Virtual photon-photon scattering and a_μ: dispersive approach to hadronic light-by-light

Gilberto Colangelo

Workshop Hadronic Probes of Fundamental Symmetries
Amherst Center for Fundamental Interactions
Amherst, March 6-8, 2014
Outline

Introduction: $(g - 2)_{\mu}$ and hadronic light-by-light

A dispersive approach to HLbL
 Introduction and main result
 Derivation of the Master Formula

Conclusions

arXiv:1402.7081
in collaboration with M. Hoferichter, M. Procura and P. Stoffer
Status of \((g-2)_{\mu}\), experiment vs SM

\[\begin{align*}
\text{HMNT (06)} \\
\text{JN (09)} \\
\text{Davier et al, } \tau \ (10) \\
\text{Davier et al, } e^+e^- \ (10) \\
\text{JS (11)} \\
\text{HLMNT (10)} \\
\text{HLMNT (11)} \\
\text{experiment} \\
\text{BNL} \\
\text{BNL (new from shift in } \lambda) \\
\end{align*}\]

\[a_{\mu} \times 10^{10} = 11659000\]
Status of \((g - 2)_\mu\), experiment vs SM

Different contributions to the total SM result

<table>
<thead>
<tr>
<th></th>
<th>(a_\mu) ([10^{-11}])</th>
<th>(\Delta a_\mu) ([10^{-11}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>experiment</td>
<td>116 592 089.</td>
<td>63.</td>
</tr>
<tr>
<td>QED (O(\alpha))</td>
<td>116 140 973.21</td>
<td>0.03</td>
</tr>
<tr>
<td>QED (O(\alpha^2))</td>
<td>413 217.63</td>
<td>0.01</td>
</tr>
<tr>
<td>QED (O(\alpha^3))</td>
<td>30 141.90</td>
<td>0.00</td>
</tr>
<tr>
<td>QED (O(\alpha^4))</td>
<td>381.01</td>
<td>0.02</td>
</tr>
<tr>
<td>QED (O(\alpha^5))</td>
<td>5.09</td>
<td>0.01</td>
</tr>
<tr>
<td>QED total</td>
<td>116 584 718.95</td>
<td>0.04</td>
</tr>
<tr>
<td>electroweak, total</td>
<td>153.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

HVP (LO)	6 949.	43.
HVP (HO)	-98.	1.
HLbL	116.	40.

theory 116 591 839. 59.
Hadronic light-by-light: irreducible uncertainty?

- Hadronic contributions responsible for most of the theory uncertainty

- Hadronic vacuum polarization (HVP) can be systematically improved
 (but going much below 1% is hard – dealing with radiative corrections poses serious problems)

- Hadronic light-by-light (HLbL) is more problematic:
 - “it cannot be expressed in terms of measurable quantities”
 - reliability of uncertainty estimate based more on consensus than on a systematic method
 - only first-principle method in sight: lattice QCD (when will it become competitive?)
Different evaluations of HLbL

Table 13
Summary of the most recent results for the various contributions to $a^\mu_{\text{HLbL\,had}} \times 10^{11}$. The last column is our estimate based on our new evaluation for the pseudoscalars and some of the other results.

<table>
<thead>
<tr>
<th>Contribution</th>
<th>BPP</th>
<th>HKS</th>
<th>KN</th>
<th>MV</th>
<th>BP</th>
<th>PdRV</th>
<th>NJ/NJN</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^0, η, η'</td>
<td>85 ± 13</td>
<td>82.7 ± 6.4</td>
<td>83 ± 12</td>
<td>114 ± 10</td>
<td>-</td>
<td>114 ± 13</td>
<td>99 ± 16</td>
</tr>
<tr>
<td>π, K loops</td>
<td>-19 ± 13</td>
<td>-4.5 ± 8.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-19 ± 19</td>
<td>-19 ± 13</td>
</tr>
<tr>
<td>π, K loops + other subleading in N_c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0 ± 10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Axial vectors</td>
<td>2.5 ± 1.0</td>
<td>1.7 ± 1.7</td>
<td>-</td>
<td>22 ± 5</td>
<td>-</td>
<td>15 ± 10</td>
<td>22 ± 5</td>
</tr>
<tr>
<td>Scalars</td>
<td>-6.8 ± 2.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-7 ± 7</td>
<td>-7 ± 2</td>
</tr>
<tr>
<td>Quark loops</td>
<td>21 ± 3</td>
<td>9.7 ± 11.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.3 ±</td>
<td>21 ± 3</td>
</tr>
<tr>
<td>Total</td>
<td>83 ± 32</td>
<td>89.6 ± 15.4</td>
<td>80 ± 40</td>
<td>136 ± 25</td>
<td>110 ± 40</td>
<td>105 ± 26</td>
<td>116 ± 39</td>
</tr>
</tbody>
</table>

- large uncertainties (and differences among calculations) in individual contributions
- pseudoscalar pole contributions most important
- second most important: pion loop, *i.e.* two-pion cuts (Ks are subdominant)
- heavier single-particle poles decreasingly important (unless one models them to resum the high-energy tail)
Approaches to Hadronic light-by-light

- **Model calculations**
 - ENJL
 - NJL and hidden gauge
 - nonlocal χQM
 - AdS/CFT
 - Dyson-Schwinger
 - constituent χQM
 - resonances in the narrow-width limit

- **Impact of rigorously derived constraints**
 - high-energy constraints taken into account in several models above
 - addressed specifically by
 - high-energy constraints related to the axial anomaly
 - sum rules for $\gamma^* \gamma \rightarrow X$
 - low-energy constraints–pion polarizabilities

- **Lattice**
Outline

Introduction: \((g - 2)_\mu\) and hadronic light-by-light

A dispersive approach to HLbL
 Introduction and main result
 Derivation of the Master Formula

Conclusions
Some notation

HLbL tensor:

\[\Pi_{\mu\nu\lambda\sigma} = i^3 \int dx \int dy \int dz \ e^{-i(x \cdot q_1 + y \cdot q_2 + z \cdot q_3)} \langle 0 | T \{ j^\mu(x) j^\nu(y) j^\lambda(z) j^\sigma(0) \} | 0 \rangle \]

where

\[j^\mu(x) = \sum_i Q_i \psi_i(x) \gamma^\mu q_i(x), \ i = u, d, s \]

\[k = q_1 + q_2 + q_3 \quad k^2 = 0 \]

Helicity amplitudes

\[H_{\lambda_1\lambda_2,\lambda_3\lambda_4}(s, t, u) \equiv \mathcal{M}(\gamma^*(q_1, \lambda_1) \gamma^*(q_2, \lambda_2) \to \gamma^*(-q_3, \lambda_3) \gamma(k, \lambda_4)) \]

\[= \epsilon_\mu(\lambda_1, q_1) \epsilon_\nu(\lambda_2, q_2) \epsilon^*_\lambda(\lambda_3, -q_3) \epsilon^*_\sigma(\lambda_4, k) \Pi_{\mu\nu\lambda\sigma} \]

with Mandelstam variables

\[s = (q_1 + q_2)^2 = (k - q_3)^2 \quad t = (q_1 + q_3)^2 = (k - q_2)^2 \quad u = (q_2 + q_3)^2 = (k - q_1)^2 \]

and s-channel scattering angle

\[z_s = \cos \theta_s = \frac{s}{(s - q_3^2) \sqrt{\lambda_{12}}} \left(t - u + \frac{(q_1^2 - q_2^2) q_3^2}{s} \right) \quad \lambda_{12} = \lambda(s, q_1^2, q_2^2) \]
Contribution to a_μ

From gauge invariance:

$$\Pi_{\mu\nu\lambda\sigma}(q_1, q_2, k - q_1 - q_2) = -k^\rho \frac{\partial}{\partial k^\sigma} \Pi_{\mu\nu\lambda\rho}(q_1, q_2, k - q_1 - q_2).$$

Contribution to a_μ:

$$a_\mu = \lim_{k \to 0} \text{Tr} \left\{ (p + m) \Lambda^\rho (p', p) (p' + m) \Gamma_\rho (p', p) \right\}$$

$$\Gamma_\rho = e^6 \int \frac{d^4 q_1}{(2\pi)^4} \int \frac{d^4 q_2}{(2\pi)^4} \frac{1}{q_1^2 q_2^2 q_3^2} \frac{\gamma^\mu (p' + q_1 + m) \gamma^\lambda (p - q_2 + m) \gamma^\nu}{((p' + q_1)^2 - m^2)((p - q_2)^2 - m^2)} k^\sigma \partial k^\rho \Pi_{\mu\nu\lambda\sigma}$$

with the projector

$$\Lambda^\rho (p', p) = \frac{m^2}{k^2 (4m^2 - k^2)} \left\{ \gamma^\rho + \frac{k^2 + 2m^2}{m(k^2 - 4m^2)} (p + p')^\rho \right\}$$

m denotes the mass of the muon, p and $p' = p - k$ the momenta of the incoming and outgoing muon, respectively
Setting up the dispersive calculation

We split the HLbL tensor as follows:

\[\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\text{FsQED}} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots \]

Pion pole: known
Setting up the dispersive calculation

We split the HLbL tensor as follows:

\[\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\text{0-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\text{FsQED}} + \tilde{\Pi}_{\mu\nu\lambda\sigma} + \cdots \]

\[F_{\pi}^V(q_1^2) F_{\pi}^V(q_2^2) F_{\pi}^V(q_3^2) \times \left[\begin{array}{c}
\text{Contributions with two simultaneous cuts} \\
- \text{analytic properties like the box diagram in sQED} \\
- \text{triangle and bulb diagram required by gauge invariance} \\
- \text{multiplication with } F_{\pi}^V \text{ gives the correct } q^2 \text{ dependence} \\
\text{it is not an approximation!}
\end{array} \right] \]
Setting up the dispersive calculation

We split the HLbL tensor as follows:

$$\Pi_{\mu \nu \lambda \sigma} = \Pi_{\mu \nu \lambda \sigma}^{\pi^0\text{-pole}} + \Pi_{\mu \nu \lambda \sigma}^{\text{FsQED}} + \bar{\Pi}_{\mu \nu \lambda \sigma} + \cdots$$

The "rest" with 2π intermediate states has cuts only in one channel and is what will be calculated dispersively.
Setting up the dispersive calculation

We split the HLbL tensor as follows:

\[\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi_0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{FsQED}}_{\mu\nu\lambda\sigma} + \tilde{\Pi}_{\mu\nu\lambda\sigma} + \cdots \]

Contributions of cuts with anything else other than one and two pions in intermediate states will be neglected.
Master formula

\[
\begin{align*}
 a_{\mu}^{\pi\pi} &= e^6 \int \frac{d^4 q_1}{(2\pi)^4} \int \frac{d^4 q_2}{(2\pi)^4} \frac{l_{\pi\pi}}{q_1^2 q_2^2 s((p + q_1)^2 - m^2)((p - q_2)^2 - m^2)}, \\
l_{\pi\pi} &= \sum_{i \in \{1,2,3,6,14\}} \left(T_{i,s} I_{i,s} + 2 T_{i,u} I_{i,u} \right) + 2 T_{9,s} I_{9,s} + 2 T_{9,u} I_{9,u} + 2 T_{12,u} I_{12,u}
\end{align*}
\]

with \(I_{i,(s,u)} \) dispersive integrals and \(T_{i,(s,u)} \) integration kernels

\[
\begin{align*}
 I_{1,s} &= \frac{1}{\pi} \int \frac{ds'}{4m^2} \frac{d s'}{s' - s} \left(\frac{1}{s' - s} - \frac{s' - q_1^2 - q_2^2}{\lambda(s', q_1^2, q_2^2)} \right) \text{Im} \bar{h}_0^{++} (++(s'; q_1^2, q_2^2; s, 0)), \\
 T_{1,s} &= \frac{16}{3} s \left\{ m^2 + \frac{8P_{21} p \cdot q_1}{\lambda_{12}} \right\}, \quad T_{1,u} = \frac{16}{3} \left\{ \frac{4P_{12}^2}{\lambda_{12}} - P_{12} - Z_u \right\}
\end{align*}
\]
Master formula

\[
a_{\mu}^{\pi \pi} = e^6 \int \frac{d^4 q_1}{(2\pi)^4} \int \frac{d^4 q_2}{(2\pi)^4} \frac{l_{\pi \pi}}{q_1^2 q_2^2 s((p + q_1)^2 - m^2)((p - q_2)^2 - m^2)},
\]

\[
l_{\pi \pi} = \sum_{i \in \{1,2,3,6,14\}} (T_i,s l_{i,s} + 2T_i,u l_{i,u}) + 2T_9,s l_{9,s} + 2T_9,u l_{9,u} + 2T_{12,u} l_{12,u}
\]

with \(l_{i,(s,u)} \) dispersive integrals and \(T_{i,(s,u)} \) integration kernels

\[
l_{1,s} = \frac{1}{\pi} \int_{\frac{4m^2}{s'}}^{\infty} \frac{ds'}{s' - s} \left(\frac{1}{s'} - \frac{s' - q_1^2 - q_2^2}{\lambda(s', q_1^2, q_2^2)} \right) \text{Im} \bar{h}_{0}^{0,++}(s'; q_1^2, q_2^2; s, 0),
\]

\[
l_{6,s} = \frac{1}{\pi} \int_{\frac{4m^2}{s'}}^{\infty} \frac{ds'}{(s' - q_1^2 - q_2^2)(s' - s)^2} \text{Im} \bar{h}_{2}^{2,+-}(s'; q_1^2, q_2^2; s, 0) \left(\frac{75}{8} \right)
\]

Helicity amplitudes contribute up to \(J = 2 \) (\(S \) and \(D \) waves)
The bars on the helicity amplitudes mean that we must subtract the FsQED contribution.

The unitarity relation for the barred imaginary parts read

\[
\text{Im}_s \bar{h}_{J,ij}(s) = \\
= h_{j,i}^c(s; q_1^2, q_2^2) \left(h_{j,j}^c(s; q_3^2, 0) \right)^* - N_{J,i}(s; q_1^2, q_2^2) N_{J,j}(s; q_3^2, 0) \\
+ \frac{1}{2} h_{j,i}^n(s; q_1^2, q_2^2) \left(h_{j,j}^n(s; q_3^2, 0) \right)^*
\]

where:

\(h_{J,i}^{c,n} \) = helicity amplitudes for \(\gamma^*\gamma^* \to \pi^+\pi^- \) and \(\pi^0\pi^0 \) resp.

\(N_{J,i} \) = partial-wave projection of the \(\gamma^*\gamma^* \to \pi^+\pi^- \) Born term
Master formula

What contributions are included? How?
Dispersions relations for $\gamma^* \gamma^* \rightarrow \pi\pi$

Roy-Steiner eqs. $=$ dispersion relations $+$ partial-wave expansion
$+$ crossing symmetry $+$ unitarity $+$ gauge invariance

- **On-shell** $\gamma \gamma \rightarrow \pi\pi$: prominent D-wave reson. $f_2(1270)$ Moussallam (10) Hoferichter, Phillips, Schat (11)

- $\gamma^* \gamma \rightarrow \pi\pi$ Moussallam (13)

- $\gamma^* \gamma^* \rightarrow \pi\pi$, new feature: anomalous thresholds Hoferichter, GC, Procura, Stoffer (13)
Dispersion relations for $\gamma^* \gamma^* \rightarrow \pi \pi$

Roy-Steiner eqs. = Dispersion relations + partial-wave expansion
+ crossing symmetry + unitarity + gauge invariance

- **On-shell** $\gamma \gamma \rightarrow \pi \pi$: prominent D-wave reson. $f_2(1270)$ Moussallam (10) Hoferichter, Phillips, Schat (11)
- $\gamma^* \gamma \rightarrow \pi \pi$ Moussallam (13)
- $\gamma^* \gamma^* \rightarrow \pi \pi$, new feature: **anomalous** thresholds Hoferichter, GC, Procura, Stoffer (13)

Constraints
- **Low energy**: pion polar., ChPT
- **Primakoff**: $\gamma \pi \rightarrow \gamma \pi$ at COMPASS, JLAB
- **Scattering**: $e^+ e^- \rightarrow e^+ e^- \pi \pi$, $e^+ e^- \rightarrow \pi \pi \gamma$
- **Decays**: $\omega, \phi \rightarrow \pi \pi \gamma$
Dispersion relations for $\gamma^*\gamma^* \rightarrow \pi\pi$

Roy-Steiner eqs. = Dispersion relations + partial-wave expansion + crossing symmetry + unitarity + gauge invariance

- **On-shell** $\gamma\gamma \rightarrow \pi\pi$: prominent D-wave reson. $f_2(1270)$ Moussallam (10) Hoferichter, Phillips, Schat (11)
- $\gamma^*\gamma \rightarrow \pi\pi$ Moussallam (13)
- $\gamma^*\gamma^* \rightarrow \pi\pi$, new feature: anomalous thresholds Hoferichter, GC, Procura, Stoffer (13)

Analysis of the Roy-Steiner equations for $\gamma^*\gamma^* \rightarrow \pi\pi$ is in progress: any experimental input most welcome
Physics of $\gamma^*\gamma^* \rightarrow \pi\pi$

- $\pi\pi$ rescattering \Leftrightarrow resonances, e.g. $f_2(1270)$
- S-wave provides model-independent implementation of the σ
Physics of $\gamma^* \gamma^* \rightarrow \pi \pi$

- $\pi \pi$ rescattering \Leftrightarrow resonances, e.g. $f_2(1270)$
- S-wave provides model-independent implementation of the σ
- Analytic continuation with dispersion theory: resonance properties
 - Precise determination of σ-pole from $\pi \pi$ scattering Caprini, GC, Leutwyler 2006

\[
M_\sigma = 441^{+16}_{-8} \text{ MeV} \quad \Gamma_\sigma = 544^{+18}_{-25} \text{ MeV}
\]

- Coupling $\sigma \rightarrow \gamma \gamma$ from $\gamma \gamma \rightarrow \pi \pi$
 Hoferichter, Phillips, Schat 2011

\[
\Gamma(\gamma \gamma) = \begin{array}{c}
1.7 \pm 0.4 \\
3.06 \pm 0.82 \\
2.08 \pm 0.2 \pm 0.07 \pm 0.04 \\
2.08 \\
1.2 \pm 0.4 \\
3.9 \pm 0.6 \\
1.8 \pm 0.4
\end{array}
\]

\[
\Gamma_2
\]

\[
\begin{array}{l}
\text{VALUE (keV)} \\
\text{DOCUMENT ID} \quad \text{TECN} \quad \text{COMMENT}
\end{array}
\]

\[
\begin{array}{l}
1.2 \pm 0.4 \quad \text{MOUSSALLAM11} \quad \text{RVUE} \quad \text{Compilation}
\end{array}
\]

\[
\begin{array}{l}
(445 \pm 25) - (278 \pm 18) \\
(457 \pm 14) - (279 \pm 11) \\
(44\pm 3) - (274 \pm 6) \\
(452 \pm 13) - (259 \pm 16) \\
(448 \pm 43) - (266 \pm 43) \\
(455 \pm 6 \pm 31) - (278 \pm 6 \pm 34) \\
1.2 \text{ GARCIA-MAR.11} \quad \text{RVUE} \quad \text{Compilation}
\end{array}
\]

Note that $\Gamma \approx 2 \text{ Im}(\sqrt{s})$
A reliable evaluation of the HLbL requires many different contributions by and a collaboration among theorists and experimentalists.
Outline

Introduction: \((g - 2)_\mu\) and hadronic light-by-light

A dispersive approach to HLbL

Introduction and main result

Derivation of the Master Formula

Conclusions
A convenient basis

$\Pi^{\mu\nu\rho\sigma}$: gauge + Lorentz inv. + $(k^2 = 0) \Rightarrow 29$ scalar functions

But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

$$\bar{\Pi}^{\mu\nu\lambda\sigma} = \sum_{i=1}^{15} \left(A_{i,s}^{\mu\nu\lambda\sigma} \Pi_i(s, t, u) + A_{i,t}^{\mu\nu\lambda\sigma} \Pi_i(t, s, u) + A_{i,u}^{\mu\nu\lambda\sigma} \Pi_i(u, t, s) \right)$$
A convenient basis

\(\Pi^{\mu\nu\rho\sigma} : \text{gauge} + \text{Lorentz inv.} + (k^2 = 0) \Rightarrow 29 \text{ scalar functions} \)

But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

\[
\bar{\Pi}^{\mu\nu\lambda\sigma} = \sum_{i=1}^{15} \left(A^{\mu\nu\lambda\sigma}_{i,s} \Pi_i(s, t, u) + A^{\mu\nu\lambda\sigma}_{i,t} \Pi_i(t, s, u) + A^{\mu\nu\lambda\sigma}_{i,u} \Pi_i(u, t, s) \right)
\]

where (just one example):

\[
A^{\mu\nu\lambda\sigma}_{1,s} = \frac{8}{(s - q_3^2)\lambda_{12}} \left(k^\lambda q_3^\sigma - k \cdot q_3 g^{\lambda\sigma} \right) \left(q_{12}^{\mu\nu} + \frac{\lambda_{12}}{4} g^{\mu\nu} \right)
\]

\(A^{\mu\nu\lambda\sigma}_{i,t} \) from \((q_2, \nu) \leftrightarrow (q_3, \lambda)\)

\(A^{\mu\nu\lambda\sigma}_{i,u} \) from \((q_1, \mu) \leftrightarrow (q_3, \lambda)\)

\(\Rightarrow \text{crossing symmetry is explicit} \)
A convenient basis

$\Pi^{\mu\nu\rho\sigma}$: gauge + Lorentz inv. + $(k^2 = 0) \Rightarrow 29$ scalar functions

But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

$$\bar{\Pi}^{\mu\nu\lambda\sigma} = \sum_{i=1}^{15} \left(A^{\mu\nu\lambda\sigma}_{i,s} \Pi_i(s, t, u) + A^{\mu\nu\lambda\sigma}_{i,t} \Pi_i(t, s, u) + A^{\mu\nu\lambda\sigma}_{i,u} \Pi_i(u, t, s) \right)$$

Essential property of this basis: the helicity amplitudes in each channel are “diagonal”:

$$\bar{H}_{++,++}(s, t, u) = \Pi_1(s, t, u) + \hat{H}_{++,++}(s, t, u)$$

$$\bar{H}_{00,++}(s, t, u) = -\frac{q_1^2 q_2^2}{\xi_1 \xi_2} \Pi_2(s, t, u) + \hat{H}_{00,++}(s, t, u)$$
A convenient basis

$\Pi^{\mu\nu\rho\sigma}$: gauge + Lorentz inv. + $(k^2 = 0) \Rightarrow 29$ scalar functions

But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

$$\bar{\Pi}^{\mu\nu\lambda\sigma} = \sum_{i=1}^{15} \left(A^{\mu\nu\lambda\sigma}_{i,s} \Pi_i(s, t, u) + A^{\mu\nu\lambda\sigma}_{i,t} \Pi_i(t, s, u) + A^{\mu\nu\lambda\sigma}_{i,u} \Pi_i(u, t, s) \right)$$

Essential property of this basis: the helicity amplitudes in each channel are “diagonal” and unitarity relations “simple”:

$$\text{Im}_s \bar{H}_{++,++}(s, t, u) = \text{Im}_s \Pi_1(s, t, u)$$

$$\text{Im}_s \bar{H}_{00,++}(s, t, u) = -\frac{q_1^2 q_2^2}{\xi_1 \xi_2} \text{Im}_s \Pi_2(s, t, u)$$

The cut in the s-channel of each s-channel helicity amplitude is only due to **one single** $\Pi_i(s, t, u)$ function (which only has a cut in s)
Unitarity relations for helicity amplitudes

Helicity amplitudes admit a partial wave expansion

\[H_{\lambda_1 \lambda_2, \lambda_3 \lambda_4}(s, t, u) = \sum_J D_J^J(z_s) h_J^{\lambda_1 \lambda_2, \lambda_3 \lambda_4}(s) \]

where \(D_J^J(z_s) \) is the appropriate Wigner function.

Each partial wave satisfies a simple unitarity relation (for \(s > 0 \))

\[\text{Im} h_J^{\lambda_1 \lambda_2, \lambda_3 \lambda_4}(s) = \frac{\sigma s}{16 \pi} \theta(s - 4m_{\pi}^2) h_{J, \lambda_1 \lambda_2}(s; q_1^2, q_2^2) h_{J, \lambda_3 \lambda_4}^*(s; q_3^2, 0) \]

where \(h_{J, \lambda_1 \lambda_2}(s; q_1^2, q_2^2) \) are partial-wave helicity amplitudes of the subprocess \(\gamma^* \gamma^* \rightarrow \pi \pi \).
Dispersion relations for the $\Pi_i(s, t, u)$

- The $\Pi_i(s, t, u)$ only have a cut in s and for $s \geq 4m^2_\pi$

- Their imaginary part coincides with that of the related helicity amplitude

- The latter can be expanded in partial waves and for each of them unitarity fixes the imaginary part in terms of partial-wave helicity amplitudes of the subprocess $\gamma^*\gamma^* \rightarrow \pi\pi$

- A dispersive integral over the right-hand cut of each partial wave would in principle allow me to reconstruct the whole $\Pi_i(s, t, u)$, up to a polynomial
Simplified dispersion relations for the $\Pi_i(s, t, u)$

We will carry out the program outlined in the previous slide with one simplification (but see later!):

for each $\Pi_i(s, t, u)$ we only keep the discontinuity due to the lowest partial wave (i.e. S or D)

all $\Pi_i(s, t, u)$ become single-variable functions $\Rightarrow \Pi_i(s)$

This is analogous to what is done for $\pi\pi$ scattering, $\eta \to 3\pi$ and several other processes when the amplitude is expressed as a sum of single-variable functions having only a right-hand cut, and goes under the name of “reconstruction theorem”

Stern, Sazdjian, Fuchs (93)
Fixing subtraction constants: soft-photon zeros

Gauge-invariance implies the presence of so-called soft-photon zeros

\[H_{\lambda_1\lambda_2,\lambda_3\lambda_4} \xrightarrow{k \to 0} \propto (s - q_3^2) \]

and analogously

\[H_{\lambda_1\lambda_2,\lambda_3\lambda_4} \xrightarrow{q_{1,2} \to 0} \propto (s - q_{2,1}^2) \]

In a dispersive representation such a property must emerge from the kernels of the dispersive integrals

and constrains the subtraction polynomial
Soft-photon zeros in $\gamma^*\gamma^* \rightarrow \pi\pi$

These soft-photon zeros can be studied also in subprocess $\gamma^*\gamma^* \rightarrow \pi\pi$ where a dispersive representation for the helicity amplitudes reads

$$h_{J, i}(s) = \frac{1}{\pi} \sum_{J' \text{ even}} \sum_{j=1}^{5} \int_{4m^2}^{\infty} ds' K_{jj'}^{ij}(s, s') \text{Im} h_{J', j}(s') + \cdots, \quad i, j \in \{\lambda_1 \lambda_2\}$$

the ellipsis stands for integrals of crossed-channel partial waves

The diagonal kernel functions

$$K_{00}^{++},[++](t, t') = K_{00}^{00,00}(t, t') = \frac{1}{t' - t} - \frac{t' - q_1^2 - q_2^2}{\lambda(t', q_1^2, q_2^2)}$$
$$K_{22}^{++},[++](t, t') = K_{22}^{00,00}(t, t') = \frac{p_t^2 q_t^2}{p_t'^2 q_t'^2} \left(\frac{1}{t' - t} - \frac{t' - q_1^2 - q_2^2}{\lambda(t', q_1^2, q_2^2)} \right)$$

display the desired soft-photon behaviour
Soft-photon zeros in $\gamma^*\gamma^* \rightarrow \pi\pi$

Soft-photon zeros of the $\gamma^*\gamma^* \rightarrow \pi\pi$ sub-amplitudes manifest themselves as a modification of the Cauchy kernel by a factor:

$$K_{12}(s, s') = \frac{f_{12}(s, s')}{s' - s}, \quad K_{34}(s, s') = \frac{f_{34}(s, s')}{s' - s},$$

for the initial- and final-state photon pair, respectively.

A modified Cauchy kernel that gives the HLbL tensor the proper soft-photon zeros is obtained by factorization

$$K_{12,34}(s, s') = \frac{f_{12}(s, s')f_{34}(s, s')}{s' - s}.$$
Dispersion relations for the $\Pi_i(s)$

Imposing the same form of the soft-photon zeros as in the subamplitudes $\gamma^*\gamma^* \to \pi\pi$ we obtain the following dispersion relations:

$$\Pi_1^s = \tilde{h}^0_{++,++}(s) = \frac{s - q_3^2}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s' - q_3^2} \left(\frac{1}{s' - s} - \frac{s' - q_1^2 - q_2^2}{\lambda'_{12}} \right) \text{Im} \tilde{h}^0_{++,++}(s')$$

$$y\Pi_2^s = \tilde{h}^0_{00,++}(s) = \frac{s - q_3^2}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s' - q_3^2} \left(\frac{1}{s' - s} - \frac{s' - q_1^2 - q_2^2}{\lambda'_{12}} \right) \text{Im} \tilde{h}^0_{00,++}(s')$$

with $y = -\frac{q_1^2 q_2^2}{\xi_1 \xi_2}$ [and similarly for the others]
Dispersion relations for the $\Pi_i(s)$

Soft-photon zeros for the Π_i^s or for the helicity amplitudes?

Remember

$$\bar{H}_{++,++}(s, t, u) = \Pi_i^s + \hat{H}_{++,++}(s, t, u)$$

with

$$\hat{H}_{\lambda_1 \lambda_2, \lambda_3 \lambda_4}(s, t, u) = \sum_{i=1}^{15} \left(f_{\lambda_1 \lambda_2, \lambda_3 \lambda_4}^i \Pi_i^t + \tilde{f}_{\lambda_1 \lambda_2, \lambda_3 \lambda_4}^i \Pi_i^u \right)$$
Dispersion relations for the $\Pi_i(s)$

Soft-photon zeros for the Π_i^s or for the helicity amplitudes?

Remember

$$\tilde{H}_{++,++}(s, t, u) = \Pi_i^s + \hat{H}_{++,++}(s, t, u)$$

with

$$\hat{H}_{\lambda_1 \lambda_2, \lambda_3 \lambda_4}(s, t, u) = \sum_{i=1}^{15} \left(f^i_{\lambda_1 \lambda_2, \lambda_3 \lambda_4} \Pi_i^t + \tilde{f}^i_{\lambda_1 \lambda_2, \lambda_3 \lambda_4} \Pi_i^u \right)$$

By sheer kinematics the soft-photon zeros imposed on the Π_i^s imply the correct soft-photon zeros to the full helicity amplitudes
Our dispersive representation of the HLbL tensor

\[\bar{\Pi}^{\mu\nu\lambda\sigma} = \sum_{i=1}^{15} \left(A^{\mu\nu\lambda\sigma}_{i,s} \Pi_i(s) + A^{\mu\nu\lambda\sigma}_{i,t} \Pi_i(t) + A^{\mu\nu\lambda\sigma}_{i,u} \Pi_i(u) \right) \]

- the \(\Pi_i(s) \) are single-variable functions having only a right-hand cut
- for the discontinuity we keep only the lowest partial wave
- the dispersive integral that gives the \(\Pi_i(s) \) in terms of its discontinuity has the required soft-photon zeros
- soft-photon zeros constrain the subtraction polynomial to vanish (unless one wanted to subtract more, which is unnecessary)
Contribution of $\bar{\Pi}_{\mu \nu \lambda \sigma}$ to a_μ

$$a_\mu = \lim_{k \to 0} \text{Tr} \left\{ (p + m) \gamma^\rho (p', p) (p' + m) \Gamma_\rho (p', p) \right\}$$

$$\Gamma_\rho = e^6 \int \frac{d^4 q_1}{(2\pi)^4} \int \frac{d^4 q_2}{(2\pi)^4} \frac{1}{q_1^2 q_2^2 q_3^2} \frac{\gamma^\mu (p' + q_1 + m) \gamma^\lambda (p - q_2 + m) \gamma^\nu k^\sigma \partial_\kappa \Pi_{\mu \nu \lambda \sigma}}{((p' + q_1)^2 - m^2)((p - q_2)^2 - m^2)}$$

A technical caveat: a disadvantage of the basis we chose is that the helicity amplitudes have kinematical singularities – the full HLbL tensor, however, doesn’t.

⇒ In order to make sense of the limit $k_\mu \to 0$ for $\bar{\Pi}_{\mu \nu \lambda \sigma}$ we must average over the direction of k_μ first
Contribution of $\tilde{\Pi}_{\mu\nu\lambda\sigma}$ to a_μ

$$a_\mu = \frac{1}{16m} \text{Tr}\left\{ (\not{p} + m) [\gamma^\rho, \gamma^\tau] (\not{p} + m) \tilde{\Gamma}_{\rho\tau} \right\}$$

$$\tilde{\Gamma}_{\rho\tau} = -e^6 \int \frac{d^4 q_1}{(2\pi)^4} \int \frac{d^4 q_2}{(2\pi)^4} \frac{1}{q_1^2 q_2^2 s} \frac{\gamma^\mu (\not{p} + q_1 + m) \gamma^\lambda (\not{p} - q_2 + m) \gamma^\nu}{((p + q_1)^2 - m^2)((p - q_2)^2 - m^2)}$$

$$\times \left[\int \frac{d\Omega(p, k)}{4\pi} \frac{k_\tau}{k^2} \frac{\partial}{\partial k^\rho} \tilde{\Pi}_{\mu\nu\lambda\sigma} \right]_{k=0}$$
Contribution of $\widetilde{\Pi}_{\mu\nu\lambda\sigma}$ to a_μ

$$a_\mu = \frac{1}{16m} \text{Tr}\left\{ (\not{p} + m) [\gamma^\rho, \gamma^\tau] (\not{p} + m) \tilde{\Gamma}_\rho \tau \right\}$$

$$\tilde{\Gamma}_\rho \tau = -e^6 \int \frac{d^4 q_1}{(2\pi)^4} \int \frac{d^4 q_2}{(2\pi)^4} \frac{1}{q_1^2 q_2^2 s} \frac{\gamma^\mu (\not{p} + q_1 + m) \gamma^\lambda (\not{p} - q_2 + m) \gamma^\nu}{((p + q_1)^2 - m^2)((p - q_2)^2 - m^2)}$$

$$\times \left[\int \frac{d\Omega(p, k)}{4\pi} k_\tau k^\sigma \frac{\partial}{\partial k^\rho} \tilde{\Pi}_{\mu\nu\lambda\sigma} \right]_{k=0}$$

- all $A^i_{\mu\nu\rho\sigma}$ tensors scale like $O(k^0)$
- any term of $O(k^2)$ in the $\Pi_i(s)$ does not contribute to a_μ
- higher partial waves in $\Pi_i(s)$ are suppressed by angular momentum factors:

$$q_{34}^2 = (s - q_3^2)^2/(4s) = O(k^2)$$

- \Rightarrow keeping only the lowest partial wave in the discontinuity of the $\Pi_i(s)$ is not an approximation for the calculation of a_μ
Master formula

\[
a^\pi\pi_\mu = e^6 \int \frac{d^4 q_1}{(2\pi)^4} \int \frac{d^4 q_2}{(2\pi)^4} \frac{I^{\pi\pi}}{q_1^2 q_2^2 s((p + q_1)^2 - m^2)((p - q_2)^2 - m^2)},
\]

\[
I^{\pi\pi} = \sum_{i \in \{1, 2, 3, 6, 14\}} \left(T_{i,s} I_{i,s} + 2 T_{i,u} I_{i,u} \right) + 2 T_{9,s} I_{9,s} + 2 T_{9,u} I_{9,u} + 2 T_{12,u} I_{12,u}
\]

with \(I_{i,(s,u)}\) dispersive integrals and \(T_{i,(s,u)}\) integration kernels
Conclusions and outlook

- I have presented a dispersive framework for the calculation of the HLbL contribution to a_μ

- which takes into account only single- and double-pion intermediate states

The extension to other single-particle intermediate states (η, η', etc.) is trivial

- we have derived a master formula which expresses the contribution of 2π intermediate states to a_μ in terms of (integrals over) $\gamma^*\gamma^* \rightarrow \pi\pi$ partial waves

- a numerical evaluation of the master formula is in progress

- we believe that this is a step towards a model-independent calculation of the HLbL contribution to a_μ
A reliable evaluation of the HLbL requires many different contributions by and a collaboration among theorists and experimentalists.
SM contributions to \((g - 2)_\mu\): QED

\[
\begin{align*}
\alpha^\text{QED}_\mu &= (1/2)(\alpha/\pi) \\
&\quad + 0.765857426 \times 16 \times (\alpha/\pi)^2 \\
&\quad + 24.05050988 \times 28 \times (\alpha/\pi)^3 \\
&\quad + 130.8796 \times 63 \times (\alpha/\pi)^4 \\
&\quad + 753.29 \times 1.04 \times (\alpha/\pi)^5 \quad \text{COMPLETED!}
\end{align*}
\]

Adding up, we get:

\[
\alpha^\text{QED}_\mu = 116584718.951 \times 10^{-11}
\]

from coeffs, mainly from 4-loop unc

with \(\alpha = 1/137.035999049(90) \) [0.66 ppb]

Slide by Massimo Passera
SM contributions to $(g - 2)_\mu$: electroweak

One-loop term:

$$a_{\mu}^{\text{EW}}(1\text{-loop}) = \frac{5G_F m_{\mu}^2}{24\sqrt{2}\pi^2} \left[1 + \frac{1}{5} \left(1 - 4 \sin^2 \theta_W\right)^2 + O\left(\frac{m_{\mu}^2}{M_{Z,W,H}^2}\right)\right] \approx 195 \times 10^{-11}$$

1972: Jackiw, Weinberg; Bars, Yoshimura; Altarelli, Cabibbo, Maiani; Bardeen, Gastmans, Lautrup; Fujikawa, Lee, Sanda; Studenikin et al. '80s

One-loop plus higher-order terms:

$$a_{\mu}^{\text{EW}} = 153.6 (1) \times 10^{-11}$$

with $M_{\text{Higgs}} = 125.6 (1.5) \text{ GeV}$

Hadronic loop uncertainties and 3-loop nonleading logs.

Kukhto et al. '92; Czarnecki, Krause, Marciano '95; Knecht, Peris, Perrotet, de Rafael '02; Czarnecki, Marciano and Vainshtein '02; Degrassi and Giudice '99; Heinemeyer, Stockinger, Weiglein '04; Gribouk and Czarnecki '05; Vainshtein '03; Gnendiger, Stockinger, Stockinger-Kim 2013.

Slide by Massimo Passera
SM contributions to \((g - 2)_\mu\): HVP

\[K(s) = \int_0^1 dx \frac{x^2(1-x)}{x^2 + (1-x)s/m_\mu^2} \]

\[a_\mu^{\text{HLO}} = \frac{1}{4\pi^3} \int_{4m_\pi^2}^\infty ds \ K(s) \sigma^{(0)}(s) = \frac{\alpha^2}{3\pi^2} \int_{4m_\pi^2}^\infty \frac{ds}{s} K(s) R(s) \]

\[a_\mu^{\text{HLO}} = 6903 (53)_{\text{tot}} \times 10^{-11} \]

\[= 6923 (42)_{\text{tot}} \times 10^{-11} \]

\[= 6949 (37)_{\text{exp}} (21)_{\text{rad}} \times 10^{-11} \]

F. Jegerlehner and A. Nyffeler, Phys. Rept. 477 (2009) 1

F. Jegerlehner, A. Nyffeler, Phys. Rept. 477 (2009) 1

Davier et al, EPJ C71 (2011) 1515 (incl. BaBar & KLOE10 2n)

Hagiwara et al, JPG 38 (2011) 085003

Slide by Massimo Passera
SM contributions to \((g - 2)_{\mu}\): Higher-order HVP

- **HHO: Vacuum Polarization**

O(\(\alpha^3\)) contributions of diagrams containing hadronic vacuum polarization insertions:

\[
a_{\mu}^{HHO}(vp) = -98 (1) \times 10^{-11}
\]

Krause '96, Alemany et al. '98, Hagiwara et al. 2011

Only tiny shifts if \(\tau\) data are used instead of the \(e^+e^-\) ones

Davier & Marciano '04.
SM contributions to \((g - 2)_{\mu}:\) hadronic light-by-light

- **HHO: Light-by-light contribution**

 Unlike the HLO term, for the hadronic l-b-l term we must rely on theoretical approaches.

 This term had a troubled life! Latest values:

 \[
 \begin{align*}
 a_{\mu}^{\text{HHO}(\text{lbl})} &= +80 \pm 40 \times 10^{-11} \quad \text{Knecht & Nyffeler '02} \\
 a_{\mu}^{\text{HHO}(\text{lbl})} &= +136 \pm 25 \times 10^{-11} \quad \text{Melnikov & Vainshtein '03} \\
 a_{\mu}^{\text{HHO}(\text{lbl})} &= +105 \pm 26 \times 10^{-11} \quad \text{Prades, de Rafael, Vainshtein '09} \\
 a_{\mu}^{\text{HHO}(\text{lbl})} &= +116 \pm 39 \times 10^{-11} \quad \text{Jegerlehner & Nyffeler '09}
 \end{align*}
 \]

 Results based also on Hayakawa, Kinoshita '98 & '02; Bijnens, Pallante, Prades '96 & '02

 ‘Bound’ \(a_{\mu}^{\text{HHO}(\text{lbl})} < \sim 160 \times 10^{-11}\) Erler, Sanchez '06, Pivovarov '02; also Boughezal, Melnikov '11

 Lattice? Very hard... in progress. M. Golterman @ PhilPsi 2013; T. Blum @ Lattice 2012

 Pion exch. in holographic QCD agrees. D.K. Hong, D.Kim '09; Cappellio, Catà, D'Ambrosio '11

 “By far not complete” calculation: \(188 \times 10^{-11}\) Fischer et al, PRD87(2013)034013

 Had lbl is likely to become the ultimate limitation of the SM prediction.
SM contributions to μ: $a_{\mu,\text{EXP}} = 116592089\, (63) \times 10^{-11}$

<table>
<thead>
<tr>
<th>$a_{\mu,\text{SM}} \times 10^{11}$</th>
<th>$\Delta a_{\mu} = a_{\mu,\text{EXP}} - a_{\mu,\text{SM}}$</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>116 591 793 (66)</td>
<td>296 (91) $\times 10^{-11}$</td>
<td>3.2 [1]</td>
</tr>
<tr>
<td>116 591 813 (57)</td>
<td>276 (85) $\times 10^{-11}$</td>
<td>3.2 [2]</td>
</tr>
<tr>
<td>116 591 839 (58)</td>
<td>250 (86) $\times 10^{-11}$</td>
<td>2.9 [3]</td>
</tr>
</tbody>
</table>

with the “conservative” $a_{\mu,\text{HHO(lbl)}} = 116\, (39) \times 10^{-11}$ and the LO hadronic from: