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Formulate some basic questions!

a)! Higher Curvature Bianchi ldentities
/ b)! Analogues of 3D GR
Answers supplied by

1.! Intro to Lovelock new higher curvature
2.! Riemann-Lovelock Tensor & OLovelock FlatnessO constructs

3.! Weyl-Lovelock et. al. What about Oconformal
4.! Further (interesting?) questions Lovelock flatnessO?

In abundance!
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Coupling constants
1) Introduction to Lovelock /

Higher curvature analogues of

: ' Ko J / scalar curvature
S= d°x "g aRWM

k=0
k) — jai..a b1 b b1 1b
R (K) = !bll---bzzkk Ra,a, % ... Ra,, La,, 2¢ 1P
|bi..bn — b1 4 410
- al...ann : [al aa@n]
RO =1 Cosmological constant term
R R Einstein-Hilbert term
| .
R@ = % R..“R."! 2R ;*R.%! 2R.’R,°+ R,’R Gauss-Bonnet term
Euler density in D=2k dimensions _
(k) | D! 1
R - vanishes for D<2k » kp = 5
- variation vanishes in D=2k
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The nice thing about Lovelock!

Equations of motion depend only
on Riemann tensor and not its

derivatives
5 I 'Kp (K) - no 4t derivatives of metric
S = d- X g Ak R - same initial data as GR
k=0 - no ghosts
kp
E arGM =0 |
Higher curvature analogues of
k=0 Einstein tensor
g(k)b _ (Qk —|_ 1)0&]{; 5561...62k R d1d2 R dgk! 1d2k
a T 9 ady...dog ~ C1C2 T C2k! 1C2k

Vag(k)ab =0 Covariantly conserved

G(l) ab Einstein tensor

G(k)ab Vanishes for D < 2k+1

David Kastor
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Questions!

A) kla —

k=1 Follows from twice contracted Bianchi identity

V[aRbC]de =0 » 0="1 [aRbC]bC

1
— §(I aR" 2' bRba)
2
=" 21 4G

Is there an analogue of the uncontracted Bianchi identity for k>17?

Is there a higher curvature Lovelock
analogue of the Riemann tensor in this
sense?
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Questions!

B) Vacuum GR in D=3

— - cd _ All solutions to EinsteinOs
Gap =0 Rap™ = 0 equation are flat

Both Riemann and Ricci tensors have 6

independent components 3 X 3 symmetric tensors

Or simple Lovelock-type construction !

1 | cd Relation is true in

cdef h_ 1 cd [Cp d
!abgh Rer 9" = 6 Rap™ ! 4 [aRb] h+ lab R all dimensions

LHS vanishes in D=3, determining Riemann tensor in terms of its
contractions
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Questions!

B) Vacuum GR in D=3
_ cd _ All solutions to EinsteinOs
Gab =0 - Rap™ =0

equation are flat

Is there an analogue of this for k>17

(k) SRR . Look at Opure®" order
R Euler density in D=2k dimensions Lovelock gravity in D=2k+1

| L
_ C o h lock Trivial in D=2k,
g — dP R(K) Only k" order Love ! |
Pure / g term in action like GR in D=2

~ This is highest order
D=2k+1 » Lovelock term available

Expect all solutions to Lovelock will asymptote to solutions
of pure k" order theory in high curvature regime
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Questions!

B) Vacuum GR in D=3
All solutions to EinsteinOs

— cd —
Gab =0 ‘ Rab =0 equation are flat

Is there an analogue of this for k>17

(k) SRR . Look at Opure®" order
R Euler density in D=2k dimensions Lovelock gravity in D=2k+1

Spure = /dD ;p! T gRK) Only k™ order Lovelock
term in action

Is there a higher curvature Lovelock flatness condition, such that all
solutions to pure k' order Lovelock in D=2k+1 are k" order Lovelock flat?

Like question 1, this calls for a higher
curvature analogue of the Riemann tensor
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2) Riemann-Lovelock tensors & OLovelock flatnessO  Call this Riemann® tensor

(k) Cldl---ckdk [Cldl C2d2 4L A dek]
Ralbl...akbk I R[albl Ra2b2 aaaakbkz]

Tensor of type (2k,2k), vanishes _  Likeall 1D spaces are k=1
for D<2k and satisfies! Lovelock flat

(k) _ p (k) _ p k) _ p (k)
Ral...azk bl...b2k T R[al...agk]bl...bZk T Ral...aZk [bl---bZk] T Rb1...b2k al...azk
(k) by..bor —
R[al...aZkbl] _O Bi hi id .. \
lancnl identities Symmetries

(k) by.ba _
S CLAPHRPR

Analogous to familiar properties of Riemann tensor

kh order Lovelock flatness ng)b . cidy...ckde _
or Riemann®) flat 1b1...arby
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Taking traces!

R (K) — Rgli)ma%al...a%
ng)b — Rg((:?LmCZK! 1bC1...C2k! 1

GYP = kR{PT (1/2)1 2R

0=! R
1
+1

~ 2k

David Kastor

(k)
by Dok

2 I

2k +1°

b1 ...b2k

,GHP,

1 R oK1 [ RKID

Tracing over all pairs of
indices gives back scalar
Lovelock interaction terms

Ricci® tensor is an
analogue of Ricci tensor

Einstein® tensor appears in
Lovelock equation of motion

Fully contracted Bianchi identity
yields vanishing divergrance for
Einstein® tensors

Answers 15t question

Demonstrates some
relevance for Riemann-
Lovelock tensors

2016 Northeast Gravity Workshop



Analogue of

th I =K+
Pure k" order Lovelock in D=2k+1 vacuum GR in D=3

7 r_
Spure = d**tx " gR(k)

GYP = kR{PT (1/2)62RK) =0

Yes
/

(k) Cldl...dek [Cldl C2d2 4L A dek]
Ralbl...ak,b;C | R[alb1 R32b2 aaaakzbkz]

2"d Question » Are all solutions k" order Lovelock flat?

_ Same number of independent components
D=2k+1 - as symmetric (2k+1)x(2k+1) tensor

Can show ng)b =0 - R(k) crdy-..ckdi = 0

a1 by ...ax by
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Are there interesting spacetimes that are higher
order Lovelock flat, but not Riemann flat?

Large set of examples!

Riemann® tensor vanishes for any spacetime of dimension D < 2k

Can build higher dimensional Riemann® flat
spacetimes by adding flat directions

Interesting example in D=2k+1!

Static, spherically symmetric solutions of pure k" order Lovelock
are missing solid angle spacetimes

dss 1 =" dt® +dr® + 1 *r?dQ5,

David Kastor 2016 Northeast Gravity Workshop
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Static, spherically symmetric solutions of pure k" order Lovelock
are missing solid angle spacetimes

als%kJrl =1 dt* +dr’* + ! *r?dQ3,,

2 Angular
" — | 2\ ¢"'H# l =1. ... .2k! 1 coordinates
R”! a2r2 1! a )511! o ’ ’ on sphere

Only nonzero curvature components

Curvedfor | E 1

Riemann®) tensor

(k) c1d1...c dk [c1d Cody 4 4 ckde] —
Ralbl...akbk | R[albl Razbz aaﬁakbk] =0

Involves anti-symmetrization over 2k indices, but only
2k-1 are available!
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Static, spherically symmetric solutions of pure k" order Lovelock
are missing solid angle spacetimes

als%kJrl =1 dt* +dr’* + ! *r?dQ3,,

2 Angular
e | 2\ S"# | =1 2k 1 1 coordinates
Ry &Zrz(l' . )511! ak A on sphere
Only nonzero curvature components
I E
curvedfor | E1 Missing angle
2 2 2 22 A
GR in D=3 » k=1 dSs — I dt + dl’ + I d Global flat space
with identifications
Missing solid angle Further question!
General case Riemann® Flat

k>1 Can we classify all
Globalflat space .
with-identifications Riemann® flat

spacetimes?
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Conformal tensors in Lovelock!

Next step

Riemann® flatness

Conformal® flathess

v

A spacetime is Conformal® flat if
it is related to to a Riemann®) flat
spacetime via a conformal
transformation

D > 4 cConformal flatness <

Consider trace free part of
Riemann® tensors

Do Weyl® tensors determine
Conformal® flatness?

Weyl tensor vanishes
Trace free part of Riemann tensor

- Weyl® tensors

v
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First recall some other constructs!

cd — cd [Ce d
Wap® = Rap™ ! 4! Sy 1 Weyl tensor
S.P = 1 R,°! ;'bR Schouten tensor
* Dr2 % 201! 1)°®
Cab =2! [aSb]
Cotton tensor
Cap’=0

Conformal transformations  €ap = 92f Oab

: cd — Al 2f cd
Wab - € Wab

David Kastor 2016 Northeast Gravity Workshop
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Conformal transformations  Gap — er Jab

: cd — Al 2f cd
Wab - € Wab

Vanishes in D=3

_ cd __ cdef h — cd
Cotton tensor is conformally invariant

Conformal flathess e
condition in D=3 Cawp =0

D=2 » Weyl tensor not defined

All metrics are locally conformally flat
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Conformal tensors in Lovelock!
part of Riemann® tensor

k by..bok — k by...b [bb (k) Dy+1 ...b
W(_)_ 2k R()a2k 2k+z StoL--Op p+1 --Dak]

[a;... ap+1 ok ]
ok e @kt 1y P
P7 (2k! p!  p(D! (4k! p! D)

Can show » Riemann® tensor determined by its traces for D<4k

Expect Weyl® tensor is nontrivial only for D | 4k

D< 4k! 1  Weyl® tensor undefined because of divergent coefficients

Like Weyl tensor in D=1,2

D =4k! 1 Weyl® tensor defined, but vanishes identically
Like Weyl tensor in D=3
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Schouten ® and Cotton & tensors

bi1..box — R(k) L b1...bok | (2k)2 [bl
2

k [a1

Dokr 1

k br..boki 1 — (k) by ..
C((il?”az‘( 1Pk 1 = 2K [als 1

az...a2k]
k by...box 2C —
(:(al?..azm 1C . et = O Traceless

k
W()a2

k

Conformal transformations  €ap = GZf Oab

Wk biba _

g 2K (k) by ...bok
ai...d ok W ..a

2k

(k) bi..boki 1 — o 2kf  ~K) by..boki 1 | (k) b ..
gl...a% = € doll...a2k ' W

chy..boki 1 — (D" (4k" 1)) Cﬁ)a

(k) by...bok]
a2k

All in parallel with
k=1 case!.

b1..bok1 1
2k

Dok 1Cn f
ai...a ok C

D=4k-1 —>  Weyl® tensor vanishes ——>  Cotton® is conformally invariant

David Kastor
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Math. Ann. 199, 175—204 (1972)
© by Springer-Verlag 1972

On the Bianchi Identities No connection to Lovelock,
Ravindra S. Kulkarni but roughly the same time
period

¥ Demonstrates properties of Riemanr¥ tensors
¥ DefinesWeyl®¥ tensors and shows conformal invariance

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 3 MARCH 1971

The Einstein Tensor and Its Generalizations*

Davip LovELock
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada

(Received 27 August 1970)
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Conformal transformation of  Weyl tensor!
Let A, satisfy  Aabcd = Aabjed = Aabjed] = Acdab
TraceS Aac — Aabe A - Aaa

Trace free part
4 ' [C

2 cd
D1 2 la 'abA

(D! 1)(D! 2)'@

t
Az(a_b)Cd — Aade | Ab]d] +

Can show that!. Analogous
construction
A"—étg cd — AS@ cd works for all k

- - _ 4l 2f c
Conformal transformation R, = e R + ![[a! b]d]

» Result
P =41 o0 PF 400 Lf ) PR 20000 F )1 Of
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Conformal ® flatness conjectures

D < 2k Riemann® tensor vanishes
All spacetimes conformal®) flat

D=2k Riemann® tensor has a single component
All spacetimes (locally) conformal® flat?

2k <D< 4k! 1 Weyl® & Cotton® tensors not defined

All spacetimes (locally) conformal® flat??

D=4k! 1 Conformal® flat if Cotton® tensor vanishes?

D! 4k Conformal® flat if Weyl® tensor vanishes?

David Kastor 2016 Northeast Gravity Workshop

k=1 result

No curvature in D=1

All D=2 spacetimes
are (locally)
conformally flat

2<D< 3

No k=1 analogue

D=3 spacetime is
conformally flat if Cotton
tensor vanishes

D! 4
Weyl tensor vanishing

implies conformal
flathess

21



New gravity models?

Recall that low dimensional gravity models make use of conformal tensors!

D=3 Topologically massive gravity (Deser, Jackiw & Templeton b 1982)

Cotton tensor appears in equation of motion

D=3 New massive gravity (Bergshoeff, Hohm & Townsend D 2009)

Schouten tensor is ingredient in action

Perhaps conformal® tensors can be useful in model building
associated with Lovelock theories in low(ish) dimensions!
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Simple example ——> Conformal® gravity in D=4k

Recall!

' e
Conformal gravity in D=4 S=  d g Wiap dWq 2P

Equation of motion Bgp =0

1 .
Bach tensor B.,b=(! 4 .+ éRcd)WadbC Symmetric, traceless

5 b — e 4f B b Equations of motion are
a a conformally invariant

All Einstein metrics have vanishing Bach tensor

All conformally Einstein spacetimes are solutions
to conformal gravity
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Simple example ——> Conformal® gravity in D=4k

i |
_ 4k, " = K bi..b (k)
S= d%*x gwgl?_aZk bz Az

Equation of motion Compare with!
1
Bab = ( ! d! ct _Rcd)Wadbc
Bach tensor 2
' k
k)b k! 1 di...d 2k dok k dy...d 21 (k) bey ...C 2k
Bg) — Rgl...C)Zk! 2 ' 2! 2! 2! 1! Cokr 1 + §Rg1?..C2kg 1 ! 2t Wadl___de! 1 CLCak 1
(k) _
Expect anti-symmetric part of Bach tensor vanishes, As it does
but not straightforward to show! for k=1

Also expect Bach® tensor is a conformal invariant,
because of conformal invariance of action
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Simple example ——> Conformal® gravity in D=4k

S = _ d4kx! W\Nék) by ...bok W(k) ai.azc_

1...@ 2k b1...b2k
' k
k)b k! 1 di...d ok dok: Kk di...d ok (k) bcy...Cc ok
Bz(a,) — Rgl-..C)ZK! o I iRgl?--CZk! & 2k! 1 Wadl...dgk! 1 1.-C2k! 1
(k) _

Solved by Einstein® spaces!

(k) bi...box—1 __ b1...box—1
Ral...agk_l T a(sal...azk_l
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Conclusions!

Riemann® tensor looks interesting.

Lots of related questions!
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