

 $Sin^2 \theta_W = 0.238$ $\theta_W = 29,2^{\circ}$

Future PVES Experime New, high precision measu

of the weak mixing angle

Frank Maas (Helmholtz Institute Mainz, Institute for Nuclear Phyiscs, PRISMA cluster of excellence Johannes Gutenberg University Main

"The Electroweak Box Workshop", Amherst Center for Fu September 428-30, 2017

₽SEB콜

Search for New Physics: Various Methods

Direct observation versus precision measurements: top-quark

March 2012

Summary: Measurements of sin² θ _{W(effective)}

The role of the weak mixing angle

The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: $sin^2(\theta_w)$

 $sin^2 \theta_W$: a central parameter of the standard model

Møller Scattering

Purely Leptonic

- Coherent quarks in p
- in operation now
 2(2C_{1u}+C_{1d})

• Isoscaler quark scattering • (2C_{1u}-C_{1d})+Y(2C_{2u}-C_{2d})

Atomic Parity Violation

- Coherent quarks in entire nucleus
- Nuclear structure uncertainties
- -376 C_{1u} 422 C_{1d}

Neutrino Scattering

- Quark scattering (from nucleus)
- Weak charged and neutral current difference

7 Courtesy of P. Reimer and R. Arnold

", running" $\sin^2 \theta_{eff}$ or $\sin^2 \theta_{W}(\mu)$

Precision measurements and quantum corrections:

IGU

Universal quantum corrections: can be absorbed into a scale dependent, "running" sin² θ_{eff} or sin² $\theta_{w}(\mu)$

Sensitivity to new physics beyond the Standard Model

JGU

Institut für Kernphysik

Sensitivity to new physics beyond the Standard Model

Extra Z

Mixing with Dark photon or Dark Z

Contact interaction

New Fermions

Dark Photon, Z-Boson

Search for the O(GeV/c²) mass scale in a world-wide effort

- Could explain large number of astrophysical anomalies Arkani-Hamed et al. (2009) Andreas, Ringwald (2010); Andreas, Niebuhr, Ringwald (2012)
- Could (have) explained presently seen deviation of >3σ between (g-2)_μ Standard Model prediction and direct (g-2)_μ measurement Pospelov(2008)

Status 2011

044

6

NA48/2 Updated Bounds on Dark Photon g_µ-2 discrepancy solution ruled out Assumes BR(Z_d→ e+e-) ~1

H. Davoudiasl, W. Marciano

Running $\sin^2 \theta_w$ and Dark Parity Violation

JGU

Complementary access by weak charges of proton and electron

The role of the weak mixing angle

The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: $sin^2(\theta_w)$

 $sin^2 \theta_W$: a central parameter of the standard model

Proton: special case

Proton Weak	charge: Q _w (p)	=	1 – 4 sin² θ _ν	v
Error:	$\Delta Q_w(p)$	=	4 ∆sin² €) _w
Rel. error:	$\Delta Q_w(p)/Q_w(p)$	=	4/((1/sin² θ _\	<mark>_N) – 4)</mark> (∆sin² θ _w /sin² θ _w)
Rel. error	$\Delta \sin^2 \theta_w / \sin^2 \theta_w$	=	((1/sin² θ _w)	−4)/4 ∆Q _w (p)/Q _w (p)
Example:	sin² θ _w (50 MeV)	=	0.238	
	4/($(1/\sin^2 \theta_W) - 4$)	~	20	
	∆Q _w (p)/Q _w (p)	=	2% fro	om Experiment
	$\Delta sin^2 \theta_w / sin^2 \theta_w$	=	0.1 % sa	me precision as LEP, SLAC
Neutron Weak charge: $\Delta Q_w(p)/Q_w(n)$		=	∆sin² θ _w /siı	n² θ _w

Physics sensitivity from contact interaction (LEP2 convention, g²= 4pi)

	precision	$\Delta \sin^2 \overline{\Theta}_{W}(0)$	Λ_{new} (expected)
APV Cs	0.58 %	0.0019	32.3 TeV
E158	14 %	0.0013	17.0 TeV
Qweak I	19 %	0.0030	17.0 TeV
Qweak final	4.5 %	0.0008	33 TeV
PVDIS	4.5 %	0.0050	7.6 TeV
SoLID	0.6 %	0.00057	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV

Experimental Method: Parity Violating Electron Scattering

SFB 1044

 $\sigma \sim \mathcal{M} \mathcal{M}^* \text{ Phasespace} \\ \sim (j_{\mu} \frac{1}{Q^2} J^{\mu}) (j_{\mu} \frac{1}{Q^2} J^{\mu})^* \\ j_{\mu} \sim \overline{e} \gamma_{\mu} e \text{ Vector Current}$

$$I_{\gamma}^{\mu} \sim \left\langle N | q^{\mu} \overline{u} \gamma_{\mu} u + q^{d} \overline{d} \gamma_{\mu} d + q^{s} \overline{s} \gamma_{\mu} s | N' \right\rangle \\
 = \overline{\mathcal{P}} \left[\gamma^{\mu} F_{1} - i \sigma^{\mu \nu} q_{\nu} \frac{\kappa_{p}}{2M_{N}} F_{2} \right] \mathcal{P}$$

$$\tilde{q}^d{}_V = \tau_3 - 2q^d \sin^2(\theta_W)$$

$$\begin{split} \tilde{J}_{Z}^{\mu} &\sim \left\langle N | \tilde{q}^{\mu} \overline{u} \, \gamma_{\mu} \, u + \tilde{q}^{d} \overline{d} \, \gamma_{\mu} d + \tilde{q}^{s} \overline{s} \, \gamma_{\mu} s | N' \right\rangle \\ &= \overline{\mathcal{P}} [\gamma^{\mu} \tilde{F}_{1} - i \sigma^{\mu \nu} q_{\nu} \frac{\kappa_{p}}{2M_{N}} \tilde{F}_{2}] \mathcal{P} \end{split}$$

JGU

Parity Violating Asymmetry in elastic electron proton scattering

JGU

Institut für Kernphysik

SFB 1044

Parity violating cross section asymmetry

$$A_{LR} = \frac{\sigma(e\uparrow) - \sigma(e\downarrow)}{\sigma(e\uparrow) + \sigma(e\downarrow)} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$$

$$Q_W = 1 - 4\sin^2\theta_W(\mu)$$
polarisation measurement hadron structure

$$F(Q^2) = F_{EM}(Q^2) + F_{Axial}(Q^2) + F_{Strange}(Q^2)$$

• Contributions to $\Delta sin^2 \Theta_W$ for 35° central scattering angle, E=150 MeV, 10000 h of data taking

JG U P2-Precision in sin² θw

	Total	Statistics	Polarization	Apparative	FF	Re(□ _{yzA})
∆sin²(θ _w)	3.1e-4	2.6e-4	9.7e-5	7.0e-5	1.4e-4	6e-5
	(0.13 %)	(0.11 %)	(0.04 %)	(0.03 %)	(0.04 %)	(0.03 %)
∆A ^{exp} /ppb	0.44	0.38	0.14	0.10	0.11	0.09
	(1.5 %)	(1.34 %)	(0.49 %)	(0.35 %)	(0.38 %)	(0.32 %)

JGU

Institut für Kernphysik

Conceptually very simple experiments

A = $(N^+-N^-)/(N^++N^-)$ $\Delta A = (N^++N^-)^{-1/2} = N^{-1/2}$ A = 20 x 10⁻⁹ 2% Measurement N = 6.25 x 10¹⁸ events

Highest rate, measure Q²: Large Solid Angle Spectrometers

Apparative (false) asymmetries:

Extreme good control of beam and target Detektor Flip Helicity fast Extra spin flip

PVeS Experiment Summary

Measure Flux of Scattered electrons:

- no pile-up (double count losses)
- sensitive to small electr. fields.
- no separation of phys. process

JGU

Qweak (1GeV) @ Jlab Proton weak charge (4%) Quartz Cerenkov Bars Toroid spectrometer <0> = 7.9° ± 3° ϕ coverage = 50% of 2π $I_{heam} = 180 \,\mu A$ Integrated rate = 6.4 GHz Beam Polarization = 88% Target = 35 cm LH₂ Cryopower = 3 kW Electron beam Trigger Scintillato LH₂ Target Vertical Drift Chambers Collimators Toroidal Magnet Red = low-current tracking mode only Spectrometer

Institut für Kernphysik

SOLID (PVDIS 11GeV) @ Jlab Quark weak charge Solenoid spectrometer

> Left Baffle Assembly

Coil / Cryostat

Fixed Supports >

JGU

Institut für Kernphysik

- Parity violating electron scattering: "Low energy frontier" comprises a sensitive test of the standard model complementary to LHC
- Determination of $sin^2(\theta_w)$ with high precision (same as Z-pole)
- P2-Experiment (proton weak charge) in Mainz under preparation New MESA energy recovering accelerator at 155 MeV, target precision is 1.7% in Qweak i.e. 0.13% in sin²(θ_w), Sensitivity to new physics up to a scale of 49 TeV
- Much more physics from PV electron scattering
- Together with Moeller@Jlab (electron weak charge) and SOLID@Jlab (quark weak charge) very sensitive test of standard model and possibility to narrow in on Standard Model Extension

Other Measurements: Carbon, Lead Introduction Achievable Precision Experimental Realization Conclusion

- Basic Setup
- Geant4 RayTracing Plots
- Separation of Excited States

EXPERIMENTAL REALIZATION

Neutron Skin for beginner

Where do the neutrons go?

Pressure forces neutrons out against surface tension

ETTINASFIENTI

Measurement of neutron distribution in nuclei deceisive for Neutron star properties

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \delta^{2} + \mathcal{O}(\delta)^{4}$$

symmetry energy

$$E_{sym}(\rho) = \left[S_{v} + \frac{L}{3}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right)^{2}\right] + \dots$$
slope parameter

$$u_{0,3} = \left[\frac{1}{2} \frac{1}{2} \frac{1}{2$$

$$L = 3\rho_0 \frac{\partial E_{sym}\left(\rho\right)}{\partial \rho} \bigg|_{\rho_0}$$

curvature parameter

$$K_{sym} = 9\rho_0^2 \frac{\partial^2 E_{sym}\left(\rho\right)}{\partial \rho^2} \bigg|_{\rho_0}$$

X. Roca-Maza et al., PRL 106 (2011) 252501

M. Thiel

NHY?

70

angle [degree]

10

ICETTINA SFIENTI

80

90

100

θ [degree]

Full azimuthal coverage⇔4xstat

Assuming same PREX luminosity: $\Delta \theta = 4^{\circ}$: Rate=8.25 GHz, A_{PV}=0.66 ppm **1440h** $\rightarrow \delta R_n/R_n = 0.5\%$ (assuming 1% syst. $\delta A_{PV}/A_{PV}$)

World data of $sin^2\Theta_w$ including EIC projections

- 200 days of dedicated run
- Can reach similar precision to SoLID measurement
- Interesting Q² region never been measured or planned

Yuxiang Zhao (SBU)

JG U MESA: Beam parameter SFB 1044 Institut für Kernphysik

Beam Energy ERL/EB [MeV]	105/155 (105/205)		
Operation mode	1300 MHz, c.w.		
Elektron-sources	 Polarised : NEA GaAsP/GaAs superlattice , 200keV (?) unpolarised KCsSb, 200keV 		
Bunch Charge EB/ERL [pC] 7.7pC= <mark>10mA</mark> @1300MHz	0.15/0.77 (0.15/7.7)		
Norm. Emittance EB/ERL [µm]	0.1/<0.5 (0.1/<1)		
Spin Polarisation (EB-mode only)	> 0.85		
Recirculations	2 (3)		
Beampower at Exp. ERL/EB [kW]	100/22.5 (1050/30)		
R.fPower installed [kW]	140 (180)		

SFB 1044

Parity violating cross section asymmetry

$$A_{ep} = \left[\frac{G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{\epsilon G_E^{\gamma} G_E^{Z} + \tau G_M^{\gamma} G_M^{Z} - (1 - 4\sin^2\theta_w)\epsilon' G_M^{\gamma} G_A^{Z}}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2}$$

$$A_{\rm RL} = \underbrace{A_{\rm V} + A_{\rm A}}_{= A_0} + A_{\rm S} \begin{cases} A_{\rm V} = -a\rho_{eq}' \left[(1 - 4\sin^2\theta_W) - \frac{\epsilon G_E^p G_E^n + \tau G_M^p G_M^n}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \right] \\ A_{\rm A} = a \frac{(1 - 4\sin^2\theta_W)\sqrt{1 - \epsilon^2}\sqrt{\tau (1 + \tau)}G_M^p \tilde{G}_A^p}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \\ A_{\rm S} = a\rho_{eq}' \frac{\epsilon G_E^p G_E^s + \tau G_M^p G_M^s}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \end{cases} e^{-\frac{1}{2}}$$

 $a = -G_F q^2 / 4\pi \alpha \sqrt{2}, \ \ \tau = -q^2 / 4M_p^2, \ \ \epsilon = [1 + 2(1 + \tau)\tan^2{\theta}/2]^{-1}$

Polarimetry (<0.5%)

The double scattering Mott polarimeter:

Mott Polarimeter:

- Measuring left/right asymetry to calculate spin polarisati
- Analysing power of target foils has to be extrapolated

Double Scattering Polarimeter (DSP):

- Analysing power of the targets can be calculated directly from measurements
- Allows for higher precision measurement of spin polarisation
- Invasive polarimetry at the electron source
- Scattering chamber in operation, first double scattering data

A. Gellrich and J. Kessler, Phys. Rev. A 43, 204 (1991)

Institut für Kernp

Hydro Möller Polarimeter

The promise:^(*)

- Hydro-Möller: Atomic trap with completely electron-spin polarized Hydrogen
- Online capability, high accuracy (<0.5%)
- Statistical efficiency approaches 0.5% in 2 hours (Target: 3*10⁻¹⁶ cm⁻²)
- Acceptance similar to conventional Möller

(*)E. Chudakov, V. Luppov: IEEE Trans. Nucl. Sc. 51, 1533 (2004)

Complete trap with 77mm diam. Cold bore 7T Solenoid $\Delta B/B < 10^{-5} (1 \text{ cm}^3 \text{ Volume})^{(**)}$

(*): T. Roser et. al. NIM A **301** 42-46 (1990)
 (**): W. Kaufmann et. al. NIM A **335** 17-25 (1993)

1.1K Stage heat exchangers Presently in fabrication in KPH Machine shop

Patricia Bartolome, Valerie Tyukine

Detector Concept

Measure Flux of Scattered electrons:

- no pile-up (double count losses)
- sensitive to small electr. fields.
- no separation of phys. process

JG U

Institut für Kernphysik

Experiment Design E = 150 MeV Primary event generators of Simulations: B = 1.08 TMonte Carlo simulation: el. e-p scattering, $\theta \in [23^\circ, 43^\circ]$ el. e-p scattering, $\theta \in [1^\circ, 90^\circ]$ Solenoid Moller scattering, $\theta \in [1^\circ, 89^\circ]$ Moller scattering, $\theta \in [1^\circ, 89^\circ]$ possible! r/mm r/mm P2 signal distribution, z = 3000 mm, E_{___} = 10 MeV 4000 4000 e-, el. e-p scattering, $\theta \in [23^\circ, 43^\circ]$ e-, el. e-p scattering, θ not in [23°, 43°] 3000 3000 e-, Moller scattering, $\theta \in [1^\circ, 89^\circ]$ e+, el. e-p & Moller gamma, el. e-p & Moller 2000 2000 Dominated by 1000 el. e-p scattering, θ ε [23°, 43°] ------1012 1014 1016 1018 1020 1022 1024 1000 2000 1010 -10000 rate/(s⁻¹mm⁻²) z/mm **Dominik Becker**

JGU

nstitut für Kernphysik

Rate distribution in tracking detector nb 1 @ z = 3500 mm

Dominik Becker

Rate distribution @ z = 3810.00 mm

Dominik Becker

Kathrin Gerz

Number of PMT cathode electrons emitted per event

Number of PMT cathode electrons emitted per event

