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Summary of the talk

® Many interesting backgrounds in string theory involve Ramond-Ramond fluxes
® Formulating string perturbation theory in Ramond-Ramond backgrounds has been very difficult
® String field theory (SFT) provides an easy to use systematic framework to study generic backgrounds.

® We found background solutions in SF'T that corresponds to GKP type flux compactifications with
small superpotential.

e With this “worldsheet” description, we can now compute stringy amplitudes in GKP backgrounds
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Chapter 0: Introduction



Quantum cosmology in string theory

® Tt has been very difficult to find a well controlled de Sitter or quintessence in string theory.
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Quantum cosmology in string theory

® Tt has been very difficult to find a well controlled de Sitter or quintessence in string theory.

® But, let’s have a happy thought, and imagine that we have nice cosmological solutions at our disposal.
® Can we really do quantum cosmology in such backgrounds?

® [t is not clear if we can do more than just low energy EFT of cosmology

® To me, this is unacceptable

® We should look forward and start thinking about how to do string theory in cosmological solutions
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Challenges

® In the conventional formulation of string theory, the fundamental degrees of freedom are described by
worldsheet CFT.

® The worldsheet approach to study cosmological solutions faces numerous challenges

® The worldsheet admits CFT descriptions if and only if one can find vacuum order by order in gs
® Famously, RR backgrounds are notoriously difficult to study in RNS formalism

® Physical observables are defined through S-matrix.
® This suggests that we may need to go beyond the first quantization approach to string theory

® Let’s briefly review why it is difficult to study RR backgrounds in RNS formalism
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Picture numbers

® In RNS formalism, one associates picture numbers to vertex operators.

® There are two types of vertex operators: NS, R.

® Integer picture numbers are assigned to the NS vertex operators
Visig = eue “he Py e

® On the other hand, half-integral picture numbers are assigned to R vertex operators

1 1

V2 % = Fage *?50e 925"

® There is one important point to remember

® The worldsheet action has (0,0) picture
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String perturbation theory in RR backgrounds

® We don’t have access to CFT for RR backgrounds, the best we can do is to start with the CFT for
purely NSNS backgrounds, and deform the CFT with RR flux

® To deform the worldsheet action, one needs a vertex operator with (0,0) picture number.
® But, RR vertex opeartors have half-integer picture numbers.
® Thus there is no way one can deform the worldsheet just by using RR fluxes.

® Furthermore, any attempts to do so will induce a non-local deformation

gﬁ/d221V§§1/2’71/2)(zl)/dQZQVé%M/Z)(zQ).
3 >

® But, this does not yet imply that we cannot compute scatterings in background field method
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String perturbation theory in RR backgrounds

® Because scattering amplitudes involving RR fields are well defined, one can still attempt to compute
scattering amplitudes in RR backgrounds

® Let’s try to formulate four-graviton amplitude in RR backgrounds at string tree-level

er;‘l'm ‘9
R T R

] 9/ 40



String perturbation theory in RR backgrounds

® Because scattering amplitudes involving RR fields are well defined, one can still attempt to compute
scattering amplitudes in RR backgrounds

® Let’s try to formulate four-graviton amplitude in RR backgrounds at string tree-level

er."hvt i g_+$g
RR T R

Beckreadion: B

] 9/ 40



String perturbation theory in RR backgrounds

® Because scattering amplitudes involving RR fields are well defined, one can still attempt to compute
scattering amplitudes in RR backgrounds

® Let’s try to formulate four-graviton amplitude in RR backgrounds at string tree-level

er."hvt H g_+$g
RR T R
Bedrodien' B
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Recap

® Deforming the WS action by RR fluxes is not well defined.

® On-shell amplitudes in the RR backgrounds are off-shell amplitudes in the original CFT.

® The conventional string perturbation theory based on RNS does not work for RR backgrounds.

® [f we can make sense of off-shell amplitudes in string theory, we can understand RR backgrounds.

® This is probably the right thing to do, if one wants to extend string perturbation theory to cosmology.

® We should use string field theory!
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® String field theory (SFT) is an attempt to formulate string theory at off-shell.
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What is string field theory?

® String field theory (SFT) is an attempt to formulate string theory at off-shell.

® As an input, string field theory takes in a well defined worldsheet CFT.

® String field theory gives well-defined off-shell amplitudes

® With the off-shell data, as an output, one then obtains path integral of string fields.
® This will involve infinitely many interaction vertices for infinitely many fields.

® The SF'T action, if there is a target-space interpretation, provides target space action of fields.
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What is string field theory?

® As an example, let’s take bosonic string theory that has 26 bosons X* and b, ¢ ghosts

® On shell states in bosonic string theory are constructed as

Vi = Teee™ ™ k> =4/d, Vap.p = €uccdX X e™ X k> =0,

® Then, one can construct string field ¥, by

U = Teee™ ™ + e,,ccdX X ™ + ...

where polarizations are now taken as string fields.

Crucially, in SF'T, on-shell condition is not imposed and k£ can take an arbitrary value.
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® The on-shell condition for the string field is

Qz|T)=0.

® Therefore, one can deduce that the kinetic action must take the following form
1

—2792<W|03QB|‘I’> .

® What about interaction vertices?
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What is string field theory?

® With the string field, the goal is to construct an off-shell action

U = Tcee™ ™ + e,,ccdX X ™™ + ...,

® The on-shell condition for the string field is

Qz|T)=0.

® Therefore, one can deduce that the kinetic action must take the following form

1 _
—@@m% QslY).

® What about interaction vertices?

® The idea is to read off Feynmann vertices from off-shell scattering amplitudes
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Three-point vertex

® The three point vertex is determined by the following off-shell amplitude

e {T3} is a complicated function of polarization/string fields.
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Four-point vertex

® To compute the four-point vertex, we need to do a little more work.

® Let’s first compute four-point amplitude

® We expect that some contributions to the four-point amplitude come from joining three-point vertices

® The goal is to isolate the contribution that comes purely from the four-point vertex
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Four-point vertex

® We can put z at a generic point

Y(e) Y (v)

Y(e0)

¥

® For generic z, we have a four-point vertex contribution
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Four-point vertex

® We can bring z to 0

% (o) Y(%)

30) Y0

® When z is close to 0, we have t-channel
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Four-point vertex

® We can bring z to co

Y () Y2)

L) H(0)

® When z is close to co, we have s-channel
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Four-point vertex

® To find the four-point vertex contribution, we can excise local coordinate charts around 0, 1, oo

® and integrate over z away from the blue regions

® Different choices of local coordinates correspond to field redefinitions
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What is string field theory?

® Finally, we have constructed string field action

1 2—2

- A
S(v) = —@W\Co Qal¥) +> ST{‘I’ e, -
S N,g .
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What is string field theory?

® Finally, we have constructed string field action
1 2-2

B g2 2N
S(8) = — 55 (Wleg Q| ) + 32 B (¥},
S N,g *

® The action satisfies the BV master equation, and therefore gauge invariant.

® In essence, SF'T as we know is a self-consistent set of rules that allows off-shell computations in string
perturbation theory

® The SFT action involves infinitely many terms for infinitely many field. So, we should carefully
choose a problem

] 21 /40



Why now?

® You can ask “why didn’t SF'T community solve flux compactification already many years ago if string
field theory is that useful for RR backgrounds?”
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Why now?

® You can ask “why didn’t SF'T community solve flux compactification already many years ago if string
field theory is that useful for RR backgrounds?”

® Only recently, SF'T for all superstring theories were constructed Sen 15, Moosavian, Sen, Verma 19

® As we finally have SFT for all superstring theories, SFT is ripe for applications.

As the first step, let us study flux compactification in type IIB string theory
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Chapter 2: Review of GKP background.



What is GKP?

® Giddings, Kachru, Polchinski 01 (GKP) aims to stabilize complex structure z and axio-dilaton 7 in
type IIB on CY3/Z
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® The low-energy action contains the following terms
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What is GKP?

Giddings, Kachru, Polchinski 01 (GKP) aims to stabilize complex structure z and axio-dilaton 7 in
type IIB on CY3/Z

Let’s study type IIB on an O3/07 orientifold of a Calabi-Yau threefold X/Z.

The low-energy action contains the following terms

H;)? 1
dloX\/—G<| 3| +\F3|2> ,» Sp3jos DZ_NSQ'L/ 3d45€ -G—

Shutk D —

%)
4k, RL3xX/T g3 R, gs

® One can massage the above equations to obtain

) L d4X[/d6X«/—G%},
Im7

T 9,2
2K70 Jr1.3

HAF+Nps=Qps, Gs:=F3 — “Hy, G_ := G +ixsCs.
X/T 9s
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What is GKP?

® The action contains
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R1.3 Im7

T 5.2
2K7,
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What is GKP?

The action contains

SF - ! / d4XVF, VF = [/ dﬁX\/_G%
R1.3 Im7

T 5.2
2K7,

H/\F+ND3:QD3, GZZFg—ng, G_ 2:G3+’L'*6G3.
X/T s

® (_ vanishes if G3 is a linear combination of complex (2,1) & (0, 3) forms.

Therefore, quantized fluxes Hs and F3 induce potential for z and 1/gs.

® At the minimum of the potential, one finds

H
— %6 3:F3.
9s
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Chapter 3: SFT for GKP.



Goal

® Today we will find the background solution = B in string field theory for GKP backgrounds

® and show that vacua with small flux superpotential admit double scaling expansion

er('“fm : 5,+S3
R 1T R
Bn.céreat‘{'(lmll B

Oﬁ-sl.e”
w e ari&'-ul CET
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Set up
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Set up

® As an input, SFT requires a well-defined worldsheet CFT.

® The closest worldsheet CFT to flux compactifications we can find is
CFT :S* - R"® x X/Z, BCFT : D* — Dp-branes, RP* — Op-planes

with no quantized fluxes, and the tadpole cancellation condition is not satisfied
1
Nps < —Nos
4
e With this CFT, we can construct SF'T that involves infinitely many terms for infinitely many fields

1 2—2g

+N
S(¥) = —@@I’\CEQB\‘I/) +y gST{‘I/N}Eg -
S N,g .

® We want to turn on quantized fluxes F3, Hs in SFT to find a nearby vacuum

] 28 /40



Problems

® Don’t panic!

] 29 /40



Problems

® Don’t panic!

® Off-shell amplitudes are well-defined even if the tadpole cancellation condition is not satisfied.

] 29 /40



Problems

® Don’t panic!
® Off-shell amplitudes are well-defined even if the tadpole cancellation condition is not satisfied.

® The real problem is that SF'T action contains infinitely many terms for infinitely many fields.

] 29 /40



Problems

® Don’t panic!

Off-shell amplitudes are well-defined even if the tadpole cancellation condition is not satisfied.

The real problem is that SF'T action contains infinitely many terms for infinitely many fields.

® Hence, it is absolutely crucial that the problem we want to solve is of a perturbative nature.

] 29 /40



Problems

® Don’t panic!

Off-shell amplitudes are well-defined even if the tadpole cancellation condition is not satisfied.

The real problem is that SF'T action contains infinitely many terms for infinitely many fields.

® Hence, it is absolutely crucial that the problem we want to solve is of a perturbative nature.

But the background fluxes background fluxes Hs, F3 are quantized

] 29 /40



Problems

® Don’t panic!

® Off-shell amplitudes are well-defined even if the tadpole cancellation condition is not satisfied.
® The real problem is that SF'T action contains infinitely many terms for infinitely many fields.
® Hence, it is absolutely crucial that the problem we want to solve is of a perturbative nature.
® But the background fluxes background fluxes Hs, F3 are quantized

® [f deformation by Hs, F3 is not “small,” we cannot solve eom in SFT in a reasonable manner
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Puzzle

® Therefore, for us to find GKP solution in SFT, we need to ensure that we can treat quantized fluxes
as a small perturbation

80 = ceHijY'e P e P98 + gacoe o F*Pe /75,
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Puzzle

® Therefore, for us to find GKP solution in SFT, we need to ensure that we can treat quantized fluxes
as a small perturbation

80 = ceHijY'e P e P98 + gacoe o F*Pe /75,

® This is a very concerning situation.
® Hijx and F' *# are quantized fluxes. So, we cannot treat them as small numbers.

® Naively, this seems to suggest that we cannot treat quantized fluxes as a perturbation.
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Resolution

® Let’s look at OPEs of the worldsheet fields
GY(z)

T

Y)Y (0) ~ — %G () log af? (2 (0) ~
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T

Y)Y (0) ~ — %G () log af? (2 (0) ~

® This means that the following vertex operators depend on complex structure moduli z through G%
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Resolution

® Let’s look at OPEs of the worldsheet fields
GY(z)

T

Y)Y (0) ~ — %G () log af? (2 (0) ~

® This means that the following vertex operators depend on complex structure moduli z through G%

0U = cEHijkYiefﬂlee*&l/_)k + gscéef¢/22aFaﬂeﬂg/2§5 .

® Following Demirtas, MK, McAllister, Moritz 19 (PFV), one can choose H and F such that

6) (Hijkyie‘%fe—%’“) —0@="%), 0 (gse_wQEaFaBe_q;/Qig) = O(g:2""%)

] 31/40



Resolution

® Let’s look at OPEs of the worldsheet fields
GY(z)

T

Y)Y (0) ~ — %G () log af? (2 (0) ~

® This means that the following vertex operators depend on complex structure moduli z through G%

0U = cEHijkYiefﬂlee*&l/_Jk + gscéef¢/22aFaﬂeﬂg/2§5 .

® Following Demirtas, MK, McAllister, Moritz 19 (PFV), one can choose H and F such that

6) (Hijkyie‘%fe—%’“) —0@="%), 0 (gse‘d’/QzaF"Be‘@/?iﬁ) = O(g:2""%)

® By taking the following double scaling expansion
gs =0, 27 50, zgs = fized
we can treat W as a small perturbation
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Solving EOM perturbatively

® We call the following double scaling expansion the € expansion
gs =0, 27" =0, zgs = fized

as we treat O(gs) = O(z7') = O(e).
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® We call the following double scaling expansion the € expansion
gs — 0, 27 50, zgs = fized
as we treat O(gs) = O(z™1) = O(e).

® Then, we can find an ansatz for the perturbative background solution

U= Ze”/Q\pn
n
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Solving EOM perturbatively

® We call the following double scaling expansion the € expansion
gs — 0, 27 50, zgs = fized
as we treat O(gs) = O(z7') = O(e).
® Then, we can find an ansatz for the perturbative background solution

U= Ze”/Q\pn
n

® In this talk, we will study eom up to the second order

Qs|¥1) =0,
Qp|V2) = % [\pﬂ52 + [Ip24re2
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Solving EOM perturbatively: second order

® Let’s now study the second-order eom

QB|V2) = [‘Ifﬂsz + (Ip24re2

N | =
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QB|V2) = [‘Ifﬂsz + (Ip24re2

N[ =

® This equation looks very difficult to solve, as source terms are coupled to infinitely many fields
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® Let’s now study the second-order eom

[‘Ifﬂ g2 T [ p24rp2

N[ =

QRp|V2) =

® This equation looks very difficult to solve, as source terms are coupled to infinitely many fields

® One can devise a hack used by Sen

Let’s define a projection operator P that projects states to Lg := Lo + Lo nilpotent (massless) states
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Solving EOM perturbatively: second order

® Let’s now study the second-order eom

[‘Ifﬂ g2 T [ p24rp2

N[ =

QRp|V2) =

® This equation looks very difficult to solve, as source terms are coupled to infinitely many fields

® One can devise a hack used by Sen

Let’s define a projection operator P that projects states to Lg := Lo + Lo nilpotent (massless) states

® Then we can find two independent equations

1
QpP|¥,) = 5P [¥7] 42 + Pllp2ree

Qu(1 - P)Wa) = (1~ P) [#3] o + (1~ P)l] o e
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Solving EOM perturbatively: second order

® Let’s study the massive part of the second-order eom

Qp(1 = B)|W2) = (1~ F) [93] o + (1~ B) [ g2
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Solving EOM perturbatively: second order

® Let’s study the massive part of the second-order eom
1
Qp(1-DP)|¥s) = 5(1 -P) [\I’ﬂ g2 T (1 —P)[p2sre2

® For (1 —P) projected states, Qg is an invertible operator via {Qs, ba‘} = La’
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Solving EOM perturbatively: second order

® Let’s study the massive part of the second-order eom
1
Qp(1-DP)|¥s) = 5(1 -P) [\I’ﬂ g2 T (1 —P)[p2sre2

® For (1 —P) projected states, Qg is an invertible operator via {Qs, ba‘} = La’

® As a result, eom for infinitely massive states is trivially solved

bt 1 2
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Solving EOM perturbatively: second order

® Let’s study the massive part of the second-order eom

Qu(1 = B)|W2) = (1~ B) [#] o + (1~ P) [ g2

For (1 — IP) projected states, @ is an invertible operator via {Qs, ba‘} = La’

® As a result, eom for infinitely massive states is trivially solved

bt 1 2
A-P)¥2) = % |51 -P) [¥1] g2 + (1 = P)[] p2 ymee

® Note that b /L{ corresponds to the Green’s function in target space.
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Solving EOM perturbatively: second order
® Let’s study the L(f nilpotent part of the second-order eom

1
QBP|¥;) = EP (V7] g2 T Pllp2re2
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® Because Qg is not an invertible operator for L nilpotent states, one needs to do an actual work here.

® The goal is to show that the right-hand side of the eom is () g-exact.
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Solving EOM perturbatively: second order
® Let’s study the Lg nilpotent part of the second-order eom

1
QBP|¥;) = §P (V7] g2 T Pllp2re2

® Because Qg is not an invertible operator for L nilpotent states, one needs to do an actual work here.
® The goal is to show that the right-hand side of the eom is () g-exact.

o After CFT gymnastics, one arrives at

0

dgs Vi 56

QBP|\I/2>NSNS—ZCT3 (80+BC) gh+V( /H/\F3+ND3—QD3)

Vo lx/z (9G”

QsP|¥2)rE (/H A F3+ Nps — QDS)
V and V' are linear combinations of derivatives of the F-term potential and the tadpole constraint
V(0,0,0) =0, V'(0) =0
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Solving EOM perturbatively: second order

® V and V' are linear combinations of derivatives of the F-term potential and the tadpole constraint

0

dgs Ve 5Gi

/H/\F3+ND3—QD3)

QBP[V2)Nnsns = z; CiTsP(3' (y — 4i)) Dgn + V ( 8Gu

QBP|V2)rr =V (/H A F3+ Np3 — QD3>
V(0,0,0) =0, V'(0) =0
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Solving EOM perturbatively: second order

® V and V' are linear combinations of derivatives of the F-term potential and the tadpole constraint

0

dgs Ve 5Gi

QBP|Y2)NsNs = z; CiT3P(5(6)(y —i))Dgn +V ( 8G’U

/H/\F3+ND3—QD3)

QBP|V2)rr =V (/H A F3+ Np3 — QD3>
V(0,0,0) =0, V'(0) =0

® So, provided that the tadpole cancellation holds, and we tune the moduli such that Vr is minimized

QRBP|¥Y2)Nsns = ZC Ts (Oc+ 5E)Dgh, QeP|¥Y2)rr =0

VO X/T
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Solving EOM perturbatively: second order

® Hence, to show that the solution exists we need to find Ws that solves

QBP|Y2)nsns = Z CiTs (Oc + 02) Dy,

Vo lX/I
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Solving EOM perturbatively: second order

® Hence, to show that the solution exists we need to find ¥, that solves

QBP|Y2)nsns = Z CiTs (Oc + 02) Dy,

Vo lX/I

® And we found P|¥5)

4 !
P =—
g2 18x7y935€

— 9% )%BabHabc(aC‘i’ 56) (67¢wc€72$(§€+ 6751/%672‘#’35) )

CE(B“bBa"(77556‘2‘55 — 0¢ije*?) — 2Bac B ey e 4y
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Conclusions
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Take home messages

® String field theory provides an easy to use framework to study RR backgrounds.
® Provided that sugra solutions are well controlled, finding SF'T counterpart isn’t very difficult.

® Using the background solution in SFT, one can now compute amplitudes in RR backgrounds.
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Future directions

® We are computing tree-level/one-loop amplitudes to learn how to compute amplitudes in flux
backgrounds Minjae Cho, MK 24xx.xxxxx

® Generalization to Calabi-Yau orientifold compactifications?
® One can also study flux compactifications in type ITA, heterotic string theories.

® Probably there are many more exciting directions! If you are interested, let’s chat!
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