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Status of (g − 2)µ, experiment vs SM
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Status of (g − 2)µ, experiment vs SM
Different contributions to the total SM result

aµ

[

10−11
]

∆aµ

[

10−11
]

experiment 116 592 089. 63.

QED O(α) 116 140 973.21 0.03
QED O(α2) 413 217.63 0.01
QED O(α3) 30 141.90 0.00
QED O(α4) 381.01 0.02
QED O(α5) 5.09 0.01
QED total 116 584 718.95 0.04

electroweak, total 153.6 1.0

HVP (LO) [Hagiwara et al. 2011] 6 949. 43.
HVP (HO) [Hagiwara et al. 2011] −98. 1.
HLbL [Jegerlehner-Nyffeler 2009] 116. 40.

theory 116 591 839. 59.
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Hadronic light-by-light: irreducible uncertainty?

◮ Hadronic contributions responsible for most of the theory
uncertainty

◮ Hadronic vacuum polarization (HVP) can be systematically
improved
(but going much below 1% is hard – dealing with radiative
corrections poses serious problems)

◮ Hadronic light-by-light (HLbL) is more problematic:

◮ “it cannot be expressed in terms of measurable quantities”
◮ reliability of uncertainty estimate based more on consensus

than on a systematic method
◮ only first-principle method in sight: lattice QCD

(when will it become competitive?)
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Different evaluations of HLbL

Jegerlehner Nyffeler 2009

◮ large uncertainties (and differences among calculations) in
individual contributions

◮ pseudoscalar pole contributions most important

◮ second most important: pion loop, i.e. two-pion cuts (K s are
subdominant)

◮ heavier single-particle poles decreasingly important
(unless one models them to resum the high-energy tail)
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Approaches to Hadronic light-by-light

◮ Model calculations
◮ ENJL Bijnens, Pallante, Prades (95-96)

◮ NJL and hidden gauge Hayakawa, Kinoshita, Sanda (95-96)

◮ nonlocal χQM Dorokhov, Broniowski (08)

◮ AdS/CFT Cappiello, Cata, D’Ambrosio (10)

◮ Dyson-Schwinger Goecke, Fischer, Williams (11)

◮ constituent χQM Greynat, de Rafael (12)

◮ resonances in the narrow-width limit Pauk, Vanderhaeghen (14)

◮ Impact of rigorously derived constraints
◮ high-energy constraints taken into account in several models above

addressed specifically by Knecht, Nyffeler (01)

◮ high-energy constraints related to the axial anomaly Melnikov, Vainshtein (04) and Nyffeler (09)

◮ sum rules for γ∗
γ → X Pascalutsa, Pauk, Vanderhaeghen (12)

see also: workshop MesonNet (13)

◮ low-energy constraints–pion polarizabilities Engel, Ramsey-Musolf (13)

◮ Lattice Blum et al. (05,12)
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Some notation

HLbL tensor:

Πµνλσ = i3
∫

dx
∫

dy
∫

dz e−i(x·q1+y·q2+z·q3)〈0|T
{

jµ(x)jν(y)jλ(z)jσ(0)
}

|0〉

where jµ(x) =
∑

i Qi q̄i(x)γµqi(x), i = u, d , s

k = q1 + q2 + q3 k2 = 0

Helicity amplitudes

Hλ1λ2,λ3λ4(s, t ,u) ≡ M(γ∗(q1, λ1)γ
∗(q2, λ2) → γ∗(−q3, λ3)γ(k , λ4))

= ǫµ(λ1,q1)ǫν(λ2,q2)ǫ
∗
λ(λ3,−q3)ǫ

∗
σ(λ4, k)Πµνλσ

with Mandelstam variables

s = (q1+q2)
2=(k−q3)

2 t = (q1+q3)
2=(k−q2)

2 u = (q2+q3)
2=(k−q1)

2

and s-channel scattering angle

zs = cos θs =
s

(

s − q2
3

)√
λ12

(

t−u+

(

q2
1 − q2

2

)

q2
3

s

)

λ12 = λ
(

s,q2
1 ,q

2
2

)
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Contribution to aµ

From gauge invariance:

Πµνλσ

(

q1,q2, k − q1 − q2
)

= −kρ ∂

∂kσ
Πµνλρ

(

q1,q2, k − q1 − q2
)

.

Contribution to aµ:

aµ = lim
k→0

Tr
{

(

/p + m
)

Λρ
(

p′,p
)(

/p′ + m
)

Γρ
(

p′,p
)

}

Γρ = e6
∫

d4q1

(2π)4

∫

d4q2

(2π)4

1
q2

1q2
2q2

3

γµ
(

/p′+ /q1+m
)

γλ
(

/p− /q2+m)γν

(

(p′+q1)2−m2
)(

(p−q2)2−m2
)kσ∂kρΠµνλσ

with the projector

Λρ
(

p′,p
)

=
m2

k2
(

4m2 − k2
)

{

γρ +
k2 + 2m2

m
(

k2 − 4m2
)

(

p + p′
)ρ

}

m denotes the mass of the muon, p and p′ = p − k the
momenta of the incoming and outgoing muon, respectively
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Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

Pion pole: known



Intro A dispersive approach to HLbL Conclusions Main result Derivation of the MF

Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

F V
π

(

q2
1

)

F V
π

(

q2
2

)

F V
π

(

q2
3

)×













Contribution with two simultaneous cuts
– analytic properties like the box diagram in sQED
– triangle and bulb diagram required by gauge invariance
– multiplication with F V

π gives the correct q2 dependence
it is not an approximation!
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Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

The “rest” with 2π intermediate states has cuts only in one
channel and is what will be calculated dispersively
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Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

Contributions of cuts with anything else other than one and two
pions in intermediate states will be neglected
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Master formula

aππ
µ = e6

∫

d4q1

(2π)4

∫

d4q2

(2π)4

Iππ

q2
1q2

2s
(

(p + q1)2 − m2
)(

(p − q2)2 − m2
) ,

Iππ =
∑

i∈{1,2,3,6,14}

(

Ti,sIi,s + 2Ti,uIi,u
)

+ 2T9,sI9,s + 2T9,uI9,u + 2T12,uI12,u

with Ii,(s,u) dispersive integrals and Ti,(s,u) integration kernels

I1,s =
1
π

∞
∫

4m2
π

ds′

s′ − s

(

1
s′ − s

− s′ − q2
1 − q2

2

λ
(

s′,q2
1 ,q

2
2

)

)

Imh̄0
++,++

(

s′;q2
1 ,q

2
2 ; s,0

)

,

T1,s =
16
3

s
{

m2 +
8P21 p · q1

λ12

}

, T1,u =
16
3

{

4P2
12

λ12
− P12 − Zu

}

,
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Master formula

aππ
µ = e6

∫

d4q1

(2π)4

∫

d4q2

(2π)4

Iππ

q2
1q2

2s
(

(p + q1)2 − m2
)(

(p − q2)2 − m2
) ,

Iππ =
∑

i∈{1,2,3,6,14}

(

Ti,sIi,s + 2Ti,uIi,u
)

+ 2T9,sI9,s + 2T9,uI9,u + 2T12,uI12,u

with Ii,(s,u) dispersive integrals and Ti,(s,u) integration kernels

I1,s =
1
π

∞
∫

4m2
π

ds′

s′ − s

(

1
s′ − s

− s′ − q2
1 − q2

2

λ
(

s′,q2
1 ,q

2
2

)

)

Imh̄0
++,++

(

s′;q2
1 ,q

2
2 ; s,0

)

,

I6,s =
1
π

∞
∫

4m2
π

ds′

(

s′ − q2
1 − q2

2

)(

s′ − s
)2 Imh̄2

+−,+−

(

s′;q2
1 ,q

2
2 ; s,0

)

(

75
8

)

Helicity amplitudes contribute up to J = 2 (S and D waves)
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Master formula
The bars on the helicity amplitudes mean that we must subtract
the FsQED contribution.

The unitarity relation for the barred imaginary parts read

Imsh̄J,ij(s) =

= hc
J,i

(

s;q2
1 ,q

2
2

)

(

hc
J,j

(

s;q2
3 ,0

)

)∗

− NJ,i
(

s;q2
1 ,q

2
2

)

NJ,j
(

s;q2
3 ,0

)

+
1
2

hn
J,i

(

s;q2
1 ,q

2
2

)

(

hn
J,j

(

s;q2
3 ,0

)

)∗

where:

hc,n
J,i = helicity amplitudes for γ∗γ∗ → π+π− and π0π0 resp.

NJ,i = partial-wave projection of the γ∗γ∗ → π+π− Born term
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Master formula
What contributions are included? How?
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Dispersion relations for γ∗
γ
∗ → ππ

Roy-Steiner eqs. = Dispersion relations + partial-wave expansion

+ crossing symmetry + unitarity + gauge invariance

◮ On-shell γγ → ππ: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

◮ γ∗γ → ππ Moussallam (13)

◮ γ∗γ∗ → ππ, new feature: anomalous
thresholds Hoferichter, GC, Procura, Stoffer (13)
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Dispersion relations for γ∗
γ
∗ → ππ

Roy-Steiner eqs. = Dispersion relations + partial-wave expansion

+ crossing symmetry + unitarity + gauge invariance

◮ On-shell γγ → ππ: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

◮ γ∗γ → ππ Moussallam (13)

◮ γ∗γ∗ → ππ, new feature: anomalous
thresholds Hoferichter, GC, Procura, Stoffer (13)

◮ Constraints
◮ Low energy: pion polar., ChPT
◮ Primakoff: γπ → γπ at

COMPASS, JLAB
◮ Scattering: e+e− → e+e−ππ,

e+e− → ππγ
◮ Decays: ω, φ → ππγ

π
−

π
−

Z

e
+

e
−

π

π

e
+

e
−

π

π
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Dispersion relations for γ∗
γ
∗ → ππ

Roy-Steiner eqs. = Dispersion relations + partial-wave expansion

+ crossing symmetry + unitarity + gauge invariance

◮ On-shell γγ → ππ: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

◮ γ∗γ → ππ Moussallam (13)

◮ γ∗γ∗ → ππ, new feature: anomalous
thresholds Hoferichter, GC, Procura, Stoffer (13)

Analysis of the Roy-Steiner equations for γ∗γ∗ → ππ is in
progress: any experimental input most welcome
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Physics of γ∗
γ
∗ → ππ

◮ ππ rescattering ⇔ resonances, e.g.
f2(1270)

◮ S-wave provides model-independent
implementation of the σ

σ, f0, a0

h0,++ h0,++
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Physics of γ∗
γ
∗ → ππ

◮ ππ rescattering ⇔ resonances, e.g.
f2(1270)

◮ S-wave provides model-independent
implementation of the σ

◮ Analytic continuation with dispersion
theory: resonance properties

◮ Precise determination of σ-pole from
ππ scattering Caprini, GC, Leutwyler 2006

Mσ = 441+16
−8 MeV Γσ = 544+18

−25 MeV

◮ Coupling σ → γγ from γγ → ππ
Hoferichter, Phillips, Schat 2011

f0(500) PARTIAL WIDTHSf0(500) PARTIAL WIDTHSf0(500) PARTIAL WIDTHSf0(500) PARTIAL WIDTHS

Γ
(

γγ
)

Γ2Γ
(

γγ
)

Γ2Γ
(

γγ
)

Γ2Γ
(

γγ
)

Γ2

VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

1.7 ±0.4 54 HOFERICHTER11 RVUE Compilation

3.08±0.82 55 MENNESSIER 11 RVUE Compilation

2.08±0.2 +0.07
−0.04

56 MOUSSALLAM11 RVUE Compilation

2.08 57 MAO 09 RVUE Compilation

1.2 ±0.4 58 BERNABEU 08 RVUE

3.9 ±0.6 55 MENNESSIER 08 RVUE γγ → π
+

π
−, π

0
π
0

1.8 ±0.4 59 OLLER 08 RVUE Compilation

σ, f0, a0

h0,++ h0,++

f0(500) or σ

was f0(600)
IG (JPC ) = 0+(0 + +)

A REVIEW GOES HERE – Check our WWW List of Reviews

f0(500) T-MATRIX POLE
√

sf0(500) T-MATRIX POLE
√

sf0(500) T-MATRIX POLE
√

sf0(500) T-MATRIX POLE
√

s

Note that Γ ≈ 2 Im(
√

spole).

VALUE (MeV) DOCUMENT ID TECN COMMENT

(400–550)−i(200–350) OUR ESTIMATE(400–550)−i(200–350) OUR ESTIMATE(400–550)−i(200–350) OUR ESTIMATE(400–550)−i(200–350) OUR ESTIMATE

• • • We do not use the following data for averages, fits, limits, etc. • • •

(445 ± 25)−i(278+22
−18) 1,2 GARCIA-MAR...11 RVUE Compilation

(457+14
−13)−i(279+11

− 7) 1,3 GARCIA-MAR...11 RVUE Compilation

(442+5
−8)−i(274+6

−5) 4 MOUSSALLAM11 RVUE Compilation

(452 ± 13)−i(259 ± 16) 5 MENNESSIER 10 RVUE Compilation

(448 ± 43)−i(266 ± 43) 6 MENNESSIER 10 RVUE Compilation

(455 ± 6+31
−13)−i(278 ± 6+34

−43) 7 CAPRINI 08 RVUE Compilation
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Hadronic light-by-light: a roadmap

γπ → ππγπ → ππ

e+e− → π0γe+e− → π0γ ω, φ → ππγ e+e− → ππγ

ππ → ππ

Pion transition form factor

Fπ0γ∗γ∗

(

q2
1
, q2

2

)

Partial waves for

γ∗γ∗
→ ππ

e+e− → e+e−ππ

Pion vector

form factor F π

V

Pion vector

form factor F π

V

e+e− → 3π pion polarizabilitiespion polarizabilities γπ → γπ

ω, φ → 3π ω, φ → π0γ∗ω, φ → π0γ∗

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions
by and a collaboration among theorists and experimentalists
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A convenient basis
Πµνρσ: gauge + Lorentz inv. + (k2=0) ⇒ 29 scalar functions
But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

Π̄µνλσ =
15
∑

i=1

(

Aµνλσ
i,s Πi(s, t , u)+Aµνλσ

i,t Πi(t , s, u)+Aµνλσ
i,u Πi(u, t , s)

)
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A convenient basis
Πµνρσ: gauge + Lorentz inv. + (k2=0) ⇒ 29 scalar functions
But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

Π̄µνλσ =
15
∑

i=1

(

Aµνλσ
i,s Πi(s, t , u)+Aµνλσ

i,t Πi(t , s, u)+Aµνλσ
i,u Πi(u, t , s)

)

where (just one example):

Aµνλσ
1,s =

8
(

s − q2
3

)

λ12

(

kλqσ
3 − k · q3 gλσ

)

(

qµν
12 +

λ12

4
gµν

)

Aµνλσ
i,t from (q2, ν) ↔ (q3, λ) Aµνλσ

i,u from (q1, µ) ↔ (q3, λ)

⇒ crossing symmetry is explicit
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A convenient basis
Πµνρσ: gauge + Lorentz inv. + (k2=0) ⇒ 29 scalar functions
But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

Π̄µνλσ =
15
∑

i=1

(

Aµνλσ
i,s Πi(s, t , u)+Aµνλσ

i,t Πi(t , s, u)+Aµνλσ
i,u Πi(u, t , s)

)

Essential property of this basis: the helicity amplitudes in each
channel are “diagonal” :

H̄++,++(s, t ,u) = Π1(s, t ,u) + Ĥ++,++(s, t ,u)

H̄00,++(s, t ,u) = −q2
1q2

2

ξ1ξ2
Π2(s, t ,u) + Ĥ00,++(s, t ,u)
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A convenient basis
Πµνρσ: gauge + Lorentz inv. + (k2=0) ⇒ 29 scalar functions
But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

Π̄µνλσ =
15
∑

i=1

(

Aµνλσ
i,s Πi(s, t , u)+Aµνλσ

i,t Πi(t , s, u)+Aµνλσ
i,u Πi(u, t , s)

)

Essential property of this basis: the helicity amplitudes in each
channel are “diagonal” and unitarity relations “simple”:

ImsH̄++,++(s, t ,u) = ImsΠ1(s, t ,u)

ImsH̄00,++(s, t ,u) = −q2
1q2

2

ξ1ξ2
ImsΠ2(s, t ,u)

The cut in the s-channel of each s-channel helicity amplitude is only
due to one single Πi(s, t ,u) function (which only has a cut in s)
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Unitarity relations for helicity amplitudes

Helicity amplitudes admit a partial wave expansion

Hλ1λ2,λ3λ4(s, t , u) =
∑

J

DJ(zs)hJ
λ1λ2,λ3λ4

(s)

where DJ(zs) is the appropriate Wigner function.

Each partial wave satisfies a simple unitarity relation (for s > 0)

ImhJ
λ1λ2,λ3λ4

(s) =
σs

16π
θ
(

s−4m2
π

)

hJ,λ1λ2

(

s; q2
1 , q

2
2

)

h∗

J,λ3λ4

(

s; q2
3 , 0

)

where hJ,λ1λ2

(

s; q2
1 , q

2
2

)

are partial-wave helicity amplitudes of
the subprocess γ∗γ∗ → ππ.
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Dispersion relations for the Πi(s, t , u)

◮ The Πi(s, t , u) only have a cut in s and for s ≥ 4m2
π

◮ Their imaginary part coincides with that of the related
helicity amplitude

◮ The latter can be expanded in partial waves and for each
of them unitarity fixes the imaginary part in terms of
partial-wave helicity amplitudes of the subprocess
γ∗γ∗ → ππ

◮ a dispersive integral over the right-hand cut of each partial
wave would in principle allow me to reconstruct the whole
Πi(s, t , u), up to a polynomial
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Simplified dispersion relations for the Πi(s, t , u)

We will carry out the program outlined in the previous slide with
one simplification (but see later!):

for each Πi(s, t , u) we only keep the discontinuity due to the
lowest partial wave (i.e. S or D)

all Πi(s, t , u) become single-variable functions ⇒ Πi(s)

This is analogous to what is done for ππ scattering, η → 3π and
several other processes when the amplitude is expressed as a
sum of single-variable functions having only a right-hand cut,
and goes under the name of “reconstruction theorem”

Stern, Sazdjian, Fuchs (93)
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Fixing subtraction constants: soft-photon zeros

Gauge-invariance implies the presence of so-called soft-photon
zeros Low (58), Moussallam (13)

Hλ1λ2,λ3λ4

k→0→ ∝ (s − q2
3)

and analogously

Hλ1λ2,λ3λ4

q1,2→0→ ∝ (s − q2
2,1)

In a dispersive representation such a property must emerge
from the kernels of the dispersive integrals

and constrains the subtraction polynomial
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Soft-photon zeros in γ
∗
γ
∗ → ππ

These soft-photon zeros can be studied also in subprocess
γ∗γ∗ → ππ where a dispersive representation for the helicity
amplitudes reads

hJ,i(s) =
1
π

∑

J′ even

5
∑

j=1

∞
∫

4m2
π

ds′K ij
JJ′(s, s′) ImhJ′,j(s′) + · · · , i , j ∈

{

λ1λ2}

the ellipsis stands for integrals of crossed-channel partial waves

The diagonal kernel functions

K++,++
00 (t , t ′) = K 00,00

00 (t , t ′) =
1

t ′ − t
− t ′ − q2

1 − q2
2

λ
(

t ′,q2
1 ,q

2
2

)

K++,++
22 (t , t ′) = K 00,00

22 (t , t ′) =
p2

t q2
t

p′2
t q′2

t

(

1
t ′ − t

− t ′ − q2
1 − q2

2

λ
(

t ′,q2
1 ,q

2
2

)

)

display the desired soft-photon behaviour
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Soft-photon zeros in γ
∗
γ
∗ → ππ

Soft-photon zeros of the γ∗γ∗ → ππ sub-amplitudes manifest
themselves as a modification of the Cauchy kernel by a factor:

K12(s, s
′) =

f12(s, s′)

s′ − s
, K34(s, s

′) =
f34(s, s′)

s′ − s
,

for the initial- and final-state photon pair, respectively.

A modified Cauchy kernel that gives the HLbL tensor the proper
soft-photon zeros is obtained by factorization

K12,34(s, s
′) =

f12(s, s′)f34(s, s′)

s′ − s
.
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Dispersion relations for the Πi(s)

Imposing the same form of the soft-photon zeros as in the
subamplitudes γ∗γ∗ → ππ we obtain the following dispersion
relations:

Πs
1=h̄0

++,++(s)=
s − q2

3

π

∞
∫

4m2
π

ds′

s′ − q2
3

(

1
s′ − s

− s′ − q2
1 − q2

2

λ′
12

)

Imh̄0
++,++(s

′)

yΠs
2=h̄0

00,++(s)=
s − q2

3

π

∞
∫

4m2
π

ds′

s′ − q2
3

(

1
s′ − s

− s′ − q2
1 − q2

2

λ′
12

)

Imh̄0
00,++(s

′)

with y = − q2
1 q2

2
ξ1ξ2

[and similarly for the others]
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Dispersion relations for the Πi(s)

Soft-photon zeros for the Πs
i or for the helicity amplitudes?

Remember

H̄++,++(s, t , u) = Πs
1 + Ĥ++,++(s, t , u)

with

Ĥλ1λ2,λ3λ4(s, t , u) =
15
∑

i=1

(

f i
λ1λ2,λ3λ4

Πt
i + f̃ i

λ1λ2,λ3λ4
Πu

i

)
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Dispersion relations for the Πi(s)

Soft-photon zeros for the Πs
i or for the helicity amplitudes?

Remember

H̄++,++(s, t , u) = Πs
1 + Ĥ++,++(s, t , u)

with

Ĥλ1λ2,λ3λ4(s, t , u) =
15
∑

i=1

(

f i
λ1λ2,λ3λ4

Πt
i + f̃ i

λ1λ2,λ3λ4
Πu

i

)

By sheer kinematics the soft-photon zeros imposed on the Πs
i

imply the correct soft-photon zeros to the full helicity amplitudes
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Our dispersive representation of the HLbL tensor

Π̄µνλσ =
15
∑

i=1

(

Aµνλσ
i,s Πi(s) + Aµνλσ

i,t Πi(t) + Aµνλσ
i,u Πi(u)

)

◮ the Πi(s) are single-variable functions having only a
right-hand cut

◮ for the discontinuity we keep only the lowest partial wave

◮ the dispersive integral that gives the Πi(s) in terms of its
discontinuity has the required soft-photon zeros

◮ soft-photon zeros constrain the subtraction polynomial to
vanish (unless one wanted to subtract more, which is
unnecessary)



Intro A dispersive approach to HLbL Conclusions Main result Derivation of the MF

Contribution of Π̄µνλσ to aµ

aµ = lim
k→0

Tr
{

(

/p + m
)

Λρ
(

p′,p
)(

/p′ + m
)

Γρ
(

p′,p
)

}

Γρ = e6
∫

d4q1

(2π)4

∫

d4q2

(2π)4

1
q2

1q2
2q2

3

γµ
(

/p′+ /q1+m
)

γλ
(

/p− /q2+m)γν

(

(p′+q1)2−m2
)(

(p−q2)2−m2
)kσ∂kρΠµνλσ

A technical caveat: a disadvantage of the basis we chose is
that the helicity amplitudes have kinematical singularities – the
full HLbL tensor, however, doesn’t.
⇒ In order to make sense of the limit kµ → 0 for Π̄µνλσ we must
average over the direction of kµ first
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Contribution of Π̄µνλσ to aµ

aµ =
1

16m
Tr
{

(

/p + m
)[

γρ, γτ
](

/p + m
)

Γ̃ρτ

}

Γ̃ρτ = −e6
∫

d4q1

(2π)4

∫

d4q2

(2π)4

1
q2

1q2
2s

γµ
(

/p + /q1 + m
)

γλ
(

/p − /q2 + m)γν

(

(p + q1)2 − m2
)(

(p − q2)2 − m2
)

×
[
∫

dΩ(p, k)
4π

kτkσ

k2

∂

∂kρ
Π̄µνλσ

]

k=0
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Contribution of Π̄µνλσ to aµ

aµ =
1

16m
Tr
{

(

/p + m
)[

γρ, γτ
](

/p + m
)

Γ̃ρτ

}

Γ̃ρτ = −e6
∫

d4q1

(2π)4

∫

d4q2

(2π)4

1
q2

1q2
2s

γµ
(

/p + /q1 + m
)

γλ
(

/p − /q2 + m)γν

(

(p + q1)2 − m2
)(

(p − q2)2 − m2
)

×
[
∫

dΩ(p, k)
4π

kτkσ

k2

∂

∂kρ
Π̄µνλσ

]

k=0

◮ all Ai
µνρσ tensors scale like O(k0)

◮ any term of O(k2) in the Πi(s) does not contribute to aµ

◮ higher partial waves in Πi(s) are suppressed by angular
momentum factors:

q2
34 =

(

s − q2
3

)2
/(4s) = O

(

k2)

◮ ⇒ keeping only the lowest partial wave in the discontinuity
of the Πi(s) is not an approximation for the calculation of aµ
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Master formula

aππ
µ = e6

∫

d4q1

(2π)4

∫

d4q2

(2π)4

Iππ

q2
1q2

2s
(

(p + q1)2 − m2
)(

(p − q2)2 − m2
) ,

Iππ =
∑

i∈{1,2,3,6,14}

(

Ti,sIi,s + 2Ti,uIi,u
)

+ 2T9,sI9,s + 2T9,uI9,u + 2T12,uI12,u

with Ii,(s,u) dispersive integrals and Ti,(s,u) integration kernels
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Conclusions and outlook

◮ I have presented a dispersive framework for the calculation
of the HLbL contribution to aµ

◮ which takes into account only single- and double-pion
intermediate states
the extension to other single-particle intermediate states
(η, η′, etc.) is trivial

◮ we have derived a master formula which expresses the
contribution of 2π intermediate states to aµ in terms of
(integrals over) γ∗γ∗ → ππ partial waves

◮ a numerical evaluation of the master formula is in progress

◮ we believe that this is a step towards a model-independent
calculation of the HLbL contribution to aµ



Intro A dispersive approach to HLbL Conclusions

Hadronic light-by-light: a roadmap

γπ → ππγπ → ππ

e+e− → π0γe+e− → π0γ ω, φ → ππγ e+e− → ππγ

ππ → ππ

Pion transition form factor

Fπ0γ∗γ∗

(

q2
1
, q2

2

)

Partial waves for

γ∗γ∗
→ ππ

e+e− → e+e−ππ

Pion vector

form factor F π

V

Pion vector

form factor F π

V

e+e− → 3π pion polarizabilitiespion polarizabilities γπ → γπ

ω, φ → 3π ω, φ → π0γ∗ω, φ → π0γ∗

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions
by and a collaboration among theorists and experimentalists
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