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Status of (g — 2),,, experiment vs SM
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Status of (g — 2),,, experiment vs SM

Different contributions to the total SM result

a,[1071] Aa,[1071]

experiment 116592 089. 63.

QED O(«) 116140973.21 0.03

QED 0(a?) 413217.63 0.01

QED 0O(a?®) 30141.90 0.00

QED O(a#) 381.01 0.02

QED O(a®) 5.09 0.01

QED total 116584 718.95 0.04

electroweak, total 153.6 1.0

HVP (LO) [Hagiwara et al. 2011] 6 949 43
HVP (HO) [Hagiwara et al. 2011] —98 1
HLbL [Jegerlehner-Nyffeler 2009] 116 40

theory 116591 839. 59.
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Hadronic light-by-light: irreducible uncertainty?

» Hadronic contributions responsible for most of the theory
uncertainty

» Hadronic vacuum polarization (HVP) can be systematically
improved
(but going much below 1% is hard — dealing with radiative
corrections poses serious problems)

» Hadronic light-by-light (HLbL) is more problematic:

» “it cannot be expressed in terms of measurable quantities”
» reliability of uncertainty estimate based more on consensus
than on a systematic method
» only first-principle method in sight: lattice QCD
(when will it become competitive?)



Different evaluations of HLbL

Jegerlehner Nyffeler 2009

Table 13
Summary of the most recent results for the various contributions to ujf’“‘“ % 10", The last column is our estimate based on our new evaluation for the
pseudoscalars and some of the other results.

Contribution BPP HKS KN MV BP PdRV N/IN

70 n.0 85113 827+64 83+L12 114 £ 10 = 114+ 13 99+ 16
. K loops —19+13 —45+8.1 E = ~ —19+19 —19+13
m, K loops + other subleading in N, = - - 0=+10 - - -

Axial vectors 25+1.0 1717 - 22+£5 - 15+ 10 22%5
Scalars —6.8+2.0 - - - - 747 742
Quark loops 21+3 97 +111 = = - 23+ 2143
Total 83132 896154 80+ 40 136 £25 11040 105 = 26 116+ 39

» large uncertainties (and differences among calculations) in
individual contributions

» pseudoscalar pole contributions most important

» second most important: pion loop, i.e. two-pion cuts (Ks are
subdominant)

» heavier single-particle poles decreasingly important
(unless one models them to resum the high-energy tail)
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Approaches to Hadronic light-by-light

» Model calculations

> ENJL Bijnens, Pallante, Prades (95-96)
> NJL and hidden gauge Hayakawa, Kinoshita, Sanda (95-96)
> nonlocal xQM Dorokhov, Broniowski (08)
> AdS/CFT Cappiello, Cata, D’Ambrosio (10)
> Dyson-Schwinger Goecke, Fischer, Williams (11)
> constituent xQM Greynat, de Rafael (12)
> resonances in the narrow-width limit Pauk, Vanderhaeghen (14)

» Impact of rigorously derived constraints

> high-energy constraints taken into account in several models above

addressed specifically by Knecht, Nyffeler (01)
> high-energy constraints related to the axial anomaly Melnikov, Vainshtein (04) and Nyffeler (09)
> sumrules for v* vy — X Pascalutsa, Pauk, Vanderhaeghen (12)

see also: workshop MesonNet (13)

> low-energy constraints—pion polarizabilities Engel, Ramsey-Musolf (13)

» Lattice Blum et al. (05,12)
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Some notation
HLbL tensor:

Mo — /dx/dy/dze 0caty gtz as) (O[T {j#(x )" (y )i*(2)i°(0) }|0)

where j#(x) = > Qifi (x)7"di(x), i = u,d,s
kK=di+02+0s k*=0
Helicity amplitudes
Haazxaxa (S, 1, U) = M(77(d1, A1)y (d2, A2) — (=03, A3)v(K, Aa))
= eu(A1, G1)en (A2, G2)€x (As, =03 )en (A, k)T
with Mandelstam variables
s = (qu+02)* = (k—03)* t = (da+0s)*=(k—02)* U = (q2+03)* = (k—a1)?
and s-channel scattering angle

S (012 - qz)qz
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Contribution to a,,

From gauge invariance:
0
Mo (A1, G2, K — G1 — G2) = —K” 5 ZMunp (A1, G2, K — A1 — G2).
Contribution to a,,:

a, = lim Tr{ (p+ m)A (9. p) (¢ +m)T, (p',P) |

_ efdlar fd'q; 1 (P rarm) (P-germ)y”
o= Gy | s (e ) (] e

with the projector

m? k? 4+ 2m?
Pln — P NP

m denotes the mass of the muon, p and p’ = p — k the
momenta of the incoming and outgoing muon, respectively
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Setting up the dispersive calculation

We split the HLbL tensor as follows:

I-Iﬂ-o—pole

I_INV)‘U = 2N + nzls/ggD + I=Il“’/\0' + -

Pion pole: known
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Setting up the dispersive calculation

We split the HLbL tensor as follows:

_ p°-pole FSQED | f
I_INV)\U - rl,uu)\a + n,uu)\a + rIlW/\U + -

R

FY(a2)FY (a3)FY (a3) %

-

Contribution with two simultaneous cuts

— analytic properties like the box diagram in SQED

— triangle and bulb diagram required by gauge invariance

— multiplication with FY gives the correct g2 dependence
it is not an approximation!
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Setting up the dispersive calculation

We split the HLbL tensor as follows:

0 —
— ™ -pole FSQED
I_INV)\U - rl,uu)\a + rl,ul/)\a + I_IMV)\U + -
FREN
’ | \
\ | ’
~ 7

~_ -

The “rest” with 27 intermediate states has cuts only in one
channel and is what will be calculated dispersively
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Setting up the dispersive calculation

We split the HLbL tensor as follows:

_ p°-pole FSQED | f
I_INV)\U - rl,uu)\a + rl,ul/)\a + rIlW/\U +

Contributions of cuts with anything else other than one and two
pions in intermediate states will be neglected
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Master formula

QT — ee/ d*as / d*a; I
" (2m)* ) (2m)* q2a3s((p +01)2 — m2)((p — g2)2 — m2)’

= 3 (Tishs +2Tiaha) + 2Tosles + 2Taulou + 2Ti2ulizy
i€{1,2,3,6,14}

with l; (s ) dispersive integrals and T; s ) integration kernels

17 ds / 1 §—qr-q2\ .

| = — _ 1 2 I hO 12 2. 0

wr [ 5os(es  Tmara ) M e 0)
4m2

16 8P . 16 [ 4P2
Tl,s—s{m2+2lpql}a Tl,u—{ 12 Plzzu}7

3 )\12 3 >\12
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Master formula

arT — e6 d4q1 d4q2 [ ’
. (2m)* ) (2m)* qZazs((p + a1)? — m2) ((p — d2)? — m?)
™" = Z (Ti,sli,s + 2Ti,u'i,u) + 2T9,s|9,s + 2T9,u|9,u + 2T12,u|12,u
i€{1,2,3,6,14}

with l; (s ) dispersive integrals and T; s ) integration kernels

1 7 ds 1 g2 g2\ -
'1’52*/ ( e qz)'mh3+7++(5’:QiQS:S,0),

T s'—s\s'—s \(s,0%2,03)
4m2
1 7 ds’ F [
los = = / Imhi_ | (s’;af,05;s,0) ()
7T4mgr (s"—af —a3)(s' 5)2 o °

Helicity amplitudes contribute up to J = 2 (S and D waves)
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Master formula

The bars on the helicity amplitudes mean that we must subtract
the FSQED contribution.

The unitarity relation for the barred imaginary parts read
ImSﬁJ_,ij (S) =
=h§;(s;af, a3) (hﬁ,,- (s; O|§70)) —Nyi(s;af,a5)Ny;(s; 93,0)

1 *
- h, (s:2.) (1 (5:2.0))

where:
h$i = helicity amplitudes for y*y* — 7 x~ and 7%7° resp.

N;; = partial-wave projection of the v*~v* — =7~ Born term
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Master formula

What contributions are included? How?
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Dispersion relations for v*v* — 7w

Roy-Steiner egs. = Dispersion relations + partial-wave expansion
+ crossing symmetry + unitarity + gauge invariance

» On-shell vy — 7x: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

b

> 7*’7 — T Moussallam (13)\:\ s
> v*y* — mm, new feature: anomalous @
threShO|dS Hoferichter, GC, Procura, Stoffer (13)

+ Crystal Ball
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Dispersion relations for v*v* — 7w

Roy-Steiner egs. = Dispersion relations + partial-wave expansion
+ crossing symmetry + unitarity + gauge invariance

» On-shell vy — 7m: prominent D-wave
reson. f,(1270) woussaliam (10) Hoferichter, Philips, Schat (11) ™
> vy =T Moussallam (13)55\ .
» v*v* = 7w, new feature: anomalous -
thresholds Hoferichter, GC, Procura, Stoffer (13) ~ * -
e
» Constraints /

» Low energy: pion polar., ChPT )
» Primakoff: yr — 7 at L
COMPASS, JLAB LA
» Scattering: ete™ — ete ",
ete™ — wmwy z
» Decays: w, ¢ — wmy
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Dispersion relations for v*v* — 7w

Roy-Steiner egs. = Dispersion relations + partial-wave expansion
+ crossing symmetry + unitarity + gauge invariance

» On-shell vy — 7x: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

+ Crystal Ball

> ’7*’7 — T Moussallam (13)\:T s
> v*y* — mm, new feature: anomalous @
threShO|dS Hoferichter, GC, Procura, Stoffer (13)

; = atl

Analysis of the Roy-Steiner equations for y*v* — #r is in
progress: any experimental input most welcome
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Physics of v*v* — 7

> T rescattering <~ resonances, e.g.
f,(1270)

» S-wave provides model-independent
implementation of the o

a, fU7 ag
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Physics of v*v* — 7
» 7w rescattering < resonances, e.g.
f2(1270)
» S-wave provides model-independent o, fo. ag
implementation of the o

» Analytic continuation with dispersion
theory: resonance properties

» Precise determination of o-pole from .
7w scattering Caprini, GC, Leutwyler 2006 @

M, = 44178 MeV T, = 544738 MeV .

» Coupling o — vy from vy — 7w £(500) or o 15UPS) - o0+ )
Hoferichter, Phillips, Schat 2011 was f(600)
£(500) PARTIAL WIDTHS A REVIEW GOES HERE - Check our WWW List of Reviews
r(vy) r (500) T-MATRIX POLE v/5
VALUE (keV) DOCUMENT ID TECN  COMMENT Note that I~ 2 Im( ,/Spofe)

® o o We do not use the following data for averages, fits, limits, etc. o o

4 DOCUMENT 1D TECN  CoMMENT
C 53 HOFERICHTERLL_RVUE Compilation (400-550)—i(200-350) YUR ESTIMATE
TUBT0 52 11 Compilati v

RVUE e the following data for averages, fits, limits, etc. o o o
+ 25)-i(a18+ 22 12 ' milation
20802 T397 56 MOUSSALLAMI1 RVUE Compilation (445 & 28)i276  15) 1 SARCIMMAR.1L - RVUE - Comllatio
—0 5 o (4571 —i(arot 1) -3 GARCIA-MAR..11  RVUE Compilation
2.08 s MAO 09 RVUE Compilation (4421 2)-i(274+9) 4 MOUSSALLAM11  RVUE Compilation
12 +04 BERNABEU 08 RVUE (452 £ 13)—i(259 + 16) 5 MENNESSIER 10 RVUE Compilation
39 406 55 MENNESSIER 08 RVUE + 7=, 7070 (448 = 43)—i(266 + 43) 6 MENNESSIER 10 RVUE Compilation
e 59 A1 1 Ep PO

tace 4+ 631y rnmo L s34y T FADRINI R BVIIE Comni
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Hadronic light-by-light: a roadmap

Yy — T

(wv ¢ — Ty H ete — 7T7r'y)
Partial waves for
Y*v* = 7w

(pion polarizabilities)<—('yﬂ' — 'yﬂ)

Pion transition form factor
Froyeqs (a3, 43)

Pion vector
form factor Fy}

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions
by and a collaboration among theorists and experimentalists
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Outline

A dispersive approach to HLbL

Derivation of the Master Formula
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A convenient basis
M gauge + Lorentz inv. 4 (k?=0) = 29 scalar functions
But: in such a minimal basis crossing symmetry is hidden
A convenient (redundant) basis:

15
A7 = 37 (AT (s, G u)+AL T (8 5, u)+AS (Ut 5) )
i=1
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A convenient basis
M gauge + Lorentz inv. 4 (k?=0) = 29 scalar functions
But: in such a minimal basis crossing symmetry is hidden
A convenient (redundant) basis:

15
A7 = 37 (AT (s, G u)+AL T (8 5, u)+AS (Ut 5) )
i=1

where (just one example):

A/,LV)\O’ _ 8

A
Ao e . Ao pv | M2y
1 g (0 o) (- o)

ALY from (g2, v) > (3, A) A from (az, 1) (3, )

= crossing symmetry is explicit
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A convenient basis
M gauge + Lorentz inv. 4 (k?=0) = 29 scalar functions
But: in such a minimal basis crossing symmetry is hidden
A convenient (redundant) basis:

15
e =% <Ai“‘s“"ﬂi(s,t, u)+AMATL (L s, U)+Afiﬁm|_|i(uftﬁ5)>
i=1

Essential property of this basis: the helicity amplitudes in each
channel are “diagonal” :

Hip (s, t,u) =Ny(s,t,u) + Hop (s tu)

- a7 .
H00,++(S7t7 U) = _EHZ(Svtv U) + HOO.**(S't' U)
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A convenient basis

M gauge + Lorentz inv. 4 (k?=0) = 29 scalar functions
But: in such a minimal basis crossing symmetry is hidden

A convenient (redundant) basis:

15

[ — Z <Ai’f’s’A"ﬂi(s,t, u)+Ai‘fi’A"I'Ii(t.sf u)+Ai’fL'j’\"l'Ii(uAtfs)>
i=1

Essential property of this basis: the helicity amplitudes in each

channel are “diagonal” and unitarity relations “simple”:

ImsHy 4 (S, t,u) = ImsMy(s,t,u)
aas
&é

The cut in the s-channel of each s-channel helicity amplitude is only
due to one single M;(s,t,u) function (which only has a cut in s)

ImsHoo, 11 (S,t,u) = — ImsMy (s, t,u)
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Unitarity relations for helicity amplitudes

Helicity amplitudes admit a partial wave expansion

Hx a0, (S, T u) = Z D’ (Zs)hf\l,\z,,\yq(s)
J

where DY(zs) is the appropriate Wigner function.

Each partial wave satisfies a simple unitarity relation (for s > 0)

g *
|mhi1,\2,A3A4(S) = ﬁ@(s—4m,2,) hy A, (S: qZ, q%) I A3\ (s; q%’o)

where h; »,,(s;0?,q3) are partial-wave helicity amplitudes of
the subprocess v*v* — n.
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Dispersion relations for the IM;(s, t, u)

» The MMi(s,t,u) only have a cut in s and for s > 4m?2

» Their imaginary part coincides with that of the related
helicity amplitude

» The latter can be expanded in partial waves and for each
of them unitarity fixes the imaginary part in terms of
partial-wave helicity amplitudes of the subprocess
Yy =

» adispersive integral over the right-hand cut of each partial
wave would in principle allow me to reconstruct the whole
Mi(s,t,u), up to a polynomial
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Simplified dispersion relations for the IM;(s, t, u)

We will carry out the program outlined in the previous slide with
one simplification (but see later!):

for each ;(s,t,u) we only keep the discontinuity due to the
lowest partial wave (i.e. S or D)

all M;(s,t,u) become single-variable functions = M;(s)

This is analogous to what is done for w7 scattering, » — 3« and
several other processes when the amplitude is expressed as a
sum of single-variable functions having only a right-hand cut,
and goes under the name of “reconstruction theorem”

Stern, Sazdjian, Fuchs (93)
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Fixing subtraction constants: soft-photon zeros

Gauge-invariance implies the presence of so-called soft-photon
Zeros Low (58), Moussallam (13)

k—0 2
Hadzaah, — o< (s —03)
and analogously

01,2—0 2
Haodsns — X (S—034)

In a dispersive representation such a property must emerge
from the kernels of the dispersive integrals

and constrains the subtraction polynomial
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Soft-photon zeros in v*v* — o

These soft-photon zeros can be studied also in subprocess
v*~v* — w where a dispersive representation for the helicity
amplitudes reads

hyi(s Z Z/dSKJUJ/SS“th"( N+, 0je{ad}

J’ even j= l4m2
the ellipsis stands for integrals of crossed-channel partial waves

The diagonal kernel functions

1 t — q2 _ q2

++,++ _ K 00,00 — 1 2

Koo (t,t) = Koo (t,1) = vt Mt a2, a2)
> U1, Yo

1 t — q2 _ q2
K 1) = K000 ¢ pfaf < _ 1 2)
22 ( ) 22 ( ) p/2q/2 t —t )\(t/)qiq%)

display the desired soft-photon behaviour
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Soft-photon zeros in v*vy* — 7w

Soft-photon zeros of the v*v* — 7 sub-amplitudes manifest
themselves as a modification of the Cauchy kernel by a factor:

f1o(s,s’)
s’ —s

faa(s,s’)

Kiz(s,s') = Y

) K34(SJS/) -

)

for the initial- and final-state photon pair, respectively.

A modified Cauchy kernel that gives the HLbL tensor the proper
soft-photon zeros is obtained by factorization

f1o(s, 8 )fz4(s, s’
K12734(S,S/): 12( S/)_3‘;( )
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Dispersion relations for the I1;(s)

Imposing the same form of the soft-photon zeros as in the
subamplitudes v*v* — 7 we obtain the following dispersion

relations:
0 s—0q3 ds’ 1 s'—d?-0d2\, -
Mi=h%, 4 (s)= - /S’ —z\s'—s Xiz 2 Jimh2, (s
4m2
~0 s—qg5 [ ds 1 s'—af-a5\ -o
yM3=hgo ;. (S)= - /s’ 2 (S’ —s YR Imhgo . (S")
4m?2

™

withy = q1q2 [and similarly for the others]
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Dispersion relations for the I1;(s)

Soft-photon zeros for the 1> or for the helicity amplitudes?

Remember

A (St,u) = M3+ Hyp (it 1)
with

15

Haaoaang (S, U) = Z (f)'\l/\27/\3>\4ﬂit + f,'\l,\z,A?,MHiU)
i—1
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Dispersion relations for the I1;(s)

Soft-photon zeros for the 1> or for the helicity amplitudes?
Remember

A (St,u) = M3+ Hyp (it 1)
with

15

A~ . t ~:
H)‘1>\27)‘3>\4(S7 t? U) = Z (f;\l)\z,/\3)\4ni + f)lxlAg,)\g/\4niLj)
i=1

By sheer kinematics the soft-photon zeros imposed on the I}
imply the correct soft-photon zeros to the full helicity amplitudes
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Our dispersive representation of the HLbL tensor

15
e = 37 (AP () + AL () + AL (u))
i=1

» the MM;(s) are single-variable functions having only a
right-hand cut
» for the discontinuity we keep only the lowest partial wave

» the dispersive integral that gives the [T;(s) in terms of its
discontinuity has the required soft-photon zeros

» soft-photon zeros constrain the subtraction polynomial to
vanish (unless one wanted to subtract more, which is
unnecessary)
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Contribution of ,,,, to &,

a = Jim Te{ (p+ m)A” (o', p) (¢ + M), (9',p) |

6/d4q1/d4qz 1L prgtm) (pogetmn” o
(2m)* ) (2m)* 429303 ((p’+d1)2—m?2) ((p—0z)2—m2) e

M, =

A technical caveat: a disadvantage of the basis we chose is
that the helicity amplitudes have kinematical singularities — the

full HLbL tensor, however, doesn't.
= In order to make sense of the limit k, — 0 for I\, we must

average over the direction of k, first
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Contribution of M, to a,,

= g TH{ B m) 777+ m)F, )

oot [0 O L R (e
’" (2m)* ) (2m)* azags ((p +d1)? — m?)((p — 92)? — m?)

do(p,k) kk? 9 -
. [/ 4 K2 akpﬂ“”ff]ko
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Contribution of ,,,, to &,

= g T (B m) [ 27] B+ m)F )

oot [0 O L R (e
’” (2m)* ) (2m)* azags ((p +d1)? — m?)((p — 92)? — m?)

dQ(p,k) k,k? 0 -
s [ [ =% akp”W]ko

i i 0
all A, ,, tensors scale like O(k”)

any term of O(k?2) in the MM;(s) does not contribute to a,

higher partial waves in IM;(s) are suppressed by angular
momentum factors:

s = (s — a3)?/(4s) = O(K?)

= keeping only the lowest partial wave in the discontinuity
of the TM;(s) is not an approximation for the calculation of a,,

v

v

v

v
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Master formula

o — es/ d’as / d’a; I
" (2m)* ) (2m)* q2a3s((p +d1)2 — m2)((p — g2)2 — m2)’

= 3 (Tushs +2Tiaha) + 2Tosles + 2Toulou + 2Tizulizu
i€{1,2,3,6,14}

with I; s ) dispersive integrals and T; (s ;) integration kernels



Conclusions

Conclusions and outlook

v

| have presented a dispersive framework for the calculation
of the HLbL contribution to a,,

which takes into account only single- and double-pion
intermediate states

the extension to other single-particle intermediate states
(n, ', etc.) is trivial

we have derived a master formula which expresses the
contribution of 27 intermediate states to a,, in terms of
(integrals over) yv*v* — n7 partial waves

a numerical evaluation of the master formula is in progress

we believe that this is a step towards a model-independent
calculation of the HLbL contribution to a,
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Hadronic light-by-light: a roadmap

Yy — T

(wv ¢ — Ty H ete — 7T7r'y)
Partial waves for
Y*v* = 7w

(pion polarizabilities)<—('yﬂ' — 'yﬂ)

Pion transition form factor
Froyeqs (a3, 43)

Pion vector
form factor Fy}

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions
by and a collaboration among theorists and experimentalists



SM contributions to (g — 2),: QED

auQED = (1/2)(auir) Schwinger 1948

+ 0.765857426 (16) (a/n)2
‘Sommerfield; Petermann; Suura&Wichmann '57: Elend '66; MP ‘04
+ 24.05050988 (28) (ci/r)? R R

Remiddi, Laporta, Barbieri ... ; Czarnecki, Skrzypek; MP '04;
Friot, Greynat & de Rafael ‘05, Mohr, Taylor & Newell 2012

+ 130.8796 (63) (a/m)* b i o
Kinoshita & Lindquist 81, __. , Kinoshita & Nio ‘04, '05; i k4

Aoyama, Hayakawa, Kinoshita & Nio, 2007, Kinoshita et al. 2012,
Steinhauser et al. 2013 (analytic, in progress)

+ 753.29 (1.04) (a/x)5 COMPLETED! ) AAats

Kinoshita et al. ‘90, Yelkhovsky, Milstein, Starshenko, Laporta,
Karshenboim, ., Kataev, Kinoshita & Nio '08, Kinoshita et al. 2012

Adding up, we get:

2,00 = 116584718.951 (22)(77) x 1011

from coeffs, mainly from 4-loop unc ! \ , from da(Rb)

win 0=1/137.035999049(90) [o .66 ppb]
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SM contributions to (g — 2),: electroweak

@ One-loop term: V “yé_,r’r 1&?

J(.,,m2

W(1-loop) = 1+ =(1-4sin%s +0 ~195x10~11
24\/_1.2 ( = J ”3\( H

1972: Jackiv, Weinberg: Bars, Yoshimura; Altarelli, Cabibbo, Maiani; Bardeen, Gastmans\Lautrup; Fujikawa, Lee, Sanda:
Studenikin et al. '80s

® One-loop plus higher-order terms:

Kukhto et al. '92; Czamecki, Krause, Marciano '95; Knecht, Peris,

EW = =11 Perrottet, de Rafael '02; Czarnecki, Marciano and Vainshtein "02;

au 1 536 (1) X 1 O Degrassi and Giudice '98; Heinemeyer, Stockinger, Weiglein 04,

Gribouk and Czamecki '05; Vainshtein '03; Gnendiger, Stockinger,
Stockinger-Kim 2013

Hudrons

. # ‘ . ‘
with Msggs = 125.6 (1.5) GeV ; . ; o Ei

p
» 7

Hadronic loop uncertainties . / .

and 3-loop nonleading logs. < Hautrons
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SM contributions to (g — 2),: HVP

Hadrons
5 ¥ Central values

_,.2 (1 =S .r‘) F. Jegerlehner and A. Nyffeler, Phys. Rept. 477 (2009) 1

K K
6= |, e e

1 > a? [ ds
HLO _ L (0 (s) = / ‘(s 1
a = — ds K(s) o §) = —= — K(s) (s

H 4‘1T3 e 41»% ( ) ( ) 3172 « dmg 8 ( ) ( )

a,H9=6903 (53)tot X 1011 F. Jegerlehner, A. Nyffeler, Phys. Repl. 477 (2009) 1
=6923 (42)tot X 10" pavierctal, ERJ 671 2011) 1515 (incl. BaBar & KLOE10 2n)

= 6949 (37)exp (21 )rad x 1011 Hagiwara et al, JPG 38 (2011) 085003
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SM contributions to (g — 2),,: Higher-order HVP

® HHO: Vacuum Polarization

Already included in a,"'©

S
e

O(0®) contributions of diagrams containing hadronic vacuum
polarization insertions:

a HHO(vp)=-98 (1) x 1011 l

Krause 96, Alemany et al. '98, Hagiwara et al. 2011

Only tiny shifts if T data are used instead of the e*e-ones
Davier & Marciano '04.
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SM contributions to (g — 2),,: hadronic light-by-light

e HHO: Light-by-light contribution TS
£ Unlike the HLO term, for the hadronic I-b-l / Y
term we must rely on theoretical approaches. Hdes

& This term had a troubled life! Latest values:

a,HHO(lbl) = + 80 (40) x 101" Knecht & Nyffeler ‘02
a,HHOo(Ibl) = +136 (25) x 10" Melnikov & Vainshtein '03
au“”o(lbl) +105 (26) x 1011 Prades, de Rafael, Vainshtein '09

auH”o(IbI) = +116 (39) x 10-11 Jegerlehner & Nyffeler '09

Results based also on Hayakawa, Kinoshita "98 & '02; Bijnens, Pallante, Prades '96 & '02

i “Bound” apHH°(|b|) <~160 x 10-11 Erler, Sanchez '06, Pivovarov ‘02; also Boughezal, Melnikov 11
# Lattice? Very hard... in progress. w. Golterman @ PhiPsi 2013; T. Blum @ Lattice 2012

# Pion exch. in holographic QCD agrees. p.k.Hong, DKim 09; Cappiello, Cata, D’Ambrosio '11
# “By far not complete” calculation: 188 x 10" Fischer et al, PRD87(2013)034013

# Had Ibl is likely to become the ultimate limitation of the SM prediction.
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SM contributions to (g — 2),.:

E821 - Final Report: PRD73
ayF*P =116592089 (63) x 10" (2006) 072 with latest value

of A=py/lip from CODATA'06

a,’ X 10t Aay = a;™" —a" o
116591793 (66) 296 (91) x 10711 3.2 [1]
116591813 (57) 276 (85) x 10~1! 3.2 [2]

116591839 (58) 250 (86) x 101!

with the “conservative” auHHO(IbI) =116 (39) x 10-11 and the LO hadronic from:

[1] Jegerliehner & Nyffeler, Phys. Rept. 477 (2009) 1
[2] Davier et al, EPJ C71 (2011) 1515 (includes BaBar & KLOE10 2r)
[3] Hagiwara et al, JPG38 (2011) 085003 (includes BaBar & KLOE10 2r)
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