Baryon χ PT for Two-Boson Exchange Graph

Vadim Lensky

Johannes Gutenberg Universität Mainz

September 30, 2017

Motivation

- Consider the γγ box at low energies (important corrections to *ep* scattering, μ atoms)
- χ PT the low-energy EFT of QCD is a suitable tool in this regime
- Remove the lepton line ⇒ proton Compton scattering (CS)
 wealth of exp. data
- Calculate CS in χ PT, confront data, make predictions for $\gamma\gamma$ box
- Extend to γZ and γW at low energies?

Outline

1 χ PT framework

2 Results for nucleon Compton scattering and μ H

- RCS
- VVCS
- VCS
- Lamb shift and HFS

Outline

1 χ PT framework

Results for nucleon Compton scattering and μH

- RCS
- VVCS
- VCS
- Lamb shift and HFS

$\chi {\rm PT}$ framework

- inlcude nucleons, photons, pions Weinberg, Gasser and Leutwyler, ...
 - count powers of small momenta $p \sim m_{\pi}$
 - numerically $e \sim m_{\pi}/M_N$ count as p
- also include the Delta isobar Hemmert, Holstein, ...
 - $\Delta = M_{\Delta} M_N$ is a new energy scale $\implies \delta$ -counting: Pascalutsa, Phillips (2002) numerically $\delta = \Delta/M_N \sim \sqrt{m_{\pi}/M_N}$, count $\Delta \sim p^{1/2}$ if $p \sim m_{\pi}$
 - complications due to the spin-3/2 field (consistent couplings etc.)
- two energy regimes:
 - $\omega \sim m_{\pi}$:

$$n=4L-2N_{\pi}-N_{N}-\frac{1}{2}N_{\Delta}+\sum kV_{k}$$

• $\omega \sim \Delta$:

$$n = 4L - 2N_{\pi} - N_N - N_{\Delta} - 2N_{1\Delta R} + \sum kV_k$$

NLO: Born and πN Loops

Born graphs

- responsible for low energy (Thomson) limit; point-like nucleon
- $\mathcal{O}(p^2)$ and $\mathcal{O}(p^3)$ (a.m.m. coupling)
- π^0 anomaly and πN loops

• leading-order contribution to *polarisabilities*: $\mathcal{O}(p^3)$

NNLO: Delta pole and $\pi\Delta$ loops

• Delta pole and $\pi\Delta$ loops

- different counting in different energy regimes
 - Delta pole: $\mathcal{O}(p^4/\Delta) = \mathcal{O}(p^{7/2})$ at $\omega \sim m_{\pi}$; $\mathcal{O}(p)$ at $\omega \sim \Delta$ • $\pi \Delta$ loops: $\mathcal{O}(p^4/\Delta) = \mathcal{O}(p^{7/2})$ at $\omega \sim m_{\pi}$; $\mathcal{O}(p^3)$ at $\omega \sim \Delta$
- at $\omega \sim \Delta$ one needs to dress the 1 ΔR propagator

at ω ~ Δ corrections to γNΔ vertex are O(p²)

Vadim Lensky (U. Mainz)

Electroweak Box Workshop

χ PT framework

2

Results for nucleon Compton scattering and μH

- RCS
- VVCS
- VCS
- Lamb shift and HFS

χ PT framework

Results for nucleon Compton scattering and µH RCS

- VVCS
- VCS
- Lamb shift and HFS

Results: RCS observables

- covariant baryon calculation
 VL, McGovern, Pascalutsa (2015)
 VL, Pascalutsa (2009)
- NNLO ($\mathcal{O}(p^{7/2})$) at $\omega \sim m_{\pi}$
- NLO ($\mathcal{O}(p^2)$) at $\omega \sim \Delta$
- prediction of ChPT

- polarisabilities are seen starting at \sim 50 MeV
- pion loops are important at low energies and around pion production threshold
- Delta pole dominates in the resonance region

Vadim Lensky (U. Mainz)

Electroweak Box Workshop

Scalar polarisabilities: status

- for the proton, χ PT calculations somewhat differ from other extractions (in particular, TAPS value)
 - there are hints that the issue might be due to exp. data Krupina, VL, Pascalutsa, *in preparation*
- neutron polarisabilities are less well constrained there is no free neutron target

Vadim Lensky (U. Mainz)

Electroweak Box Workshop

χ PT framework

2 F

Results for nucleon Compton scattering and $\mu {\rm H}$

- RCS
- VVCS
- VCS
- Lamb shift and HFS

VVCS

forward VVCS amplitude

$$T(\nu, Q^2) = f_L(\nu, Q^2) + (\vec{\epsilon}'^* \cdot \vec{\epsilon}) f_T(\nu, Q^2) + i\vec{\sigma} \cdot (\vec{\epsilon}'^* \times \vec{\epsilon}) g_{TT}(\nu, Q^2) - i\vec{\sigma} \cdot [(\vec{\epsilon}'^* - \vec{\epsilon}) \times \hat{q}] g_{LT}(\nu, Q^2)$$

low-energy expansion of the amplitude is

$$\begin{aligned} f_T(\nu, Q^2) &= f_T^{\mathsf{B}}(\nu, Q^2) + 4\pi \left[Q^2 \beta_{M1} + (\alpha_{E1} + \beta_{M1}) \nu^2 \right] + \dots \\ f_L(\nu, Q^2) &= f_L^{\mathsf{B}}(\nu, Q^2) + 4\pi (\alpha_{E1} + \alpha_L \nu^2) Q^2 + \dots \\ g_{TT}(\nu, Q^2) &= g_{TT}^{\mathsf{B}}(\nu, Q^2) + 4\pi \gamma_0 \nu^3 + \dots \\ g_{LT}(\nu, Q^2) &= g_{LT}^{\mathsf{B}}(\nu, Q^2) + 4\pi \delta_{LT} \nu^2 Q + \dots \end{aligned}$$

 ν-dependent terms can be treated as functions of Q² and related to moments of nucleon structure functions

Vadim Lensky (U. Mainz)

VVCS: results

Vadim Lensky (U. Mainz)

Electroweak Box Workshop

χ PT framework

2

Results for nucleon Compton scattering and μH

- RCS
- VVCS
- VCS
- Lamb shift and HFS

VCS: response functions

 low-energy expansion (small ω'): Guichon, Liu, Thomas (1995)

$$d^5\sigma^{VCS} = d^5\sigma^{BH+Born}$$

$$+ \omega' \Phi \Psi_0(Q^2, \epsilon, \theta, \phi) + \mathcal{O}(\omega'^2);$$

$$\Psi_{0}(Q^{2},\epsilon,\theta,\phi) = V_{1}\left[P_{LL}(Q^{2}) - \frac{P_{TT}}{\epsilon}\right] + V_{2}\sqrt{\epsilon(1+\epsilon)}P_{LT}(Q^{2})$$

Vadim Lensky (U. Mainz)

χ PT framework

2

Results for nucleon Compton scattering and $\mu {\rm H}$

- RCS
- VVCS
- VCS
- Lamb shift and HFS

Two-photon corrections

review by Hagelstein, Miskimen, Pascalutsa (2016)

• muonic hydrogen Lamb shift in theory [energies in meV, R_p in fm]:

 $\Delta E_{LS} = 206.0336(15) - 5.2275(10)R_p^2 + E^{TPE}$ Antognini et al (2013)

 $E^{\text{TPE}} = 0.0332(20); \quad E^{\text{(pol)}} = 0.0085(11) \text{ Birse, McGovern (2012)}$

- E^{TPE} is an important source of th. uncertainty
- polarisability corrections depend on the VVCS amplitude

Lamb shift

- πN loops give the leading contribution
- Delta pole strongly suppressed
- $\pi\Delta$ loops not included

- the $\mathcal{O}(p^3)$ result is $\Delta E_{2S}^{(\text{pol})} = -8.2(^{+1.2}_{-2.5}) \ \mu\text{eV}$ Alarcon, VL, Pascalutsa (2014)
- consistent with other calculations

ΔE^{pol} [µeV]

HFS (preliminary)

- πN loops give the leading contribution
- Delta pole important
- $\pi\Delta$ loops not included

- the $\mathcal{O}(p^3)$ result is $E_{2S,HFS}^{(\text{pol})} = -1.4(^{+1.6}_{-1.2}) \ \mu\text{eV}$ Hagelstein, VL, Pascalutsa *in preparation*
- Iarge cancellations
- does not agree with dispersive calculations

Lamb shift: HB vs. covariant

ΔE^{pol} [µeV]

$$\Delta E_{nS}^{(\text{pol})} = \frac{\alpha_{em}}{\pi} \phi_n^2 \int_0^{Q_{\text{max}}} \frac{dQ}{Q^2} w(\tau_\ell) \left[T_1^{(\text{NB})}(0, Q^2) - T_2^{(\text{NB})}(0, Q^2) \right]$$

- one can expect larger error in HB since the integral converges more slowly there
- neither HB nor covariant (nor other results), however, can explain the missing \sim 300 μeV

χ PT framework

Results for nucleon Compton scattering and μH

- RCS
- VVCS
- VCS
- Lamb shift and HFS

Some thoughts (and summary)

- covariant baryon χEFT works well in nucleon CS (RCS/VCS/VVCS) and gives a O(p³) prediction for μH Lamb shift and hyperfine splitting
- by connecting $\gamma\gamma$ box to nucleon CS, we cross-check our χ PT calculation and better understand these processes
- how can χ PT be applied also to γZ and γW boxes?

$$\frac{1}{2} \frac{1}{2} + \frac{1}{2} + \cdots \xrightarrow{2} \frac{1}{2} + \cdots$$

- naïvely: can work at low energies (P2@MESA, β -decays)
- could follow a route similar to $\gamma\gamma$ box:
 - calculate the analog of CS ("vector boson production")
 - calculate the boxes
- feedback and suggestions welcome!

Backup

$\chi {\rm PT}$ for nucleon CS and $\mu {\rm H}$

- real CS in χPT
 - prediction at O(p⁴/Δ)
 - compare with data
 - predict nucleon polarizabilities
- virtual and doubly-virtual CS in χPT
 - prediction at O(p⁴/Δ)
 - nucleon generalized polarizabilities (different in VCS and VVCS!)
- we can calculate μ H (Lamb shift and HFS) in χ PT
 - prediction at $\mathcal{O}(p^3)$
- \Rightarrow RCS, VCS, VVCS and Lamb shift calculated in a single χ PT framework
 - complementary information about properties of the nucleon (verify sum rules in χPT etc.)
 - our choice is to use the covariant formulation of χPT

Lamb shift and Compton scattering

Compton scattering amplitude (forward VVCS)

$$T^{\mu\nu}(q,p) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)T_1(\nu,Q^2) + \frac{1}{M^2}\left(p^{\mu} - \frac{p \cdot q}{q^2}q^{\mu}\right)\left(p^{\nu} - \frac{p \cdot q}{q^2}q^{\nu}\right)T_2(\nu,Q^2) \\ - \frac{1}{M}\gamma^{\mu\nu\alpha}q_{\alpha}S_1(\nu,Q^2) - \frac{1}{M^2}(\gamma^{\mu\nu}q^2 + q^{\mu}\gamma^{\nu\alpha}q_{\alpha} - q^{\nu}\gamma^{\mu\alpha}q_{\alpha})S_2(\nu,Q^2)$$

- spin-dependent terms contribute to hyperfine splitting
- nth S-level shift is given by

$$\Delta E_{nS}^{(\text{pol})} = \frac{\alpha_{em}}{\pi} \phi_n^2 \int_0^\infty \frac{dQ}{Q^2} w(\tau_\ell) \left[T_1^{(\text{NB})}(0, Q^2) - T_2^{(\text{NB})}(0, Q^2) \right]$$

 $w(\tau_{\ell})$: the lepton weighting function

$$w(au_\ell) = \sqrt{1+ au_\ell} - \sqrt{ au_\ell}, \qquad au_\ell = rac{Q^2}{4m_\ell^2}$$

weighted at low virtualities

Compton amplitudes

*T*₁(ν, *Q*²) and *T*₂(ν, *Q*²) can be related, via dispersive integrals, with nucleon structure functions (ν̃ = 2*M*ν/*Q*²):

$$T_{1}(\nu, Q^{2}) = \frac{8\pi\alpha}{M} \int_{0}^{1} \frac{dx}{x} \frac{f_{1}(x, Q^{2})}{1 - x^{2}\tilde{\nu}^{2} - i0}, \quad T_{2}(\nu, Q^{2}) = \frac{16\pi\alpha M}{Q^{2}} \int_{0}^{1} dx \frac{f_{2}(x, Q^{2})}{1 - x^{2}\tilde{\nu}^{2} - i0}$$

- the integral for T_1 needs a subtraction: unknown function $T_1(0, Q^2)$
- high- Q^2 behaviour of $T_1(0, Q^2)$ needs to be modelled
 - formfactors Pachucki (1999), Martynenko (2006)
 - χ PT-inspired formfactors Carlson, Vanderhaeghen (2011), Birse, McGovern (2012)
 - empirical fits Tomalak, Vanderhaeghen (2016)
- something we know about $T_1(0, Q^2)$: low-energy theorem

$$T_1^{\sf NB}(0,Q^2) = 4\pi eta_{M1} Q^2 + \cdots, \quad T_2^{\sf NB}(0,Q^2) = 4\pi (lpha_{E1} + eta_{M1}) Q^2 + \cdots$$

 \Rightarrow nucleon polarisabilities

Polarisabilities

- point particle (or low energies) \implies charge, mass, a.m.m.
- higher energies: response of the nucleon to external e.m. field
- \implies static polarisabilities: low-energy constants of effective γN interaction

$$\begin{aligned} \mathcal{H}_{\rm eff}^{(2)} &= -\frac{1}{2} \, 4\pi (\alpha_{E1} \vec{E}^2 + \beta_{M1} \vec{H}^2), \\ \mathcal{H}_{\rm eff}^{(3)} &= -\frac{1}{2} \, 4\pi \Big(\gamma_{E1E1} \vec{\sigma} \cdot \vec{E} \times \dot{\vec{E}} + \gamma_{M1M1} \vec{\sigma} \cdot \vec{H} \times \dot{\vec{H}} - 2\gamma_{M1E2} E_{ij} \sigma_i H_j + 2\gamma_{E1M2} H_{ij} \sigma_i E_j \Big), \\ \mathcal{H}_{\rm eff}^{(4)} &= -\frac{1}{2} \, 4\pi (\alpha_{E1\nu} \dot{\vec{E}}^2 + \beta_{M1\nu} \dot{\vec{H}}^2) - \frac{1}{12} \, 4\pi (\alpha_{E2} E_{ij}^2 + \beta_{M2} H_{ij}^2), \dots \\ A_{ij} &= \frac{1}{2} (\nabla_i A_j + \nabla_j A_i), \quad A = \vec{E}, \vec{H} \end{aligned}$$

- this EFT breaks down around the pion production threshold
- we can calculate the polarisabilities from our more high-energy theory $\chi \rm PT$
- ... or find from fits to data (with some help of χPT)

One more step: fit at $\mathcal{O}(p^4)$ (partial)

• add a dipole polarisabilities contact term; fit $\delta \alpha_{E1}$ and $\delta \beta_{M1}$ to data

$$\mathcal{L}_{\pi N}^{(4)} = \pi e^{2} \overline{N} \big(\delta \beta_{M1} F^{\mu \rho} F_{\mu \rho} + \frac{2}{M^{2}} \big(\delta \alpha_{E1} + \delta \beta_{M1} \big) \partial_{\mu} F^{\mu \rho} F^{\nu}{}_{\rho} \partial_{\nu} \big) N$$

Sum rules

• sum rules connecting VCS, RCS, and VVCS:

Pascalutsa, Vanderhaeghen (2015)

$$\delta_{LT} = -\gamma_{E1E1} + 3M\alpha_{\rm em} \left[P'^{(M1M1)1}(0) - P'^{(L1L1)1}(0) \right],$$
$$I'_{1}(0) = \frac{\kappa_{N}^{2}}{12} \langle r_{2}^{2} \rangle + \frac{M^{2}}{2} \left\{ \frac{1}{\alpha_{\rm em}} \gamma_{E1M2} - 3M \left[P'^{(M1M1)1}(0) + P'^{(L1L1)1}(0) \right] \right\}$$

- verified in covariant and HB χ PT VL, Pascalutsa, Vanderhaeghen, Kao (2017)
- connect experimentally accessible quantities
- allow to obtain complementary information on, e.g., static spin polarisabilities
- higher-order scalar sum rules VL, Pascalutsa, Vanderhaeghen, Hagelstein in preparation

Sum rules and δ_{LT} puzzle

$$\delta_{LT} = -\gamma_{E1E1} + 3M\alpha_{\rm em} \left[P'^{(M1M1)1}(0) - P'^{(L1L1)1}(0) \right]$$

• δ_{LT} puzzle shows here

- the result of Bernard et al. for δ_{LT} seems to be in contradiction with MAID
- new JLab data for the proton δ_{LT} are expected to shed light on this puzzle

