Virtual photon-photon scattering and a_{μ} : dispersive approach to hadronic light-by-light

Gilberto Colangelo

$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Workshop Hadronic Probes of Fundamental Symmetries Amherst Center for Fundamental interactions Amherst, March 6-8, 2014

Outline

Introduction: $(g-2)_{\mu}$ and hadronic light-by-light

A dispersive approach to HLbL Introduction and main result Derivation of the Master Formula

Conclusions

arXiv:1402.7081 in collaboration with M. Hoferichter, M. Procura and P. Stoffer

Status of $(g-2)_{\mu}$, experiment vs SM

Status of $(g-2)_{\mu}$, experiment vs SM

Different contributions to the total SM result

	a_{μ} [10 ⁻¹¹]	Δa_{μ} [10 ⁻¹¹]
experiment	116 592 089.	63.
$QED\ \mathcal{O}(lpha)$	116 140 973.21	0.03
QED $\mathcal{O}(\alpha^2)$	413217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
QED $\mathcal{O}(\alpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED total	116 584 718.95	0.04
electroweak, total	153.6	1.0
HVP (LO) [Hagiwara et al. 2011]	6949.	43.
HVP (HO) [Hagiwara et al. 2011]	-98.	1.
HLbL [Jegerlehner-Nyffeler 2009]	116.	40.
theory	116 591 839.	59.

Hadronic light-by-light: irreducible uncertainty?

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) can be systematically improved
 (but going much below 1% is hard – dealing with radiative corrections poses serious problems)
- Hadronic light-by-light (HLbL) is more problematic:
 - "it cannot be expressed in terms of measurable quantities"
 - reliability of uncertainty estimate based more on consensus than on a systematic method
 - only first-principle method in sight: lattice QCD (when will it become competitive?)

Different evaluations of HLbL

Jegerlehner Nyffeler 2009

Table 13

Summary of the most recent results for the various contributions to $a_{\mu}^{ihc,had} \times 10^{11}$. The last column is our estimate based on our new evaluation for the pseudoscalars and some of the other results.

Contribution	BPP	HKS	KN	MV	BP	PdRV	N/JN
π^0, η, η'	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	-	114 ± 13	99 ± 16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	-	-	-19 ± 19	-19 ± 13
π , K loops + other subleading in N _c	-	-	-	0 ± 10	-	-	-
Axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5		15 ± 10	22 ± 5
Scalars	-6.8 ± 2.0	-	-	-	-	-7 ± 7	-7 ± 2
Quark loops	21 ± 3	9.7 ± 11.1	-	-	-	2.3±	21 ± 3
Total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	110 ± 40	105 ± 26	116 ± 39

- large uncertainties (and differences among calculations) in individual contributions
- pseudoscalar pole contributions most important
- second most important: pion loop, *i.e.* two-pion cuts (Ks are subdominant)
- heavier single-particle poles decreasingly important (unless one models them to resum the high-energy tail)

Approaches to Hadronic light-by-light

Model calculations

- ENJL
- NJL and hidden gauge
- nonlocal χQM
- AdS/CFT
- Dyson-Schwinger
- constituent χQM
- resonances in the narrow-width limit

Bijnens, Pallante, Prades (95-96) Hayakawa, Kinoshita, Sanda (95-96) Dorokhov, Broniowski (08) Cappiello, Cata, D'Ambrosio (10) Goecke, Fischer, Williams (11) Greynat, de Rafael (12) Pauk, Vanderhaeghen (14)

Impact of rigorously derived constraints

high-energy constraints taken into account in several	models above
addressed specifically by	Knecht, Nyffeler (01)
high-energy constraints related to the axial anomaly	Melnikov, Vainshtein (04) and Nyffeler (09)
sum rules for $\gamma^*\gamma o X$	Pascalutsa, Pauk, Vanderhaeghen (12)
	see also: workshop MesonNet (13)

low-energy constraints—pion polarizabilities

Engel, Ramsev-Musolf (13)

Outline

Introduction: $(g-2)_{\mu}$ and hadronic light-by-light

A dispersive approach to HLbL Introduction and main result Derivation of the Master Formula

Conclusions

Main result Derivation of the MF

Some notation

HLbL tensor:

$$\Pi^{\mu\nu\lambda\sigma} = i^3 \int d\mathbf{x} \int d\mathbf{y} \int d\mathbf{z} \, e^{-i(\mathbf{x}\cdot q_1 + \mathbf{y}\cdot q_2 + \mathbf{z}\cdot q_3)} \langle 0|T\{j^{\mu}(\mathbf{x})j^{\nu}(\mathbf{y})j^{\lambda}(\mathbf{z})j^{\sigma}(0)\}|0\rangle$$

where $j^{\mu}(\mathbf{x}) = \sum_i Q_i \bar{q}_i(\mathbf{x})\gamma^{\mu}q_i(\mathbf{x}), i = u, d, s$
 $k = q_1 + q_2 + q_3$ $k^2 = 0$

Helicity amplitudes

$$\begin{aligned} \mathcal{H}_{\lambda_1\lambda_2,\lambda_3\lambda_4}(\boldsymbol{s},\boldsymbol{t},\boldsymbol{u}) &\equiv \mathcal{M}(\gamma^*(\boldsymbol{q}_1,\lambda_1)\gamma^*(\boldsymbol{q}_2,\lambda_2) \to \gamma^*(-\boldsymbol{q}_3,\lambda_3)\gamma(\boldsymbol{k},\lambda_4)) \\ &= \epsilon_{\mu}(\lambda_1,\boldsymbol{q}_1)\epsilon_{\nu}(\lambda_2,\boldsymbol{q}_2)\epsilon^*_{\lambda}(\lambda_3,-\boldsymbol{q}_3)\epsilon^*_{\sigma}(\lambda_4,\boldsymbol{k})\Pi^{\mu\nu\lambda\sigma} \end{aligned}$$

with Mandelstam variables

$$s = (q_1+q_2)^2 = (k-q_3)^2$$
 $t = (q_1+q_3)^2 = (k-q_2)^2$ $u = (q_2+q_3)^2 = (k-q_1)^2$
and s-channel scattering angle

$$z_{s} = \cos \theta_{s} = \frac{s}{(s - q_{3}^{2})\sqrt{\lambda_{12}}} \left(t - u + \frac{(q_{1}^{2} - q_{2}^{2})q_{3}^{2}}{s} \right) \qquad \lambda_{12} = \lambda \left(s, q_{1}^{2}, q_{2}^{2} \right)$$

Contribution to a_{μ}

From gauge invariance:

$$\Pi_{\mu\nu\lambda\sigma}(q_1,q_2,k-q_1-q_2) = -k^{\rho}\frac{\partial}{\partial k^{\sigma}}\Pi_{\mu\nu\lambda\rho}(q_1,q_2,k-q_1-q_2).$$

Contribution to a_{μ} :

$$\begin{aligned} \mathbf{a}_{\mu} &= \lim_{k \to 0} \operatorname{Tr} \Big\{ \left(\mathbf{p} + m \right) \Lambda^{\rho} \left(\mathbf{p}', \mathbf{p} \right) \left(\mathbf{p}' + m \right) \Gamma_{\rho} \left(\mathbf{p}', \mathbf{p} \right) \Big\} \\ \Gamma_{\rho} &= \mathbf{e}^{6} \int \frac{\mathrm{d}^{4} q_{1}}{(2\pi)^{4}} \int \frac{\mathrm{d}^{4} q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2} q_{2}^{2} q_{3}^{2}} \frac{\gamma^{\mu} \left(\mathbf{p}' + q_{1} + m \right) \gamma^{\lambda} \left(\mathbf{p} - q_{2} + m \right) \gamma^{\nu}}{\left(\left(\mathbf{p}' + q_{1} \right)^{2} - m^{2} \right) \left(\left(\mathbf{p} - q_{2} \right)^{2} - m^{2} \right)} k^{\sigma} \partial_{k^{\rho}} \Pi_{\mu\nu\lambda\sigma} \end{aligned}$$

with the projector

$$\Lambda^{\rho}(p',p) = \frac{m^2}{k^2(4m^2 - k^2)} \left\{ \gamma^{\rho} + \frac{k^2 + 2m^2}{m(k^2 - 4m^2)} (p + p')^{\rho} \right\}$$

m denotes the mass of the muon, *p* and p' = p - k the momenta of the incoming and outgoing muon, respectively

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{FsQED}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

Pion pole: known

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{FsQED}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

Contribution with two simultaneous cuts

- analytic properties like the box diagram in sQED
- triangle and bulb diagram required by gauge invariance
- multiplication with F_{π}^{V} gives the correct q^{2} dependence it is not an approximation!

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{FsQED}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

The "rest" with 2π intermediate states has cuts only in one channel and is what will be calculated dispersively

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{FsQED}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

Contributions of cuts with anything else other than one and two pions in intermediate states will be neglected

Main result Derivation of the MF

Master formula

$$\begin{aligned} \mathbf{a}_{\mu}^{\pi\pi} &= \mathbf{e}^{6} \int \frac{\mathrm{d}^{4} q_{1}}{(2\pi)^{4}} \int \frac{\mathrm{d}^{4} q_{2}}{(2\pi)^{4}} \frac{I^{\pi\pi}}{q_{1}^{2} q_{2}^{2} s \big((p+q_{1})^{2}-m^{2}\big) \big((p-q_{2})^{2}-m^{2}\big)}, \\ I^{\pi\pi} &= \sum_{i \in \{1,2,3,6,14\}} \left(\mathcal{T}_{i,s} I_{i,s} + 2\mathcal{T}_{i,u} I_{i,u} \right) + 2\mathcal{T}_{9,s} I_{9,s} + 2\mathcal{T}_{9,u} I_{9,u} + 2\mathcal{T}_{12,u} I_{12,u} \right). \end{aligned}$$

with $I_{i,(s,u)}$ dispersive integrals and $T_{i,(s,u)}$ integration kernels

$$\begin{split} & I_{1,s} = \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{\mathrm{d}s'}{s'-s} \left(\frac{1}{s'-s} - \frac{s'-q_1^2-q_2^2}{\lambda(s',q_1^2,q_2^2)} \right) \mathrm{Im}\bar{h}_{++,++}^0(s';q_1^2,q_2^2;s,0), \\ & T_{1,s} = \frac{16}{3} s \bigg\{ m^2 + \frac{8P_{21}\,p\cdot q_1}{\lambda_{12}} \bigg\}, \qquad T_{1,u} = \frac{16}{3} \bigg\{ \frac{4P_{12}^2}{\lambda_{12}} - P_{12} - Z_u \bigg\}, \end{split}$$

Main result Derivation of the MF

Master formula

$$\begin{aligned} \mathbf{a}_{\mu}^{\pi\pi} &= \mathbf{e}^{6} \int \frac{\mathsf{d}^{4} q_{1}}{(2\pi)^{4}} \int \frac{\mathsf{d}^{4} q_{2}}{(2\pi)^{4}} \frac{I^{\pi\pi}}{q_{1}^{2} q_{2}^{2} s \big((p+q_{1})^{2}-m^{2}\big) \big((p-q_{2})^{2}-m^{2}\big)}, \\ I^{\pi\pi} &= \sum_{i \in \{1,2,3,6,14\}} \left(\mathcal{T}_{i,s} \mathcal{I}_{i,s} + 2\mathcal{T}_{i,u} \mathcal{I}_{i,u} \right) + 2\mathcal{T}_{9,s} \mathcal{I}_{9,s} + 2\mathcal{T}_{9,u} \mathcal{I}_{9,u} + 2\mathcal{T}_{12,u} \mathcal{I}_{12,u} \right). \end{aligned}$$

with $I_{i,(s,u)}$ dispersive integrals and $T_{i,(s,u)}$ integration kernels

$$I_{1,s} = \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{\mathrm{d}s'}{s'-s} \left(\frac{1}{s'-s} - \frac{s'-q_{1}^{2}-q_{2}^{2}}{\lambda(s',q_{1}^{2},q_{2}^{2})} \right) \mathrm{Im}\bar{h}_{++,++}^{0}(s';q_{1}^{2},q_{2}^{2};s,0),$$

$$I_{6,s} = \frac{1}{\pi} \int_{4m_{\pi}^2} \frac{\mathrm{d}s^2}{\left(s' - q_1^2 - q_2^2\right) \left(s' - s\right)^2} \operatorname{Im} \bar{h}_{+-,+-}^2 \left(s'; q_1^2, q_2^2; s, 0\right) \left(\frac{75}{8}\right)$$

Helicity amplitudes contribute up to J = 2 (S and D waves)

Master formula

The bars on the helicity amplitudes mean that we must subtract the FsQED contribution.

The unitarity relation for the barred imaginary parts read

$$\begin{split} \mathrm{Im}_{s}\bar{h}_{J,ij}(s) &= \\ &= h_{J,i}^{\mathrm{c}}(s;q_{1}^{2},q_{2}^{2}) \left(h_{J,j}^{\mathrm{c}}(s;q_{3}^{2},0)\right)^{*} - \mathsf{N}_{J,i}(s;q_{1}^{2},q_{2}^{2}) \mathsf{N}_{J,j}(s;q_{3}^{2},0) \\ &+ \frac{1}{2} h_{J,i}^{\mathrm{n}}(s;q_{1}^{2},q_{2}^{2}) \left(h_{J,j}^{\mathrm{n}}(s;q_{3}^{2},0)\right)^{*} \end{split}$$

where:

 $h_{J,i}^{c,n}$ = helicity amplitudes for $\gamma^*\gamma^* \rightarrow \pi^+\pi^-$ and $\pi^0\pi^0$ resp.

 $N_{J,i} =$ partial-wave projection of the $\gamma^* \gamma^* \to \pi^+ \pi^-$ Born term

Master formula

What contributions are included? How?

Dispersion relations for $\gamma^* \gamma^* \to \pi \pi$

Roy-Steiner eqs. = Dispersion relations + partial-wave expansion + crossing symmetry + unitarity + gauge invariance

Dispersion relations for $\gamma^* \gamma^* \to \pi \pi$

Roy-Steiner eqs. = Dispersion relations + partial-wave expansion + crossing symmetry + unitarity + gauge invariance

Dispersion relations for $\gamma^* \gamma^* \to \pi \pi$

Roy-Steiner eqs. = Dispersion relations + partial-wave expansion + crossing symmetry + unitarity + gauge invariance

Analysis of the Roy-Steiner equations for $\gamma^* \gamma^* \rightarrow \pi \pi$ is in progress: any experimental input most welcome

Main result Derivation of the MF

Physics of $\gamma^*\gamma^* \to \pi\pi$

- ► $\pi\pi$ rescattering \Leftrightarrow resonances, e.g. $f_2(1270)$
- S-wave provides model-independent implementation of the σ

Main result Derivation of the MF

Γ2

Physics of $\gamma^*\gamma^* \to \pi\pi$

- ► $\pi\pi$ rescattering \Leftrightarrow resonances, e.g. $f_2(1270)$
- S-wave provides model-independent implementation of the σ
- Analytic continuation with dispersion theory: resonance properties
 - Precise determination of *σ*-pole from *ππ* scattering Caprini, GC, Leutwyler 2006

$$M_{\sigma} = 441^{+16}_{-8} \,\mathrm{MeV}$$
 $\Gamma_{\sigma} = 544^{+18}_{-25} \,\mathrm{MeV}$

► Coupling $\sigma \to \gamma \gamma$ from $\gamma \gamma \to \pi \pi$ Hoferichter, Phillips, Schat 2011

Γ(γγ)			
VALUE (keV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the fo	llowing data for average	es, fits, limits	, etc. • • •
1.7 ±0.4	⁵⁴ HOFERICHTEF		
3.08 ± 0.82	55 MENNESSIER	11 RVUE	Compilation
$2.08 \pm 0.2 + 0.07 - 0.04$	⁵⁶ MOUSSALLAM	111 RVUE	Compilation
2.08		09 RVUE	Compilation
1.2 ±0.4		08 RVUE	
3.9 ±0.6	⁵⁵ MENNESSIER	08 RVUE	$\gamma \gamma \rightarrow \pi^+ \pi^-, \pi^0 \pi^0$
18 +04	59 OLLER	08 RVUE	Compilation

(400-550)-i(200-350) OUR ESTIMATE				
$(457^{+14}_{-13}) - i(279^{+11}_{-7})$	1,3 GARCIA-MAR11	RVUE	Compilation	
$(442^{+5}_{-8}) - i(274^{+6}_{-5})$	⁴ MOUSSALLAM11	RVUE	Compilation	
$(452 \pm 13) - i(259 \pm 16)$	⁵ MENNESSIER 10	RVUE	Compilation	
$(448 \pm 43) - i(266 \pm 43)$	⁶ MENNESSIER 10	RVUE	Compilation	
$(455 \pm 6 \pm 31) = i(278 \pm 6 \pm 34)$	⁷ CAPRINI 08	R\/LIE	Compilation	

Hadronic light-by-light: a roadmap

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions by and a collaboration among theorists and experimentalists

Outline

Introduction: $(g-2)_{\mu}$ and hadronic light-by-light

A dispersive approach to HLbL Introduction and main result Derivation of the Master Formula

Conclusions

 $\Pi^{\mu\nu\rho\sigma}$: gauge + Lorentz inv. + ($k^2 = 0$) \Rightarrow 29 scalar functions But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

$$\bar{\Pi}^{\mu\nu\lambda\sigma} = \sum_{i=1}^{15} \left(A^{\mu\nu\lambda\sigma}_{i,s} \Pi_i(s,t,u) + A^{\mu\nu\lambda\sigma}_{i,t} \Pi_i(t,s,u) + A^{\mu\nu\lambda\sigma}_{i,u} \Pi_i(u,t,s) \right)$$

 $\Pi^{\mu\nu\rho\sigma}$: gauge + Lorentz inv. + ($k^2 = 0$) \Rightarrow 29 scalar functions But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

$$\bar{\Pi}^{\mu\nu\lambda\sigma} = \sum_{i=1}^{15} \left(A^{\mu\nu\lambda\sigma}_{i,s} \Pi_i(s,t,u) + A^{\mu\nu\lambda\sigma}_{i,t} \Pi_i(t,s,u) + A^{\mu\nu\lambda\sigma}_{i,u} \Pi_i(u,t,s) \right)$$

where (just one example):

$$\mathcal{A}_{1,s}^{\mu\nu\lambda\sigma} = \frac{8}{\left(s - q_3^2\right)\lambda_{12}} \left(k^\lambda q_3^\sigma - k \cdot q_3 \, g^{\lambda\sigma}\right) \left(q_{12}^{\mu\nu} + \frac{\lambda_{12}}{4} g^{\mu\nu}\right)$$

 $A_{i,t}^{\mu
u\lambda\sigma}$ from $(q_2,
u) \leftrightarrow (q_3, \lambda) A_{i,u}^{\mu
u\lambda\sigma}$ from $(q_1, \mu) \leftrightarrow (q_3, \lambda)$

 \Rightarrow crossing symmetry is explicit

 $\Pi^{\mu\nu\rho\sigma}$: gauge + Lorentz inv. + ($k^2 = 0$) \Rightarrow 29 scalar functions But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

$$\bar{\Pi}^{\mu\nu\lambda\sigma} = \sum_{i=1}^{15} \left(A^{\mu\nu\lambda\sigma}_{i,s} \Pi_i(s,t,u) + A^{\mu\nu\lambda\sigma}_{i,t} \Pi_i(t,s,u) + A^{\mu\nu\lambda\sigma}_{i,u} \Pi_i(u,t,s) \right)$$

Essential property of this basis: the helicity amplitudes in each channel are "diagonal" :

$$\bar{H}_{++,++}(s,t,u) = \Pi_1(s,t,u) + \hat{H}_{++,++}(s,t,u)$$
$$\bar{H}_{00,++}(s,t,u) = -\frac{q_1^2 q_2^2}{\xi_1 \xi_2} \Pi_2(s,t,u) + \hat{H}_{00,++}(s,t,u)$$

 $\Pi^{\mu\nu\rho\sigma}$: gauge + Lorentz inv. + ($k^2 = 0$) \Rightarrow 29 scalar functions But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

$$\bar{\Pi}^{\mu\nu\lambda\sigma} = \sum_{i=1}^{15} \left(A^{\mu\nu\lambda\sigma}_{i,s} \Pi_i(s,t,u) + A^{\mu\nu\lambda\sigma}_{i,t} \Pi_i(t,s,u) + A^{\mu\nu\lambda\sigma}_{i,u} \Pi_i(u,t,s) \right)$$

Essential property of this basis: the helicity amplitudes in each channel are "diagonal" and unitarity relations "simple":

$$\begin{split} \mathrm{Im}_{s}\bar{H}_{++,++}(s,t,u) &= \mathrm{Im}_{s}\Pi_{1}(s,t,u) \\ \mathrm{Im}_{s}\bar{H}_{00,++}(s,t,u) &= -\frac{q_{1}^{2}q_{2}^{2}}{\xi_{1}\xi_{2}}\,\mathrm{Im}_{s}\Pi_{2}(s,t,u) \end{split}$$

The cut in the *s*-channel of each *s*-channel helicity amplitude is only due to one single $\prod_i(s, t, u)$ function (which only has a cut in *s*)

Unitarity relations for helicity amplitudes

Helicity amplitudes admit a partial wave expansion

$$H_{\lambda_1\lambda_2,\lambda_3\lambda_4}(\mathbf{s},t,u) = \sum_J D^J(z_s) h^J_{\lambda_1\lambda_2,\lambda_3\lambda_4}(s)$$

where $D^{J}(z_{s})$ is the appropriate Wigner function.

Each partial wave satisfies a simple unitarity relation (for s > 0)

$$\operatorname{Im} h_{\lambda_1 \lambda_2, \lambda_3 \lambda_4}^J(\mathbf{s}) = \frac{\sigma_{\mathbf{s}}}{16\pi} \theta \left(\mathbf{s} - 4m_{\pi}^2 \right) h_{J, \lambda_1 \lambda_2} \left(\mathbf{s}; q_1^2, q_2^2 \right) h_{J, \lambda_3 \lambda_4}^* \left(\mathbf{s}; q_3^2, 0 \right)$$

where $h_{J,\lambda_1\lambda_2}(s; q_1^2, q_2^2)$ are partial-wave helicity amplitudes of the subprocess $\gamma^* \gamma^* \to \pi \pi$.

Dispersion relations for the $\Pi_i(s, t, u)$

- The $\Pi_i(s, t, u)$ only have a cut in *s* and for $s \ge 4m_\pi^2$
- Their imaginary part coincides with that of the related helicity amplitude
- ► The latter can be expanded in partial waves and for each of them unitarity fixes the imaginary part in terms of partial-wave helicity amplitudes of the subprocess $\gamma^* \gamma^* \rightarrow \pi \pi$
- a dispersive integral over the right-hand cut of each partial wave would in principle allow me to reconstruct the whole Π_i(s, t, u), up to a polynomial

Simplified dispersion relations for the $\Pi_i(s, t, u)$

We will carry out the program outlined in the previous slide with one simplification (but see later!):

for each $\Pi_i(s, t, u)$ we only keep the discontinuity due to the lowest partial wave (*i.e.* S or D)

all $\Pi_i(s, t, u)$ become single-variable functions $\Rightarrow \Pi_i(s)$

This is analogous to what is done for $\pi\pi$ scattering, $\eta \rightarrow 3\pi$ and several other processes when the amplitude is expressed as a sum of single-variable functions having only a right-hand cut, and goes under the name of "reconstruction theorem"

Stern, Sazdjian, Fuchs (93)

Fixing subtraction constants: soft-photon zeros

Gauge-invariance implies the presence of so-called soft-photon zeros Low (58), Moussallam (13)

$$H_{\lambda_1\lambda_2,\lambda_3\lambda_4} \stackrel{k \to 0}{\to} \propto (s - q_3^2)$$

and analogously

$$H_{\lambda_1\lambda_2,\lambda_3\lambda_4} \stackrel{q_{1,2} \to 0}{\to} \propto (s - q_{2,1}^2)$$

In a dispersive representation such a property must emerge from the kernels of the dispersive integrals

and constrains the subtraction polynomial

Soft-photon zeros in $\gamma^* \gamma^* \to \pi \pi$

These soft-photon zeros can be studied also in subprocess $\gamma^*\gamma^* \to \pi\pi$ where a dispersive representation for the helicity amplitudes reads

$$h_{J,i}(\boldsymbol{s}) = \frac{1}{\pi} \sum_{J' \text{ even }} \sum_{j=1}^5 \int_{4m_\pi^2}^\infty \mathsf{d}\boldsymbol{s}' \mathcal{K}_{JJ'}^{ij}(\boldsymbol{s},\boldsymbol{s}') \operatorname{Im} h_{J',j}(\boldsymbol{s}') + \cdots, \quad i,j \in \{\lambda_1 \lambda_2\}$$

the ellipsis stands for integrals of crossed-channel partial waves

The diagonal kernel functions

$$\begin{split} \mathcal{K}_{00}^{++,++}(t,t') &= \mathcal{K}_{00}^{00,00}(t,t') = \frac{1}{t'-t} - \frac{t'-q_1^2-q_2^2}{\lambda(t',q_1^2,q_2^2)} \\ \mathcal{K}_{22}^{++,++}(t,t') &= \mathcal{K}_{22}^{00,00}(t,t') = \frac{p_t^2 q_t^2}{p_t'^2 q_t'^2} \left(\frac{1}{t'-t} - \frac{t'-q_1^2-q_2^2}{\lambda(t',q_1^2,q_2^2)}\right) \end{split}$$

display the desired soft-photon behaviour

Soft-photon zeros in $\gamma^* \gamma^* \to \pi \pi$

Soft-photon zeros of the $\gamma^* \gamma^* \rightarrow \pi \pi$ sub-amplitudes manifest themselves as a modification of the Cauchy kernel by a factor:

$$K_{12}(s,s') = rac{f_{12}(s,s')}{s'-s}, \qquad K_{34}(s,s') = rac{f_{34}(s,s')}{s'-s},$$

for the initial- and final-state photon pair, respectively.

A modified Cauchy kernel that gives the HLbL tensor the proper soft-photon zeros is obtained by factorization

$$K_{12,34}(s,s') = rac{f_{12}(s,s')f_{34}(s,s')}{s'-s}$$

Dispersion relations for the $\Pi_i(s)$

Imposing the same form of the soft-photon zeros as in the subamplitudes $\gamma^*\gamma^* \to \pi\pi$ we obtain the following dispersion relations:

$$\Pi_{1}^{s} = \bar{h}_{++,++}^{0}(s) = \frac{s - q_{3}^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{\mathrm{d}s'}{s' - q_{3}^{2}} \left(\frac{1}{s' - s} - \frac{s' - q_{1}^{2} - q_{2}^{2}}{\lambda'_{12}}\right) \mathrm{Im}\bar{h}_{++,++}^{0}(s')$$
$$y \Pi_{2}^{s} = \bar{h}_{00,++}^{0}(s) = \frac{s - q_{3}^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{\mathrm{d}s'}{s' - q_{3}^{2}} \left(\frac{1}{s' - s} - \frac{s' - q_{1}^{2} - q_{2}^{2}}{\lambda'_{12}}\right) \mathrm{Im}\bar{h}_{00,++}^{0}(s')$$

with $y = -\frac{q_1^2 q_2^2}{\xi_1 \xi_2}$ [and similarly for the others]

Dispersion relations for the $\Pi_i(s)$

Soft-photon zeros for the Π_i^s or for the helicity amplitudes?

Remember

$$\bar{H}_{++,++}(s,t,u) = \Pi_1^s + \hat{H}_{++,++}(s,t,u)$$

with

$$\hat{H}_{\lambda_1\lambda_2,\lambda_3\lambda_4}(\mathbf{s},t,u) = \sum_{i=1}^{15} \left(f^i_{\lambda_1\lambda_2,\lambda_3\lambda_4} \Pi^t_i + \tilde{f}^i_{\lambda_1\lambda_2,\lambda_3\lambda_4} \Pi^u_i \right)$$

Dispersion relations for the $\Pi_i(s)$

Soft-photon zeros for the Π_i^s or for the helicity amplitudes?

Remember

$$\bar{H}_{++,++}(s,t,u) = \Pi_1^s + \hat{H}_{++,++}(s,t,u)$$

with

$$\hat{H}_{\lambda_1\lambda_2,\lambda_3\lambda_4}(\mathbf{s},t,u) = \sum_{i=1}^{15} \left(f^i_{\lambda_1\lambda_2,\lambda_3\lambda_4} \Pi^t_i + \tilde{f}^i_{\lambda_1\lambda_2,\lambda_3\lambda_4} \Pi^u_i \right)$$

By sheer kinematics the soft-photon zeros imposed on the Π_i^s imply the correct soft-photon zeros to the full helicity amplitudes

Our dispersive representation of the HLbL tensor

$$\bar{\Pi}^{\mu\nu\lambda\sigma} = \sum_{i=1}^{15} \left(A^{\mu\nu\lambda\sigma}_{i,s} \Pi_i(s) + A^{\mu\nu\lambda\sigma}_{i,t} \Pi_i(t) + A^{\mu\nu\lambda\sigma}_{i,u} \Pi_i(u) \right)$$

- ► the Π_i(s) are single-variable functions having only a right-hand cut
- for the discontinuity we keep only the lowest partial wave
- ► the dispersive integral that gives the Π_i(s) in terms of its discontinuity has the required soft-photon zeros
- soft-photon zeros constrain the subtraction polynomial to vanish (unless one wanted to subtract more, which is unnecessary)

Contribution of $\overline{\Pi}_{\mu\nu\lambda\sigma}$ to a_{μ}

$$\begin{aligned} \mathbf{a}_{\mu} &= \lim_{k \to 0} \operatorname{Tr} \Big\{ \left(\mathbf{p} + m \right) \Lambda^{\rho} \left(\mathbf{p}', \mathbf{p} \right) \left(\mathbf{p}' + m \right) \Gamma_{\rho} \left(\mathbf{p}', \mathbf{p} \right) \Big\} \\ \Gamma_{\rho} &= \mathbf{e}^{6} \int \frac{\mathrm{d}^{4} q_{1}}{(2\pi)^{4}} \int \frac{\mathrm{d}^{4} q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2} q_{2}^{2} q_{3}^{2}} \frac{\gamma^{\mu} \left(\mathbf{p}' + \mathbf{q}_{1} + m \right) \gamma^{\lambda} \left(\mathbf{p} - \mathbf{q}_{2} + m \right) \gamma^{\nu}}{\left(\left(\mathbf{p}' + \mathbf{q}_{1} \right)^{2} - m^{2} \right) \left(\left(\mathbf{p} - \mathbf{q}_{2} \right)^{2} - m^{2} \right)} \mathbf{k}^{\sigma} \partial_{\mathbf{k}^{\rho}} \Pi_{\mu\nu\lambda\sigma} \end{aligned}$$

A technical caveat: a disadvantage of the basis we chose is that the helicity amplitudes have kinematical singularities – the full HLbL tensor, however, doesn't.

 \Rightarrow In order to make sense of the limit $k_{\mu} \rightarrow 0$ for $\bar{\Pi}_{\mu\nu\lambda\sigma}$ we must average over the direction of k_{μ} first

Contribution of $\bar{\Pi}_{\mu\nu\lambda\sigma}$ to a_{μ}

$$\begin{aligned} \mathbf{a}_{\mu} &= \frac{1}{16m} \operatorname{Tr} \Big\{ \left(\mathbf{p} + m \right) \left[\gamma^{\rho}, \gamma^{\tau} \right] \left(\mathbf{p} + m \right) \tilde{\Gamma}_{\rho\tau} \Big\} \\ \tilde{\Gamma}_{\rho\tau} &= -\mathbf{e}^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \int \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2}q_{2}^{2}s} \frac{\gamma^{\mu} \left(\mathbf{p} + q_{1} + m \right) \gamma^{\lambda} \left(\mathbf{p} - q_{2} + m \right) \gamma^{\nu}}{\left(\left(\mathbf{p} + q_{1} \right)^{2} - m^{2} \right) \left(\left(\mathbf{p} - q_{2} \right)^{2} - m^{2} \right)} \\ & \times \left[\int \frac{d\Omega(\mathbf{p}, k)}{4\pi} \frac{k_{\tau} k^{\sigma}}{k^{2}} \frac{\partial}{\partial k^{\rho}} \bar{\Pi}_{\mu\nu\lambda\sigma} \right]_{k=0} \end{aligned}$$

Contribution of $\overline{\Pi}_{\mu\nu\lambda\sigma}$ to a_{μ}

$$\begin{aligned} \mathbf{a}_{\mu} &= \frac{1}{16m} \operatorname{Tr} \Big\{ \left(\mathbf{\not} + m \right) \left[\gamma^{\rho}, \gamma^{\tau} \right] \left(\mathbf{\not} + m \right) \tilde{\Gamma}_{\rho\tau} \Big\} \\ \tilde{\Gamma}_{\rho\tau} &= -\mathbf{e}^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \int \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2}q_{2}^{2}s} \frac{\gamma^{\mu} \left(\mathbf{\not} + q_{1} + m \right) \gamma^{\lambda} \left(\mathbf{\not} - q_{2} + m \right) \gamma^{\nu}}{\left(\left(\mathbf{p} + q_{1} \right)^{2} - m^{2} \right) \left(\left(\mathbf{p} - q_{2} \right)^{2} - m^{2} \right)} \\ & \times \left[\int \frac{d\Omega(\mathbf{p}, k)}{4\pi} \frac{k_{\tau}k^{\sigma}}{k^{2}} \frac{\partial}{\partial k^{\rho}} \bar{\Pi}_{\mu\nu\lambda\sigma} \right]_{k=0} \end{aligned}$$

- all $A^i_{\mu\nu\rho\sigma}$ tensors scale like $\mathcal{O}(k^0)$
- any term of $\mathcal{O}(k^2)$ in the $\Pi_i(s)$ does not contribute to a_μ
- higher partial waves in Π_i(s) are suppressed by angular momentum factors:

$$q_{34}^2 = \left(s - q_3^2\right)^2 / (4s) = \mathcal{O}(k^2)$$

► ⇒ keeping only the lowest partial wave in the discontinuity of the $\Pi_i(s)$ is not an approximation for the calculation of a_μ

Master formula

$$\begin{aligned} \mathbf{a}_{\mu}^{\pi\pi} &= \mathbf{e}^{6} \int \frac{\mathrm{d}^{4} q_{1}}{(2\pi)^{4}} \int \frac{\mathrm{d}^{4} q_{2}}{(2\pi)^{4}} \frac{l^{\pi\pi}}{q_{1}^{2} q_{2}^{2} s \big((p+q_{1})^{2}-m^{2}\big) \big((p-q_{2})^{2}-m^{2}\big)}, \\ l^{\pi\pi} &= \sum_{i \in \{1,2,3,6,14\}} \left(\mathcal{T}_{i,s} I_{i,s} + 2\mathcal{T}_{i,u} I_{i,u} \right) + 2\mathcal{T}_{9,s} I_{9,s} + 2\mathcal{T}_{9,u} I_{9,u} + 2\mathcal{T}_{12,u} I_{12,u} I_{12,u} \right). \end{aligned}$$

with $I_{i,(s,u)}$ dispersive integrals and $T_{i,(s,u)}$ integration kernels

Conclusions and outlook

- I have presented a dispersive framework for the calculation of the HLbL contribution to a_µ
- which takes into account only single- and double-pion intermediate states the extension to other single-particle intermediate states (η, η', etc.) is trivial
- ▶ we have derived a master formula which expresses the contribution of 2π intermediate states to a_{μ} in terms of (integrals over) $\gamma^*\gamma^* \rightarrow \pi\pi$ partial waves
- a numerical evaluation of the master formula is in progress
- ▶ we believe that this is a step towards a model-independent calculation of the HLbL contribution to a_µ

Hadronic light-by-light: a roadmap

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions by and a collaboration among theorists and experimentalists

SM contributions to $(g-2)_{\mu}$: QED

Schwinger 1948

+ 0.765857426 (16) (α/π)²

Sommerfield; Petermann; Suura&Wichmann '57; Elend '66; MP '04

+ 24.05050988 (28) (α/π)³

Remiddi, Laporta, Barbieri ... ; Czarnecki, Skrzypek; MP '04; Friot, Greynat & de Rafael '05, Mohr, Taylor & Newell 2012

+ 130.8796 (63) (α/π)⁴

Kinoshita & Lindquist '81, ..., Kinoshita & Nio '04, '05; Aoyama, Hayakawa, Kinoshita & Nio, 2007, Kinoshita et al. 2012, Steinhauser et al. 2013 (analytic, in progress).

+ 753.29 (1.04) (α/π)⁵ COMPLETED!

Kinoshita et al. '90, Yelkhovsky, Milstein, Starshenko, Laporta, Karshenboim,..., Kataev, Kinoshita & Nio '06, Kinoshita et al. 2012

Adding up, we get:

SM contributions to $(g-2)_{\mu}$: electroweak

One-loop plus higher-order terms:

SM contributions to $(g-2)_{\mu}$: HVP

SM contributions to $(g - 2)_{\mu}$: Higher-order HVP

 $O(\alpha^3)$ contributions of diagrams containing hadronic vacuum polarization insertions:

Krause '96, Alemany et al. '98, Hagiwara et al. 2011

Only tiny shifts if T data are used instead of the e⁺e⁻ ones Davier & Marciano '04.

SM contributions to $(g - 2)_{\mu}$: hadronic light-by-light

Unlike the HLO term, for the hadronic I-b-I term we must rely on theoretical approaches.

This term had a troubled life! Latest values:

Results based also on Hayakawa, Kinoshita '98 & '02; Bijnens, Pallante, Prades '96 & '02

"Bound" a_µ^{HHO}(IbI) < ~ 160 x 10⁻¹¹ Erler, Sanchez '06, Pivovarov '02; also Boughezal, Melnikov '11
 Lattice? Very hard... in progress. M. Golterman @ PhiPsi 2013; T. Blum @ Lattice 2012
 Pion exch. in holographic QCD agrees. D.K.Hong, D.Kim '09; Cappiello, Catà, D'Ambrosio '11
 "By far not complete" calculation: 188 x 10⁻¹¹ Fischer et al, PRD87(2013)034013
 Had IbI is likely to become the ultimate limitation of the SM prediction.

Slide by Massimo Passera

Hadrons

SM contributions to $(g-2)_{\mu}$:

a_µ^{EXP} = 116592089 (63) x 10⁻¹¹

E821 – Final Report: PRD73 (2006) 072 with latest value of $\lambda = \mu_{\mu}/\mu_{p}$ from CODATA'06

$a_{\mu}^{\rm SM} imes 10^{11}$	$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}}$	σ
116591793(66)	296 (91) × 10^{-11}	3.2 [1]
116591813(57)	276 (85) × 10^{-11}	3.2[2]
116591839(58)	$250~(86) \times 10^{-11}$	2.9 [3]

with the "conservative" $a_{\mu}^{\ \rm HHO}(\rm IbI)$ = 116 (39) x 10^{-11} and the LO hadronic from:

- [1] Jegerlehner & Nyffeler, Phys. Rept. 477 (2009) 1
- [2] Davier et al, EPJ C71 (2011) 1515 (includes BaBar & KLOE10 2π)
- [3] Hagiwara et al, JPG38 (2011) 085003 (includes BaBar & KLOE10 2π)