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Summary of the talk

• Many interesting backgrounds in string theory involve Ramond-Ramond fluxes

• Formulating string perturbation theory in Ramond-Ramond backgrounds has been very difficult

• String field theory (SFT) provides an easy to use systematic framework to study generic backgrounds.

• We found background solutions in SFT that corresponds to GKP type flux compactifications with
small superpotential.

• With this “worldsheet” description, we can now compute stringy amplitudes in GKP backgrounds
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Plan of the talk

• Introduction

• What is string field theory?

• Review of GKP

• SFT for GKP with small flux superpotential

• Conclusions
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Chapter 0: Introduction
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Quantum cosmology in string theory

• It has been very difficult to find a well controlled de Sitter or quintessence in string theory.

• But, let’s have a happy thought, and imagine that we have nice cosmological solutions at our disposal.

• Can we really do quantum cosmology in such backgrounds?

• It is not clear if we can do more than just low energy EFT of cosmology

• To me, this is unacceptable

• We should look forward and start thinking about how to do string theory in cosmological solutions

5 / 40



Quantum cosmology in string theory

• It has been very difficult to find a well controlled de Sitter or quintessence in string theory.

• But, let’s have a happy thought, and imagine that we have nice cosmological solutions at our disposal.

• Can we really do quantum cosmology in such backgrounds?

• It is not clear if we can do more than just low energy EFT of cosmology

• To me, this is unacceptable

• We should look forward and start thinking about how to do string theory in cosmological solutions

5 / 40



Quantum cosmology in string theory

• It has been very difficult to find a well controlled de Sitter or quintessence in string theory.

• But, let’s have a happy thought, and imagine that we have nice cosmological solutions at our disposal.

• Can we really do quantum cosmology in such backgrounds?

• It is not clear if we can do more than just low energy EFT of cosmology

• To me, this is unacceptable

• We should look forward and start thinking about how to do string theory in cosmological solutions

5 / 40



Quantum cosmology in string theory

• It has been very difficult to find a well controlled de Sitter or quintessence in string theory.

• But, let’s have a happy thought, and imagine that we have nice cosmological solutions at our disposal.

• Can we really do quantum cosmology in such backgrounds?

• It is not clear if we can do more than just low energy EFT of cosmology

• To me, this is unacceptable

• We should look forward and start thinking about how to do string theory in cosmological solutions

5 / 40



Quantum cosmology in string theory

• It has been very difficult to find a well controlled de Sitter or quintessence in string theory.

• But, let’s have a happy thought, and imagine that we have nice cosmological solutions at our disposal.

• Can we really do quantum cosmology in such backgrounds?

• It is not clear if we can do more than just low energy EFT of cosmology

• To me, this is unacceptable

• We should look forward and start thinking about how to do string theory in cosmological solutions

5 / 40



Quantum cosmology in string theory

• It has been very difficult to find a well controlled de Sitter or quintessence in string theory.

• But, let’s have a happy thought, and imagine that we have nice cosmological solutions at our disposal.

• Can we really do quantum cosmology in such backgrounds?

• It is not clear if we can do more than just low energy EFT of cosmology

• To me, this is unacceptable

• We should look forward and start thinking about how to do string theory in cosmological solutions

5 / 40



Challenges

• In the conventional formulation of string theory, the fundamental degrees of freedom are described by
worldsheet CFT.

• The worldsheet approach to study cosmological solutions faces numerous challenges

• The worldsheet admits CFT descriptions if and only if one can find vacuum order by order in gs

• Famously, RR backgrounds are notoriously difficult to study in RNS formalism

• Physical observables are defined through S-matrix.

• This suggests that we may need to go beyond the first quantization approach to string theory

• Let’s briefly review why it is difficult to study RR backgrounds in RNS formalism
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Picture numbers

• In RNS formalism, one associates picture numbers to vertex operators.

• There are two types of vertex operators: NS, R.

• Integer picture numbers are assigned to the NS vertex operators

V −1,−1
NSNS = ϵµνe

−ϕψµe−ϕ̄ψ̄νeip·X

• On the other hand, half-integral picture numbers are assigned to R vertex operators

V
− 1

2
,− 1

2
RR = Fαβe

−ϕ/2Σαe−ϕ̄/2Σ
β

• There is one important point to remember

• The worldsheet action has (0, 0) picture
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String perturbation theory in RR backgrounds

• We don’t have access to CFT for RR backgrounds, the best we can do is to start with the CFT for
purely NSNS backgrounds, and deform the CFT with RR flux

• To deform the worldsheet action, one needs a vertex operator with (0, 0) picture number.

• But, RR vertex opeartors have half-integer picture numbers.

• Thus there is no way one can deform the worldsheet just by using RR fluxes.

• Furthermore, any attempts to do so will induce a non-local deformation

g2s

∫
Σ

d2z1V
(−1/2,−1/2)
RR (z1)

∫
Σ

d2z2V
(1/2,1/2)
RR (z2) .

• But, this does not yet imply that we cannot compute scatterings in background field method
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String perturbation theory in RR backgrounds

• Because scattering amplitudes involving RR fields are well defined, one can still attempt to compute
scattering amplitudes in RR backgrounds

• Let’s try to formulate four-graviton amplitude in RR backgrounds at string tree-level
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Recap

• Deforming the WS action by RR fluxes is not well defined.

• On-shell amplitudes in the RR backgrounds are off-shell amplitudes in the original CFT.

• The conventional string perturbation theory based on RNS does not work for RR backgrounds.

• If we can make sense of off-shell amplitudes in string theory, we can understand RR backgrounds.

• This is probably the right thing to do, if one wants to extend string perturbation theory to cosmology.

• We should use string field theory!

10 / 40



Recap

• Deforming the WS action by RR fluxes is not well defined.

• On-shell amplitudes in the RR backgrounds are off-shell amplitudes in the original CFT.

• The conventional string perturbation theory based on RNS does not work for RR backgrounds.

• If we can make sense of off-shell amplitudes in string theory, we can understand RR backgrounds.

• This is probably the right thing to do, if one wants to extend string perturbation theory to cosmology.

• We should use string field theory!

10 / 40



Recap

• Deforming the WS action by RR fluxes is not well defined.

• On-shell amplitudes in the RR backgrounds are off-shell amplitudes in the original CFT.

• The conventional string perturbation theory based on RNS does not work for RR backgrounds.

• If we can make sense of off-shell amplitudes in string theory, we can understand RR backgrounds.

• This is probably the right thing to do, if one wants to extend string perturbation theory to cosmology.

• We should use string field theory!

10 / 40



Recap

• Deforming the WS action by RR fluxes is not well defined.

• On-shell amplitudes in the RR backgrounds are off-shell amplitudes in the original CFT.

• The conventional string perturbation theory based on RNS does not work for RR backgrounds.

• If we can make sense of off-shell amplitudes in string theory, we can understand RR backgrounds.

• This is probably the right thing to do, if one wants to extend string perturbation theory to cosmology.

• We should use string field theory!

10 / 40



Recap

• Deforming the WS action by RR fluxes is not well defined.

• On-shell amplitudes in the RR backgrounds are off-shell amplitudes in the original CFT.

• The conventional string perturbation theory based on RNS does not work for RR backgrounds.

• If we can make sense of off-shell amplitudes in string theory, we can understand RR backgrounds.

• This is probably the right thing to do, if one wants to extend string perturbation theory to cosmology.

• We should use string field theory!

10 / 40



Recap

• Deforming the WS action by RR fluxes is not well defined.

• On-shell amplitudes in the RR backgrounds are off-shell amplitudes in the original CFT.

• The conventional string perturbation theory based on RNS does not work for RR backgrounds.

• If we can make sense of off-shell amplitudes in string theory, we can understand RR backgrounds.

• This is probably the right thing to do, if one wants to extend string perturbation theory to cosmology.

• We should use string field theory!

10 / 40



Chapter 1: What is string field theory?

11 / 40



What is string field theory?

• String field theory (SFT) is an attempt to formulate string theory at off-shell.

• As an input, string field theory takes in a well defined worldsheet CFT.

• String field theory gives well-defined off-shell amplitudes

• With the off-shell data, as an output, one then obtains path integral of string fields.

• This will involve infinitely many interaction vertices for infinitely many fields.

• The SFT action, if there is a target-space interpretation, provides target space action of fields.
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What is string field theory?

• As an example, let’s take bosonic string theory that has 26 bosons Xµ and b, c ghosts

• On shell states in bosonic string theory are constructed as

VT = Tcc̄eik·X , k2 = 4/α′ , VG,B,D = ϵµνcc̄∂X
µ∂̄Xνeik·X , k2 = 0 , . . .

• Then, one can construct string field Ψ, by

Ψ = Tcc̄eik·X + ϵµνcc̄∂X
µ∂̄Xνeik·X + . . . ,

where polarizations are now taken as string fields.

• Crucially, in SFT, on-shell condition is not imposed and k can take an arbitrary value.
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What is string field theory?

• With the string field, the goal is to construct an off-shell action

Ψ = Tcc̄eik·X + ϵµνcc̄∂X
µ∂̄Xνeik·X + . . . ,

• The on-shell condition for the string field is

QB |Ψ⟩ = 0 .

• Therefore, one can deduce that the kinetic action must take the following form

− 1

2g2s
⟨Ψ|c−0 QB |Ψ⟩ .

• What about interaction vertices?

• The idea is to read off Feynmann vertices from off-shell scattering amplitudes

14 / 40



What is string field theory?

• With the string field, the goal is to construct an off-shell action

Ψ = Tcc̄eik·X + ϵµνcc̄∂X
µ∂̄Xνeik·X + . . . ,

• The on-shell condition for the string field is

QB |Ψ⟩ = 0 .

• Therefore, one can deduce that the kinetic action must take the following form

− 1

2g2s
⟨Ψ|c−0 QB |Ψ⟩ .

• What about interaction vertices?

• The idea is to read off Feynmann vertices from off-shell scattering amplitudes

14 / 40



What is string field theory?

• With the string field, the goal is to construct an off-shell action

Ψ = Tcc̄eik·X + ϵµνcc̄∂X
µ∂̄Xνeik·X + . . . ,

• The on-shell condition for the string field is

QB |Ψ⟩ = 0 .

• Therefore, one can deduce that the kinetic action must take the following form

− 1

2g2s
⟨Ψ|c−0 QB |Ψ⟩ .

• What about interaction vertices?

• The idea is to read off Feynmann vertices from off-shell scattering amplitudes

14 / 40



What is string field theory?

• With the string field, the goal is to construct an off-shell action

Ψ = Tcc̄eik·X + ϵµνcc̄∂X
µ∂̄Xνeik·X + . . . ,

• The on-shell condition for the string field is

QB |Ψ⟩ = 0 .

• Therefore, one can deduce that the kinetic action must take the following form

− 1

2g2s
⟨Ψ|c−0 QB |Ψ⟩ .

• What about interaction vertices?

• The idea is to read off Feynmann vertices from off-shell scattering amplitudes

14 / 40



What is string field theory?

• With the string field, the goal is to construct an off-shell action

Ψ = Tcc̄eik·X + ϵµνcc̄∂X
µ∂̄Xνeik·X + . . . ,

• The on-shell condition for the string field is

QB |Ψ⟩ = 0 .

• Therefore, one can deduce that the kinetic action must take the following form

− 1

2g2s
⟨Ψ|c−0 QB |Ψ⟩ .

• What about interaction vertices?

• The idea is to read off Feynmann vertices from off-shell scattering amplitudes

14 / 40



Three-point vertex

• The three point vertex is determined by the following off-shell amplitude

• {Ψ3} is a complicated function of polarization/string fields.
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Four-point vertex

• To compute the four-point vertex, we need to do a little more work.

• Let’s first compute four-point amplitude

• We expect that some contributions to the four-point amplitude come from joining three-point vertices

• The goal is to isolate the contribution that comes purely from the four-point vertex
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Four-point vertex

• We can put z at a generic point

• For generic z, we have a four-point vertex contribution
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Four-point vertex

• We can bring z to 0

• When z is close to 0, we have t-channel
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Four-point vertex

• We can bring z to ∞

• When z is close to ∞, we have s-channel
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Four-point vertex

• To find the four-point vertex contribution, we can excise local coordinate charts around 0, 1, ∞

• and integrate over z away from the blue regions

• Different choices of local coordinates correspond to field redefinitions
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What is string field theory?

• Finally, we have constructed string field action

S(Ψ) = − 1

2g2s
⟨Ψ|c−0 QB |Ψ⟩+

∑
N,g

g2−2g+N
s

N !
{ΨN}Σg .

• The action satisfies the BV master equation, and therefore gauge invariant.

• In essence, SFT as we know is a self-consistent set of rules that allows off-shell computations in string
perturbation theory

• The SFT action involves infinitely many terms for infinitely many field. So, we should carefully
choose a problem
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Why now?

• You can ask “why didn’t SFT community solve flux compactification already many years ago if string
field theory is that useful for RR backgrounds?”

• Only recently, SFT for all superstring theories were constructed Sen 15, Moosavian, Sen, Verma 19

• As we finally have SFT for all superstring theories, SFT is ripe for applications.

• As the first step, let us study flux compactification in type IIB string theory
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Chapter 2: Review of GKP background.
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What is GKP?

• Giddings, Kachru, Polchinski 01 (GKP) aims to stabilize complex structure z and axio-dilaton τ in
type IIB on CY3/I

• Let’s study type IIB on an O3/O7 orientifold of a Calabi-Yau threefold X/I.

• The low-energy action contains the following terms

Sbulk ⊃ − 1

4κ2
10

∫
R1,3×X/I

d10X
√
−G

(
|H3|2

g2s
+ |F3|2

)
, SD3/O3 ⊃

∑
i

−µ3Qi

∫
R1,3

d4x
√
−G 1

gs

• One can massage the above equations to obtain

S ⊃ − 1

2κ2
10

∫
R1,3

d4X

[∫
d6X

√
−GG− · Ḡ−

Imτ

]
,

∫
X/I

H ∧ F +ND3 = QD3 , G3 := F3 −
i

gs
H3 , G− := G3 + i ⋆6 G3 .
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What is GKP?

• The action contains

SF = − 1

2κ2
10

∫
R1,3

d4XVF , VF =

[∫
d6X

√
−GG− · Ḡ−

Imτ

]
∫
X/I

H ∧ F +ND3 = QD3 , G := F3 −
i

gs
H3 , G− := G3 + i ⋆6 G3 .

• G− vanishes if G3 is a linear combination of complex (2, 1)⊕ (0, 3) forms.

• Therefore, quantized fluxes H3 and F3 induce potential for z and 1/gs.

• At the minimum of the potential, one finds

− ⋆6
H3

gs
= F3 .

25 / 40



What is GKP?

• The action contains

SF = − 1

2κ2
10

∫
R1,3

d4XVF , VF =

[∫
d6X

√
−GG− · Ḡ−
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Chapter 3: SFT for GKP.
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Goal

• Today we will find the background solution ≡ B in string field theory for GKP backgrounds

• and show that vacua with small flux superpotential admit double scaling expansion
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Set up

• As an input, SFT requires a well-defined worldsheet CFT.

• The closest worldsheet CFT to flux compactifications we can find is

CFT : S2 → R1,3 ×X/I , BCFT : D2 → Dp-branes ,RP2 → Op-planes

with no quantized fluxes, and the tadpole cancellation condition is not satisfied

ND3 <
1

4
NO3

• With this CFT, we can construct SFT that involves infinitely many terms for infinitely many fields

S(Ψ) = − 1

2g2s
⟨Ψ|c−0 QB |Ψ⟩+

∑
N,g

g2−2g+N
s

N !
{ΨN}Σg .

• We want to turn on quantized fluxes F3, H3 in SFT to find a nearby vacuum
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Problems

• Don’t panic!

• Off-shell amplitudes are well-defined even if the tadpole cancellation condition is not satisfied.

• The real problem is that SFT action contains infinitely many terms for infinitely many fields.

• Hence, it is absolutely crucial that the problem we want to solve is of a perturbative nature.

• But the background fluxes background fluxes H3, F3 are quantized

• If deformation by H3, F3 is not “small,” we cannot solve eom in SFT in a reasonable manner
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Puzzle

• Therefore, for us to find GKP solution in SFT, we need to ensure that we can treat quantized fluxes
as a small perturbation

δΨ = cc̄HijkY
ie−ϕψje−ϕ̄ψ̄k + gscc̄e

−ϕ/2ΣαF
αβe−ϕ̄/2Σβ .

• This is a very concerning situation.

• Hijk and Fαβ are quantized fluxes. So, we cannot treat them as small numbers.

• Naively, this seems to suggest that we cannot treat quantized fluxes as a perturbation.
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Resolution

• Let’s look at OPEs of the worldsheet fields

Y i(x)Y j(0) ∼ −α
′

2
Gij(z) log |x|2 , ψi(x)ψj(0) ∼ Gij(z)

x

• This means that the following vertex operators depend on complex structure moduli z through Gij

δΨ = cc̄HijkY
ie−ϕψje−ϕ̄ψ̄k + gscc̄e

−ϕ/2ΣαF
αβe−ϕ̄/2Σβ .

• Following Demirtas, MK, McAllister, Moritz 19 (PFV), one can choose H and F such that

O
(
HijkY

ie−ϕψje−ϕ̄ψ̄k
)
= O(z−1/2) , O

(
gse

−ϕ/2ΣαF
αβe−ϕ̄/2Σβ

)
= O(gsz

1/2)

• By taking the following double scaling expansion

gs → 0 , z−1 → 0 , zgs = fixed

we can treat δΨ as a small perturbation
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Solving EOM perturbatively

• We call the following double scaling expansion the ϵ expansion

gs → 0 , z−1 → 0 , zgs = fixed

as we treat O(gs) = O(z−1) = O(ϵ).

• Then, we can find an ansatz for the perturbative background solution

Ψ =
∑
n

ϵn/2Ψn

• In this talk, we will study eom up to the second order

QB |Ψ1⟩ = 0 ,

QB |Ψ2⟩ =
1

2

[
Ψ2

1

]
S2 + []D2+RP2 ,
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Solving EOM perturbatively: second order

• Let’s now study the second-order eom

QB |Ψ2⟩ =
1

2

[
Ψ2

1

]
S2 + []D2+RP2 ,

• This equation looks very difficult to solve, as source terms are coupled to infinitely many fields

• One can devise a hack used by Sen

• Let’s define a projection operator P that projects states to L+
0 := L0 + L̄0 nilpotent (massless) states

• Then we can find two independent equations

QBP|Ψ2⟩ =
1

2
P
[
Ψ2

1

]
S2 + P[]D2+RP2

QB(1− P)|Ψ2⟩ =
1

2
(1− P)

[
Ψ2

1

]
S2 + (1− P)[]D2+RP2
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Solving EOM perturbatively: second order

• Let’s study the massive part of the second-order eom

QB(1− P)|Ψ2⟩ =
1

2
(1− P)

[
Ψ2

1

]
S2 + (1− P)[]D2+RP2

• For (1− P) projected states, QB is an invertible operator via {QB , b
+
0 } = L+

0

• As a result, eom for infinitely massive states is trivially solved

(1− P)|Ψ2⟩ =
b+0
L+

0

[
1

2
(1− P)

[
Ψ2

1

]
S2 + (1− P)[]D2+RP2

]
• Note that b+0 /L

+
0 corresponds to the Green’s function in target space.
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Solving EOM perturbatively: second order

• Let’s study the L+
0 nilpotent part of the second-order eom

QBP|Ψ2⟩ =
1

2
P
[
Ψ2

1

]
S2 + P[]D2+RP2

• Because QB is not an invertible operator for L+
0 nilpotent states, one needs to do an actual work here.

• The goal is to show that the right-hand side of the eom is QB-exact.

• After CFT gymnastics, one arrives at

QBP|Ψ2⟩NSNS =
∑
i

CiT3
1

VolX/I
(∂c+ ∂̄c̄)Dgh + V

(
∂

∂gs
VF ,

∂

∂Gij
VF ,

∫
H ∧ F3 +ND3 −QD3

)

QBP|Ψ2⟩RR = V ′
(∫

H ∧ F3 +ND3 −QD3

)
V and V ′ are linear combinations of derivatives of the F-term potential and the tadpole constraint

V(0, 0, 0) = 0 , V ′(0) = 0
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Solving EOM perturbatively: second order

• V and V ′ are linear combinations of derivatives of the F-term potential and the tadpole constraint

QBP|Ψ2⟩NSNS =
∑
i

CiT3P(δ(6)(y − yi))Dgh + V
(

∂

∂gs
VF ,

∂

∂Gij
VF ,

∫
H ∧ F3 +ND3 −QD3

)

QBP|Ψ2⟩RR = V ′
(∫

H ∧ F3 +ND3 −QD3

)
V(0, 0, 0) = 0 , V ′(0) = 0

• So, provided that the tadpole cancellation holds, and we tune the moduli such that VF is minimized

QBP|Ψ2⟩NSNS =
∑
i

CiT3
1

VolX/I
(∂c+ ∂̄c̄)Dgh , QBP|Ψ2⟩RR = 0
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Solving EOM perturbatively: second order

• Hence, to show that the solution exists we need to find Ψ2 that solves

QBP|Ψ2⟩NSNS =
∑
i

CiT3
1

VolX/I
(∂c+ ∂̄c̄)Dgh

• And we found P|Ψ2⟩

4α′

g2c
PΨ2 =− π

18κ2
10g

2
sϵ
cc̄

(
BabB

ab(η∂̄ξ̄e−2ϕ̄ − ∂ξη̄e−2ϕ)− 2BacB
cbe−ϕψae−ϕ̄ψ̄b

− 2i

√
α′

2
BabH

abc(∂c+ ∂̄c̄)
(
e−ϕψce

−2ϕ̄∂̄ξ̄ + e−ϕ̄ψ̄ce
−2ϕ∂ξ

))
.
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Conclusions
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Take home messages

• String field theory provides an easy to use framework to study RR backgrounds.

• Provided that sugra solutions are well controlled, finding SFT counterpart isn’t very difficult.

• Using the background solution in SFT, one can now compute amplitudes in RR backgrounds.
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Future directions

• We are computing tree-level/one-loop amplitudes to learn how to compute amplitudes in flux
backgrounds Minjae Cho, MK 24xx.xxxxx

• Generalization to Calabi-Yau orientifold compactifications?

• One can also study flux compactifications in type IIA, heterotic string theories.

• Probably there are many more exciting directions! If you are interested, let’s chat!
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