to Set 2 would extend beyond φh(Tn)/Tn = 1.1, however the perturbative fluid approximation
begins to break down significantly for stronger transitions, and so we restrict our results to the
region shown. The red dotted line shows the speed of sound in the plasma, above which non-
local electroweak baryogenesis is not possible. Note that we have searched exclusively for subsonic
solutions to the equations of motion.

exists for the gauge-invariant case with φh(Tn)/Tn � 1. Including the gauge-dependent
terms, subsonic solutions can extend up to φh(Tn)/Tn ∼ 1.1, but not higher. We conclude
that viable non-local electroweak baryogenesis in singlet-driven models is incompatible with
very strong first order phase transitions, at least in some cases. This can be at odds with
sphaleron suppression inside the bubble, as seen for Set 1.

Even if a subsonic solution exists, the bubbles tend to expand rather quickly from
the standpoint of successful EWB. For example, previous studies of CP-violating sources
in the MSSM [61–63] suggest that electroweak baryogenesis tends to be most efficient for
vw ∼ 0.01, while Fig. 1 indicates that vw > 0.2 for most points featuring a strongly first
order phase transition. Viable bayogenesis in singlet-driven scenarios may thus require
substantially more CP-violation than in models with slow walls (such as the MSSM with
light stops) to overcome the suppression arising from large vw.

Our methods also allow us to determine the wall widths and offset for the subsonic
configurations. These quantities are important inputs for microphysical calculations of
the baryon asymmetry. The resulting bubble wall profiles for Sets 1 and 2 are shown in
Fig. 2. The offset can change sign, with the singlet field lagging behind that of the SM-like
Higgs for stronger phase transitions. For φh(Tn)/Tn � 1, the wall widths are typically
∼ O(5/T ). This is substantially smaller than typical values in Standard Model-like cases
and consistent with the findings of Ref. [34] in the NMSSM. Thin walls follow from the
large pressure difference due to the changing singlet VEV during the transition. This is in
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Can	
  be	
  challenging	
  for	
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  s2ll	
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  to	
  be	
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  effects,	
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  scalars)	
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  consequence	
  of	
  addi2onal	
  singlet	
  field	
  direc2ons:	
  fast	
  	
  

bubble	
  walls	
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How	
  do	
  we	
  test	
  this	
  scenario?	
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Higgs	
  couplings	
  can	
  provide	
  an	
  indirect	
  test,	
  but	
  may	
  take	
  	
  

awhile	
  

How	
  do	
  we	
  test	
  this	
  scenario?	
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FIG. 1. Signal strengths for the various Higgs prodution and decay channels for our benchmark

points (labeled 1–5), compared with the global fit in Ref. [12] obtained using current ATLAS, CMS,

and Tevatron data. On the left we consider the diphoton rate arising from vector boson fusion

(VBF) + associated production with a gauge boson (VH), and from gluon gluon fusion (ggF) +

associated production with a top quark pair (ttH). On the right we plot the corresponding results for

vector boson final states. The white star indicates the current best-fit point from Ref. [12], while the

shaded areas correspond to 68%, 95%, and 99.7% C.L. regions from darkest to lightest, respectively.

All the benchmark points lie within the 68% CL regions for the observed signal strengths. The bb̄/ττ

ellipses are not shown, since all the benchmarks lie very close to the best fit point in this plane. All of

our benchmark points feature a very Standard Model-like Higgs in good agreement with observation.

We must also ensure that the rest of the Higgs sector does not violate the current

constraints from LEP, the Tevatron, or the LHC. This is precisely what is checked by

HiggsBounds. In all of our benchmarks, the scalar closest in mass to the SM-like Higgs

is singlet-like, with couplings of order 10% or less of those for a SM Higgs boson with the

same mass. These suppressed couplings make it difficult to detect these states and allow

them to be even lighter than the SM-like Higgs, as will be the case for all the points we

consider. In fact, in the NMSSM, scalars and pseudoscalars can be extremely light and still

compatible with current collider and meson decay limits, provided the mixing is small [31]

(see e.g. Ref. [67] for a more detailed discussion of possible strategies to search for these

18

Based	
  on	
  global	
  fit	
  from	
  1306.2941	
  

See	
  e.g.	
  Profumo	
  et	
  al,	
  1407.5342	
  for	
  similar	
  conclusions	
  in	
  the	
  real	
  singlet	
  extension	
  of	
  the	
  
SM	
  

Expected	
  ILC	
  	
  
sensi2vity	
  ~	
  1%	
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Another	
  handle:	
  generically	
  expect	
  light	
  singlet-­‐like	
  states	
  

Look	
  for	
  these!	
  Oqen	
  difficult,	
  but	
  some	
  excep2ons	
  

How	
  do	
  we	
  test	
  this	
  scenario?	
  

From	
  Huang	
  et	
  al,	
  1405.1152	
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Look	
  for	
  these	
  states…	
  and	
  don’t	
  leave	
  any	
  gaps!	
  

How	
  do	
  we	
  test	
  this	
  scenario?	
  

E.g.	
  light	
  pseudoscalars	
  may	
  have	
  evaded	
  LEP	
  but	
  could	
  be	
  found	
  at	
  the	
  LHC	
  and/or	
  	
  
100	
  TeV	
  pp	
  collider	
  (if	
  couplings	
  aren’t	
  that	
  suppressed)!	
  

g

g b

b

a

b (b)

g

b (b)

a g

b (b)

b (b)

a

Figure 3. Some of the diagrams contributing to the production of the pseudoscalar, a, at the LHC.
The two rightmost diagrams arise in the 5FS.

where f is an overall scaling factor, and i refers to the produced b’s and a. This is in keeping

with previous analyses in the context of Standard Model-like Higgs production [99, 104–107].

We considered the impact of the scale dependence by varying the overall scaling factor in the

range [1/2, 2], which resulted in a 2-20% change in the production cross section, with larger

effects occurring for smaller values of ma. This is consistent with the range typically found

in the literature [98, 99, 101].

To further validate the results of our leading order calculation, we have compared our

LO result for the dominant (gb(b̄) → b(b̄)a) production mode to the next-to-leading order

(NLO) result calculated in the five flavor scheme implemented in the program MCFM [108] for

several choices for µf,r (we neglect the difference between scalar and pseudoscalar production

which are small [104]). We find that our LO results exhibit reasonable agreement with the

NLO result, falling within a factor of 1–2 across the parameter space we consider. Addition-

ally, there are theoretical uncertainties related to the specific choice of parton distribution

functions, which have been shown to be of order ∼ 5% for low masses [103], as well as some

residual renormalization scheme dependence (MadGraph uses an on-shell scheme, while e.g.

MCFM uses MS). To account for these effects, Appendix C takes a conservative approach and

explores the effect of a factor of 2 over-estimation in our signal and, separately, a factor of

2 under-estimation in the backgrounds. Our overall conclusions are not significantly affected

by this re-scaling, and so we believe them to be quite robust.

For an experimental search, we consider three possible leptonic tagging channels: SR1

requires one electron and one muon; SR2 requires one lepton (e or µ) and one hadronic τ ; SR3

requires two muons. SR1 is motivated by excellent trigger response, while SR2 is motivated

by the larger branching ratios and SR3 is motivated by a resonance search methodology in

the di-muon invariant mass spectrum that allows for the use of data-driven backgrounds. In

all three signal regions, we also require 1-2 b-jet tags, and no light jets, where light jets are

defined as pT > 40 GeV. The signals are therefore inclusive for light jets with pT < 40 GeV,

such as those that are commonly generated from ISR effects. These tagging requirements

significantly suppress fake backgrounds arising from vector boson production in association

with light jets.
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Figure 8. Application of our results to the Z3-symmetric NMSSM. The black (gray) contours corre-

spond to the reach at 100 fb
−1

(1 fb
−1

) for the hard (soft) cut scenarios and low systematics in the

various search channels. The gray points are the result of a Markov Chain Monte Carlo scan of the

parameter space (described in the text) consistent with all existing phenomenological constraints with

no requirements on the LSP relic abundance or annihilation rate with parameters as in Eq. 5.5 and

mA = 550 GeV. The green, blue, and orange points correspond to points capable of explaining the

Fermi signal and consistent with the recent dwarf spheroidal constraints for mA = 500, 550, and 600

GeV, respectively. The red band is an example of the NMSSM parameter space found to be consistent

with the excess in Ref. [16]. The sample point of Table 2 below is indicated with a star. Note that it

may be possible to choose parameters minimizing the haa coupling to fill in the ma < mh/2, gd > 1

region, which we did not attempt in our scan.

fixed

λ = 0.05, µ = 615 GeV, mA = 550 GeV,

M1 = 45 GeV,M2 = 1 TeV,M3 = 2 TeV,

MQ3 = MU3 = 7.5 TeV, At =
√
6MQ3 , MD1,2,3 = 5.5 TeV

(5.5)

with all other soft masses and triscalar couplings at 1 TeV, while varying tanβ, κ, and Aκ.

We required all points to satisfy all existing constraints discussed earlier and implemented in

NMSSMTools. The results of the scans are shown, along with our results for the LHC reach

across the parameter space, in Fig. 8. The gray points were generated without requiring

the lightest supersymmetric particle (LSP) to explain the Galactic Center excess or satisfy

constraints on its relic abundance. The green, blue, and orange points correspond to mA =

500, 550, 600 GeV and feature a bino-like LSP with a relic abundance compatible with WMAP
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A	
  more	
  direct	
  test:	
  mul2-­‐Higgs	
  produc2on	
  at	
  the	
  LHC	
  and	
  	
  

future	
  colliders	
  (see	
  e.g.	
  Cur2n	
  et	
  al,	
  1409.0005;	
  Craig	
  et	
  al,	
  1412.0258)	
  

Various	
  scalar	
  self-­‐couplings	
  can	
  be	
  correlated	
  with	
  the	
  	
  

strength	
  of	
  the	
  EWPT	
  in	
  singlet	
  models	
  	
  

May	
  be	
  possible	
  to	
  conclusively	
  test	
  a	
  significant	
  por2on	
  of	
  	
  

the	
  parameter	
  space	
  at	
  100	
  TeV	
  collider	
  (work	
  in	
  progress	
  	
  
with	
  Chien-­‐Yi	
  Chen	
  and	
  Ian	
  Lewis	
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the bubble wall once it has reached its terminal velocity, with the pressure driving the
expansion precisely counterbalanced by the drag force exerted on the bubble by the plasma.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-accelerating)
bubble wall all functions will be depend only on z, the distance from the phase boundary.
Consequently, in the plasma frame, all functions depend only on the coordinate x ≡ z+vwt,
where vw is the wall velocity in the plasma frame and we have assumed that the wall is
moving to the left. In the stationary wall limit, the equations of motion then simplify to

−(1− v2w)φ
��
i +

∂V (φi, T )

∂φi
+
�

j

∂m2
j (φi)

∂φi

�
d3p

(2π)32Ej
δfj(p, x) = 0 (4.1)

where primes indicate differentiation with respect to x. Here the sum is over all fields
with significant couplings to the given scalar field φi, Ej is the (space-time–dependent)
energy of the particle j, Ej =

�
p2 +m2

j (x), and δfj is the deviation from the equilibrium
distribution function for the species j.

Our goal is to solve the above equations of motion for the constant vw and the profiles
φi(x). Doing so requires solving for the properties of the phase transition (temperature,
latent heat, initial bubble profile, etc.), as well as the deviations from equilibrium of the
various species in the plasma, which are responsible for the drag force on the bubble wall.
These tasks will occupy the next several sections of this study.

4.1 Runaway Bubbles and Tree-level Cubic Terms

Before moving on to the case of non-relativistic bubbles (relevant for electroweak baryo-
genesis), we can consider the possibility of ultra-relativistic, “runaway” bubbles []. In this
case, the friction on the bubble from the plasma in the unltra-relativistic limit is too small
to counterbalance the pressure difference between the vacua, which drives the expansion.
Ref. [] showed that this situation is common in singlet-driven transitions, so it is important
to consider this case before moving on to the non-relativistic regime.

A runaway solution to the equations of motion exists provided []

Veff(T = 0,φ+)− Veff(T = 0,φ−) +
�

i

ni
�
m2

i (φ+)−m2
i (φ−)

� � d3p

(2π)32E
f0,i(p,φ+) > 0

(4.2)
at the nucleation temperature. Here, f0 is the equilibrium distribution function of the
species i, and φ± are the field values at the minima of the potential, with the upper sign
corresponding to the high-T (symmetric) phase and the lower sign to the low-T (broken)
phase, respectively. In the high-T limit, there is a simple interpretation of this criterion in
terms of the high-temperature expansion of the thermal potential. In this limit, a runaway
solution will exist if it is energetically favorable to tunnel to the broken phase in the potential
obtained by retaining only the T 2 terms in the effective potential. In other words,

V no cubic
eff (φ+, Tn) > V no cubic

eff (φ−, Tn) ⇒ runaway solution exists. (4.3)

In particular, this implies that if the potential is computed neglecting all non-analytic
finite-T cubic terms (as was done in e.g. Ref. [] and advocated for in Refs. [] to avoid
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the bubble wall once it has reached its terminal velocity, with the pressure driving the
expansion precisely counterbalanced by the drag force exerted on the bubble by the plasma.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-accelerating)
bubble wall all functions will be depend only on z, the distance from the phase boundary.
Consequently, in the plasma frame, all functions depend only on the coordinate x ≡ z+vwt,
where vw is the wall velocity in the plasma frame and we have assumed that the wall is
moving to the left. In the stationary wall limit, the equations of motion then simplify to

−(1− v2w)φ
��
i +

∂V (φi, T )

∂φi
+
�

j

∂m2
j (φi)

∂φi

�
d3p

(2π)32Ej
δfj(p, x) = 0 (4.1)

where primes indicate differentiation with respect to x. Here the sum is over all fields
with significant couplings to the given scalar field φi, Ej is the (space-time–dependent)
energy of the particle j, Ej =

�
p2 +m2

j (x), and δfj is the deviation from the equilibrium
distribution function for the species j.

Our goal is to solve the above equations of motion for the constant vw and the profiles
φi(x). Doing so requires solving for the properties of the phase transition (temperature,
latent heat, initial bubble profile, etc.), as well as the deviations from equilibrium of the
various species in the plasma, which are responsible for the drag force on the bubble wall.
These tasks will occupy the next several sections of this study.

4.1 Runaway Bubbles and Tree-level Cubic Terms

Before moving on to the case of non-relativistic bubbles (relevant for electroweak baryo-
genesis), we can consider the possibility of ultra-relativistic, “runaway” bubbles []. In this
case, the friction on the bubble from the plasma in the unltra-relativistic limit is too small
to counterbalance the pressure difference between the vacua, which drives the expansion.
Ref. [] showed that this situation is common in singlet-driven transitions, so it is important
to consider this case before moving on to the non-relativistic regime.

A runaway solution to the equations of motion exists provided []

Veff(T = 0,φ+)− Veff(T = 0,φ−) +
�

i

ni
�
m2

i (φ+)−m2
i (φ−)

� � d3p

(2π)32E
f0,i(p,φ+) > 0

(4.2)
at the nucleation temperature. Here, f0 is the equilibrium distribution function of the
species i, and φ± are the field values at the minima of the potential, with the upper sign
corresponding to the high-T (symmetric) phase and the lower sign to the low-T (broken)
phase, respectively. In the high-T limit, there is a simple interpretation of this criterion in
terms of the high-temperature expansion of the thermal potential. In this limit, a runaway
solution will exist if it is energetically favorable to tunnel to the broken phase in the potential
obtained by retaining only the T 2 terms in the effective potential. In other words,

V no cubic
eff (φ+, Tn) > V no cubic

eff (φ−, Tn) ⇒ runaway solution exists. (4.3)

In particular, this implies that if the potential is computed neglecting all non-analytic
finite-T cubic terms (as was done in e.g. Ref. [] and advocated for in Refs. [] to avoid
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baryon number preservation condition above still contains several implicit assumptions,
discussed in detail in Ref. []. This should be kept in mind for a full calculation of the
baryon asymmetry in a given model.

3.1 Temperature Variations

The nucleation temperature defined above is that of the ambient plasma when bubbles begin
to form efficiently. Once formed, however, the temperature is no longer homogeneous. The
phase transition releases latent heat into the broken phase plasma, while the expansion of a
subsonic bubble heats up the medium in front of it. The temperature in the broken phase
will thus differ from that immediately outside the bubble, which in turn is not the same as
the typical nucleation temperature of the bubble. To relate these various quantities requires
a treatment of the plasma hydrodynamics. These changes in temperature can have large
effects on the expansion of the bubble [], and so we must take them into account.

Far away from the bubble, the relevant temperature is that at which bubble nucleation
occurs, Tn. We wish to obtain the temperature in the vicinity of bubble wall. To do so,
let us consider the wall-plasma system, with the plasma modeled as a perfect relativistic
fluid. Hydrodynamic equations can be obtained by requiring conservation of the wall-fluid
stress-energy tensor,

∂µT
µν = ∂µT

µν
condensate + ∂µT

µν
plasma = 0. (3.3)

We define the “ ‘fluid” or “plasma frame” such that the fluid is at rest far from the bubble
and in its center. This is the frame which we use to define the wall velocity vw and the
wall profile parameters. Solutions to the fluid equations in the plasma frame can typically
be classified as either ‘detonations’, in which the bubble velocity exceeds the sound speed
vs in the plasma, or ‘deflagrations’, in which vw < vs 4. Successful sub-sonic electroweak
baryogenesis requires a deflagration solution, since otherwise diffusion in front of the bubble
is inefficient. We will restrict ourselves to this case.

Consider an expanding bubble with free energy Veff(φ−, T−) inside and Veff(φ+, T+)

immediately outside (‘±’ subscripts will correspond to quantities outside/inside the bubble).
The equations of state (EoS) for the two phases can be written as

p± =
1

3
a±(T )T

4
± − �±(T ), ρ± = a±(T )T

4
± + �±(T ) (3.4)

where

a±(T ) ≡ − 3

4T 3

dVeff [φ±(T ), T ]

dT
, �±(T ) ≡ Veff [φ±(T ), T ] +

1

3
a±(T )T

4 (3.5)

and the upper and lower signs of φ±(T ) corrspond to the field values in the symmetric
and broken phases at T . The above form for the equations, taken from Ref. [41], are
inspired by the so-called ‘Bag EoS’, but involves the temperature-dependent quantities a±,
�±. Fortunately, we can safely neglect the temperature dependence in a±, �±, using their
values at T = Tn. This is because the free energy (and hence a±, �±) are dominated by
light degrees of freedom, which contribute a constant term to the free energy in each phase

4There are also ‘hybrid cases; see Ref. [].
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the bubble wall once it has reached its terminal velocity, with the pressure driving the
expansion precisely counterbalanced by the drag force exerted on the bubble by the plasma.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-accelerating)
bubble wall all functions will be depend only on z, the distance from the phase boundary.
Consequently, in the plasma frame, all functions depend only on the coordinate x ≡ z+vwt,
where vw is the wall velocity in the plasma frame and we have assumed that the wall is
moving to the left. In the stationary wall limit, the equations of motion then simplify to

−(1− v2w)φ
��
i +

∂V (φi, T )

∂φi
+
�

j

∂m2
j (φi)

∂φi

�
d3p

(2π)32Ej
δfj(p, x) = 0 (4.1)

where primes indicate differentiation with respect to x. Here the sum is over all fields
with significant couplings to the given scalar field φi, Ej is the (space-time–dependent)
energy of the particle j, Ej =

�
p2 +m2

j (x), and δfj is the deviation from the equilibrium
distribution function for the species j.

Our goal is to solve the above equations of motion for the constant vw and the profiles
φi(x). Doing so requires solving for the properties of the phase transition (temperature,
latent heat, initial bubble profile, etc.), as well as the deviations from equilibrium of the
various species in the plasma, which are responsible for the drag force on the bubble wall.
These tasks will occupy the next several sections of this study.

4.1 Runaway Bubbles and Tree-level Cubic Terms

Before moving on to the case of non-relativistic bubbles (relevant for electroweak baryo-
genesis), we can consider the possibility of ultra-relativistic, “runaway” bubbles []. In this
case, the friction on the bubble from the plasma in the unltra-relativistic limit is too small
to counterbalance the pressure difference between the vacua, which drives the expansion.
Ref. [] showed that this situation is common in singlet-driven transitions, so it is important
to consider this case before moving on to the non-relativistic regime.

A runaway solution to the equations of motion exists provided []

Veff(T = 0,φ+)− Veff(T = 0,φ−) +
�

i

ni
�
m2

i (φ+)−m2
i (φ−)

� � d3p

(2π)32E
f0,i(p,φ+) > 0

(4.2)
at the nucleation temperature. Here, f0 is the equilibrium distribution function of the
species i, and φ± are the field values at the minima of the potential, with the upper sign
corresponding to the high-T (symmetric) phase and the lower sign to the low-T (broken)
phase, respectively. In the high-T limit, there is a simple interpretation of this criterion in
terms of the high-temperature expansion of the thermal potential. In this limit, a runaway
solution will exist if it is energetically favorable to tunnel to the broken phase in the potential
obtained by retaining only the T 2 terms in the effective potential. In other words,

V no cubic
eff (φ+, Tn) > V no cubic

eff (φ−, Tn) ⇒ runaway solution exists. (4.3)

In particular, this implies that if the potential is computed neglecting all non-analytic
finite-T cubic terms (as was done in e.g. Ref. [] and advocated for in Refs. [] to avoid
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In the effective kinetic theory, the quasiparticle distribution function for the species i

satisfies the Boltzmann equation

d

dt
fi ≡

�
∂

∂t
+ ż

∂

∂z
+ ṗz

∂

∂pz

�
fi = −C[f ]i (5.2)

in the fluid frame, where C[f ] is a collision integral. The collision integral involves all

interactions of the species i with all other excitations in the plasma. It can be written as

C[f ]i =
�

j

1

2Ep

�
d3kd3p�d3k�

(2π)92Ek2Ep�2Ek�

���Mj
i

���
2
(2π)4δ(p+ k − p� − k�)P (5.3)

where the sum is over all distinct 4-body processes, labeled by j, with the labeling assumed

to be as in Fig. ?? and a = i. The matrix elements include finite-temperature effects

(discussed below) and are summed over helicities, colors, and particle-antiparticle, then

divided by the number of degrees of freedom corresponding to species i, Ni. The population

factor is

P ≡ f1f2(1± f3)(1± f4)− f3f4(1± f1)(1± f2) (5.4)

with the upper (lower) signs corresponding to bosons (fermions) and fj the appropriate

Bose-Einstein or Fermi-Dirac distribution function for particle j,

f =
�
e(E+δj)/T ± 1

�−1
. (5.5)

The Boltzmann equations above apply to all quasiparticles in the plasma satisfying

Eq. 5.1. However, examining Eq. 4.1, we see that only the distribution functions of field

excitations with significant couplings to the relevant scalar fields involved in the phase tran-

sition are required. Since these particles have significant couplings to the Higgs and singlet

scalar fields, we will refer to them as ‘heavy’. Also, δfi = δfi(p, x) has some spacetime-

dependence, arising in part from the spatial variation of the background fluid temperature

and velocity across the bubble wall, as discussed in Sec. 3. The background fluid is in

local thermal equilibrium and comprises all ‘light’ effective degrees of freedom. Note that

quasiparticles with large field-independent masses will be irrelevant for our purposes, since

their distribution functions feature significant Boltzmann suppression. Also, precisely which

fields should be considered ‘heavy’, ‘light’, or irrelevant depends on the given model. For

the singlet-driven scenarios we are concerned with here, the heavy fields will be the top

quarks, gauge, Higgs, and singlet bosons.

To find approximate solutions to the Boltzmann equations for the heavy species and

background, we will utilize the ‘fluid ansatz’, in which case the perturbations are assumed

to take the form

δj = −µj −
E

T
(δTj + δTbg)− pz(δvj + vbg). (5.6)

Here µj , δTj , δvj are the chemical potential, temperature perturbation, and velocity per-

turbation of the species j, respectively, with respect to the plasma. We have assumed that

the fields with small couplings to the scalar condensates {φi} are in thermal equilibrium

bosons [14], and so their distributions should equilibrate more quickly than those for the gauge fields.
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the bubble wall once it has reached its terminal velocity, with the pressure driving the
expansion precisely counterbalanced by the drag force exerted on the bubble by the plasma.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-accelerating)
bubble wall all functions will be depend only on z, the distance from the phase boundary.
Consequently, in the plasma frame, all functions depend only on the coordinate x ≡ z+vwt,
where vw is the wall velocity in the plasma frame and we have assumed that the wall is
moving to the left. In the stationary wall limit, the equations of motion then simplify to

−(1− v2w)φ
��
i +

∂V (φi, T )

∂φi
+
�

j

∂m2
j (φi)

∂φi

�
d3p

(2π)32Ej
δfj(p, x) = 0 (4.1)

where primes indicate differentiation with respect to x. Here the sum is over all fields
with significant couplings to the given scalar field φi, Ej is the (space-time–dependent)
energy of the particle j, Ej =

�
p2 +m2

j (x), and δfj is the deviation from the equilibrium
distribution function for the species j.

Our goal is to solve the above equations of motion for the constant vw and the profiles
φi(x). Doing so requires solving for the properties of the phase transition (temperature,
latent heat, initial bubble profile, etc.), as well as the deviations from equilibrium of the
various species in the plasma, which are responsible for the drag force on the bubble wall.
These tasks will occupy the next several sections of this study.

4.1 Runaway Bubbles and Tree-level Cubic Terms

Before moving on to the case of non-relativistic bubbles (relevant for electroweak baryo-
genesis), we can consider the possibility of ultra-relativistic, “runaway” bubbles []. In this
case, the friction on the bubble from the plasma in the unltra-relativistic limit is too small
to counterbalance the pressure difference between the vacua, which drives the expansion.
Ref. [] showed that this situation is common in singlet-driven transitions, so it is important
to consider this case before moving on to the non-relativistic regime.

A runaway solution to the equations of motion exists provided []

Veff(T = 0,φ+)− Veff(T = 0,φ−) +
�

i

ni
�
m2

i (φ+)−m2
i (φ−)

� � d3p

(2π)32E
f0,i(p,φ+) > 0

(4.2)
at the nucleation temperature. Here, f0 is the equilibrium distribution function of the
species i, and φ± are the field values at the minima of the potential, with the upper sign
corresponding to the high-T (symmetric) phase and the lower sign to the low-T (broken)
phase, respectively. In the high-T limit, there is a simple interpretation of this criterion in
terms of the high-temperature expansion of the thermal potential. In this limit, a runaway
solution will exist if it is energetically favorable to tunnel to the broken phase in the potential
obtained by retaining only the T 2 terms in the effective potential. In other words,

V no cubic
eff (φ+, Tn) > V no cubic

eff (φ−, Tn) ⇒ runaway solution exists. (4.3)

In particular, this implies that if the potential is computed neglecting all non-analytic
finite-T cubic terms (as was done in e.g. Ref. [] and advocated for in Refs. [] to avoid
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