Prospects and challenges for future ee and ep colliders

Marcin Chrzaszcz mchrzasz@cern.ch

Physik-Insitut, University of Zurich Institue of Nuclear Physics, Polish Academy of Sciences

Neutrinos at the High Energy Frontier, Amherst, 18-20 July, 2017

Outline

- \Rightarrow Future e^+e^- colliders.
- ILC
- CLIC
- FCCee,eh
- \Rightarrow Detector
- \Rightarrow Physics program:
- Higgs program.
- Z pole program.
- WW program.
- $t\bar{t}$ program.
- Neutrino program.

Ouo Vadis HEP?

What has LHC found...

 \Rightarrow A Higgs boson. $m_H = 125 \text{ GeV}$ $\Gamma_H = 4.1 \text{ MeV}$

- \Rightarrow Dark
- matter/energy?
- ⇒ Neutrino masses?
- ⇒ Matter/antimatter

asymmetry?

- ⇒ LHC has ongoing physics program...
- Run 2 +3: 300 by 2023
 - \Rightarrow But what for post-LHC area? Need to plan now!

-ilr

• HL-HLC: 3000 by 2035

International Linear Collider (ILC)

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FCC

/ 43

International Linear Collider (ILC)

 \Rightarrow The ILC concept was reviewed by the Japanese government.

Feedbacks (domestic only)

 \Rightarrow Academia in general: reserved/hostile

- \Rightarrow Funding authorities:
- reserved/critical
- ⇒ Political allies (Local/Central): enthusiastic/cautious

⇒ "Given the fact that the energy scale of new physics is currently unknown, the physics reach of precision Higgs and other SM probes of ILC250 are comparable to that of ILC500", Hiroaki Aihara

Compact Linear Collider (CLIC)

 \Rightarrow CLIC also wants a staged approach:

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	Ν	10 ⁹	5.2	3.7	3.7

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FCC

Future Circular Collider (FCC)

FCC - study:

⇒ pp collider: the ultimate goal. ⇒ ee collider: first step. ⇒ ep collider: additional option.

 \circ 98 km infrastructure in Geneva area

 \Rightarrow The Goal: CDR and cost review by the end of 2018!

12 CDR Volumes (9 + 3 Annex)

Time line of FCC

/ 43

Why circular collider?

To achieve interesting physics program one would have to obtain a factor of 10^3 of LEP luminosity.

$$L \sim R \frac{P_{SR}}{\beta^*}$$

 \Rightarrow So how can one increase the luminosity without the electric energy cost?

- \Rightarrow The answer is inside the B-factory design!
- \Rightarrow One has to lower the beam emittance: β^* .

Why circular collider?

To achieve interesting physics program one would have to obtain a factor of 10^3 of LEP luminosity.

⇒ The Luminosity scales:

$$L \sim R \frac{P_{SR}}{\beta^*}$$

 \Rightarrow So how can one increase the luminosity without the electric energy cost?

⇒ The answer is inside the B-factory design! ⇒ One has to lower the beam emittance: β^* .

β^* over last 40 years

- \Rightarrow The β^* will be increased to 1mm compared to 5 cm at LEP.
- \Rightarrow SuperKEKB will pave the way towards $\beta^* < 1 \text{ mm}$.
- \Rightarrow Additional improvements to reach the 10^3 factor in lumi are:
- Continues injection
- More bunches

Marcin Chrzaszcz (Universität Zürich)

Beam parameters

parameter	FCC-ee(400 MHz)				LEP2	
Physics working point	Z		ww	ZH	tt _{bar}	
energy/beam [GeV]	45.6		80	120	175	105
bunches/beam	30180	91500	5260	780	81	4
bunch spacing [ns]	7.5	2.5	50	400	4000	22000
bunch population [10 ¹¹]	1.0	0.33	0.6	0.8	1.7	4.2
beam current [mA]	1450	1450	152	30	6.6	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	210	90	19	5.1	1.3	0.0012
energy loss/turn [GeV]	0.03	0.03	0.33	1.67	7.55	3.34
synchrotron power [MW]			100			22
RF voltage [GV]	0.4	0.2	0.8	3.0	10	3.5

- \Rightarrow Identical beam optics for all energies.
- \Rightarrow FCC would have two separate rings
- \Rightarrow Detectors similar to the ILC and CLIC.

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FCC

Comparison of e^+e^- colliders

/43

FCCep

⇒ Requires
 additional ERL
 ⇒ Would be needed
 anyway for FCChh.

43

Detectors requirements

E.Leogrande

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FCC

/ 43

CLIC detector

E.Leogrande

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FCC

Tracker

E.Leogrande

OUTER BARREL RADIUS to be increased to 2.14 m	Scale all the barrel layers*		
* to compensate for the lower B	layer radius [mm]	CLIC	FCC
	ITB1	127	127
1m	ITB2	340	400
	ITB3	554	670
	OTB1	819	1000
Support tube	OTB2	1153	1568
	ОТВ3	1486	2136
	*layer thick increased to water coolin	ness may ne o accommoo ng	eed to be date more
	Support tube	e*	
	radius [mm]	CLIC	FCC
	inner	575	675
	outer	600	700

*to be checked for mechanical stability

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FC

¹⁷/43

IDEA detector

M.Dam

IDEA detector concept based on present state-of-the-art technologies:

- Vertex detector, MAPS
- Ultra-light drift chamber with PID
- Pre-shower counter
- Double read-out calorimetry
- 2 T solenoidal magnetic field
- Possibly instrumented return yoke
- Or possibly surrounded by large tracking volume (R ≃ 8m) for very weakly coupled (long-lived) particles

/43

M.Dam

Tracker

Inspired by new ALICE ITS based on MAPS technology

- □ Pixels 30 × 30 µm²
- Light
 - \square Inner layers: 0.3% of X_o / layer
 - $\hfill\square$ Outer layers: 1% of X $_{o}$ / layer
- Performance:
 - \square Point resolution of 5 μm (or better)
 - □ Efficiency of ~100%
 - Extremely low fake rate hit rate

Courtesy J.W. van Hoorne

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FCC

/43

Tracker (for) the idea ;)

43

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FCC

Physics program

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FCC

Higgs production

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FCC

²²/43

Higgs Mass

 \Rightarrow A very clean Higgs mass determination in $e^+e^- \rightarrow ZH$ and using a recoil technique (unique for lepton colliders):

$$m_{\rm recoil} = (\sqrt{s} - E_{\mu})^2 - |p_{\mu}|^2$$

 \Rightarrow With $Z \rightarrow \mu \mu$ and $Z \rightarrow ee$

 \Rightarrow ZH decays are tagged independently of the Higgs decay mode.

Higgs Width

 \Rightarrow Higgs-strahlung.

 $\begin{array}{l} \Rightarrow \text{ Total HZ crossection:} \\ \sigma(HZ) \propto g_{HZZ}^2 \\ \Rightarrow \text{ Exclusive cross section:} \\ \sigma(HZ) \times Br(H \rightarrow XX) \propto g_{HZZ}^2 \frac{g_{HXX}^2}{\Gamma_H} \end{array}$

 \Rightarrow Total Higgs width from WW process:

• From this: Δ_H .

Higgs Couplings

⇒ The Higgs couplings to *WW*, *ZZ*, $c\bar{c}$, gg, $\tau^{-}\tau^{+}$, $\gamma\gamma$ can be determined via tagging the respective Higgs decay final states ⇒ Observables:

$$\sigma(e^+e^- \to ZH) \times Br(H \to X)$$

$$\sigma(e^+e^- \to H\nu\nu) \times Br(H \to X)$$

in %	HL-LHC	FCC-ee
g нz	2-4	0.21
g нw	2-5	0.43
9 нь	5-7	0.64
9 Hc	-	1.04
9 Нg	3-5	1.18
g H _τ	5-8	0.81
9 Ημ	5	8.79
9 нү	2-5	2.12
Гн	5-8%	1.55
	orViv:1207 7125	orViv:1209.6176

/ 43

Higgs Production in S-channel

⇒ Potentially possibility to measure the *Hee* Yukawa coupling!
 ⇒ Several final states can be studied.
 ⇒ It requires running:

$$\sqrt{s} = M_H = 125 \text{ GeV}$$

⇒ Since $\Gamma_H = 4.2 \text{ MeV}$, it requires monochromatization (increasing the energy resolution in the CMS energies for e^-e^+ interaction without reducing the inherent energy spread of the colliding beams)

• Limits 3.5 times the SM predictions in both cases.

Normalized Higgs Couplings

 \Rightarrow Higgs couplings normalized to the SM predictions:

$$k_x = \frac{g_{\mathsf{H}xx}}{g_{\mathsf{H}xx}^{SM}}$$

43

MegaTop: $t\bar{t}$ threshold scan

⇒ For the first time the the top quark to be studied using a precisely defined leptonic state.

⇒ The dependence of the t quark cross-section shape on the t quark mass and interactions is computable to high precision (depends on m_t , Γ_t , α_s , $g_H tt$, ISR, luminosity spectrum).

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FCC

Physics program WW

 \Rightarrow Measurement of m_W from σ_{WW}

 $\sqrt{s} = 2m_W + 0.6 \text{ GeV}$

$$\Delta m_W^{FCC} = 500 \text{ keV}$$

Stat. precision • with $L = 11 \text{ pb}^{-1} \rightarrow 350 \text{ MeV}$ • with $L = 8 \text{ ab}^{-1} \rightarrow 0.4 \text{ MeV}$

Sys. precision needed: $\circ \Delta E(\text{beam}) < 0.4 \text{ MeV}$ $\circ \Delta \epsilon / \epsilon < 10^{-4}$ $\circ \Delta \sigma_B < 0.7 \text{ fb}$

43

 $\Delta m_W^{\rm LEP} = 50~{\rm MeV}$

Physics program at the Z pole

 $\Rightarrow L = 3 \times 10^{36} \rightarrow 4 \times 10^{12}$ Z decays. \Rightarrow Z mass and width wit precision of 10 keV (stat) +100 keV (sys). **dn** مرم 30 \Rightarrow Radiation function calculated to ALEPH $\mathcal{O}(\alpha_s^3) \sim 10^{-4}$ DELPHI L3 $\Rightarrow \text{ Relative precisions (JHEP01(2014)164):}$ $\circ R_{\ell} = \frac{\Gamma_{\ell}}{\Gamma_{\text{had}}} \sim 5 \times 10^{-5}$ $\circ R_{b} = \frac{\Gamma_{b\bar{b}}}{\Gamma_{\text{had}}} \sim 2 - 5 \times 10^{-5}$ $\circ N_{\nu} \sim 10^{-3}$ OPAL 20 erage measuremen rror bars increased by factor 10 10 0 88 90 92 94 86 E_{cm} [GeV]

$$\Delta_{\rm rel}\alpha_s(m_Z^2) \sim 2 \times 10^{-3}$$

$$\Delta_{\rm QED} \alpha_s(m_Z^2) \sim 3 \times 10^{-3}$$

43

Marcin Chrzaszcz (Universität Zürich)

Z pole summary

x	Physics	Present precision		TLEP stat Syst Precision	TLEP key	Challenge
M _z MeV	Input	91187.5 ±2.1	Z Line shape scan	0.005 MeV <±0.1 MeV	E _{CM}	QED corrections
Γ_z MeV	Δρ (Τ) (no Δα!)	2495.2 ±2.3	Z Line shape scan	0.008 MeV <±0.1 MeV	E _{CM}	QED corrections
R _I	$\alpha_{s_{\prime}}\delta_{b}$	20.767 ± 0.025	Z Peak	0.0001 ± 0.002	Statistics	QED corrections
N _v	Unitarity of PMNS, sterile v's	2.984 ±0.008	Z Peak Z+γ(161 GeV)	0.00008 ±0.004 0.001	->lumi Statistics	QED Bhabha corrections
R _b	δ_{b}	0.21629 ±0.00066	Z Peak	0.000003 ±0.000020 - 60	Statistics, small IP	Hemisphere correlations
A _{FB}	Δρ, ε _{3 ,} Δα (Τ, S)	0.0171 ±0.0010	Z peak	0.000003 ±0.00001		

Flavour Physics

 \Rightarrow Flavour Physics is an very active topic:

 \Rightarrow LHCb will dominate in the decays where the muon are in final state.

 \Rightarrow However τ s are very challenging for them!

⇒ Overall $\mathcal{O}(10^3)$ events! ⇒ Angular analysis possible. ⇒ Similar beeing studied for $\mathcal{B}^0_{\mathsf{s}} \to \tau \tau$.

Right-handed neutrinos

Shaposhnikov et al.

⇒ Neutrino oscillations: at least two massive light neutrinos. ⇒ No renormalisable way in the SM therefore \rightarrow evidence for new physics. ⇒ Sterile neutrinos for type I seesaw mechanism.

Neutrino mass eigenstates

 \Rightarrow See-saw mechanism:

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \bar{N}_R^e) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} v_L^c \\ N_R \end{pmatrix}$$

$$\operatorname{tg} 2\theta = \frac{2m_D}{M_R}, \quad m_\nu = \frac{1}{2} \left[M_R - \sqrt{M_R^2 + 4m_D^2} \right]$$
$$M = \frac{1}{2} \left[M_R + \sqrt{M_R^2 + 4m_D^2} \right]$$

Dirac only

$$\begin{split} M_R &= 0, \ m_D \neq 0 \\ \Rightarrow \ 4 \ \text{states of equal} \\ \text{masses.} \\ I &= 1/2 \ \text{active} \\ \text{neutrinos.} \\ I &= 0 \ \text{sterile neutrinos.} \end{split}$$

Majorana only

$$\begin{split} M_R &\neq 0, \, m_D = 0 \\ & \Rightarrow \text{ 4 states of equal} \\ & \text{masses.} \\ & \Rightarrow I = 1/2 \text{ active} \\ & \text{neutrinos.} \\ & \Rightarrow I = 0 \text{ sterile neutrinos.} \end{split}$$

Dirac + Majorana

$$\begin{split} M_R &\neq 0, \, m_D \neq 0 \\ \Rightarrow \, 4 \text{ states of diff. masses.} \\ \Rightarrow \, I = 1/2 \text{ active} \\ \text{neutrinos.} \\ \Rightarrow \, I = 0 \text{ ALMOST sterile} \\ \text{neutrinos.} \end{split}$$

34

Marcin Chrzaszcz (Universität Zürich)

Right handed neutrinos

 $\nu = \nu_L \cos \theta - N_R^c \sin \theta$

 $N = N_R \cos \theta + \nu_L^c \sin \theta$

 ν_L - light mass eigenstate N - heavy mass eigenstate ν_L - active neutrino N_R - "sterile" neutrino

 \Rightarrow In the EW interaction the ν_L are produced:

$$\nu_L = \nu \cos \theta + N \sin \theta$$

- \Rightarrow Many consequences:
- Effect on neutrino oscillations (eV mass)
- Dark matter (keV mass regime)
- Z invisible width.
- Exotic particle decays: $H\nu N$ and $Z\nu N$.
- Heavy Flavour physics: strange, charm, beauty flavoured mesons via W^* .
- Violation on lepton flavour/universality.

Collider experiments

arxiv::1503.05491

³⁶/43

 \Rightarrow Z factory:

and many many more ...

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FCC

Production in Z decays

A.Blondel

 \Rightarrow Production:

$$Br(Z \to \nu_m \bar{\nu}) = Br(Z \to \nu \bar{\nu}) |U|^2 \left(1 - \frac{m_{\nu_m}^2}{m_Z^2}\right)^2 \left(1 + \frac{1}{2} \frac{m_{\nu_m}^2}{m_Z^2}\right)$$

⇒ Background: four fermion: $e^-e^+ \to W^*W^*$, $e^-e^+ \to Z^*(\nu\nu) + Z/\gamma$ ⇒ Long lifetime of N helps rejecting the background!

Detection at a hadron collider

- \Rightarrow Super easy to detect topology!
- \Rightarrow At least two charged tracks produced.

Signatures at FCCs

arxiv::1612.02728

- \Rightarrow FCCee:
- Displaced vertices (Z-pole).
- Electroweak precision measurements (mostly Z-pole).
- Higgs boson production and decay modes.
- \Rightarrow FCC-hh/e: LFV, LNV, displeased vertex.

Marcin Chrzaszcz (Universität Zürich)

Search for massive neutrinos at LHCb and discovery potential of the FC

Current picture

JHEP 1505 (2015) 053

43

⇒ Present limits are dominated by LEP. ⇒ Higgs decays: Best constraints from $H \rightarrow \gamma \gamma$

Sensitivity

- \Rightarrow Preliminary studies show excellent potential!
- ⇒ Confirmation needed, based on accurate detector simulation

 \Rightarrow Complementarity with other CERN projects (e.g., SHiP, see N.Serra talk tmr.)

Synergy between FCC-xy

- \Rightarrow Systematics assessment of heavy neutrino signatures at colliders.
- \Rightarrow First looks FCC-hh and FCC-he sensitivities.
- \Rightarrow Golden channels:
- FCC-hh: LFV signatures and displeased vertexes.
- FCC-he LFV signatures and displeased vertexes.
- FCC-hh: EWPO and displeased vertexes.

O.Fischer

43

Summary

- \Rightarrow The FCC program is constantly growing.
- \Rightarrow CDR in 2018!
- \Rightarrow One of the core program of FCC are HNL!
- \Rightarrow future colliders will exclude large part of parameter space!

Backup

Marcin Chrzaszcz (Universität Zürich

Search for massive neutrinos at LHCb and discovery potential of the FC

