CP violation in

 $h \rightarrow Z \gamma$

UMass Amherst May 2, 2015

Marco Farina Cornell University

First look

The Higgs looks quite SM like

PDG Review (Nov 2013)

Introduction

How well at the end of LHC?

Luminosity	$300 \; {\rm fb^{-1}}$	$3000 \; {\rm fb^{-1}}$
Coupling parameter	7-parameter fit	
κ_{γ}	5 - 7%	2 - 5%
κ_g	6 - 8%	3-5%
κ_W	4-6%	2-5%
κ_Z	4-6%	2-4%
κ_u	14-15%	7-10%
κ_d	10-13%	4-7%
κ_ℓ	6 - 8%	2-5%
Γ_H	12 - 15%	5 - 8%
	additional parameters (see text)	
$\kappa_{Z\gamma}$	41 - 41%	10 - 12%
κ_{μ}	23-23%	8 - 8%
$\mathrm{BR}_{\mathrm{BSM}}$	< 14 - 18%	< 7 - 11%

Introduction

How well at the end of LHC?

T	200 C -1	2000 A -1
Luminosity	$300 \; {\rm fb^{-1}}$	$3000 \; {\rm fb^{-1}}$
Coupling parameter	7-parameter fit	
κ_{γ}	5 - 7%	2-5%
κ_g	6 - 8%	3-5%
κ_W	4-6%	2-5%
κ_Z	4-6%	2-4%
κ_u	14-15%	7-10%
κ_d	10-13%	4-7%
κ_ℓ	6 - 8%	2 - 5%
Γ_H	12 - 15%	5 - 8%

additional parameters (see text)

$\kappa_{Z\gamma}$	41 - 41%	10 - 12%
κ_{μ}	23 - 23%	8 - 8%
$\mathrm{BR}_{\mathrm{BSM}}$	< 14 - 18%	< 7 - 11%

FB asymmetry

Only one angle.
 Claim: you can construct a FB asymmetry

Just Zy itself?

A. K orchin, V. Kovalchuk 1303.0365

FB asymmetry

- Only one angle.
 Claim: you can construct a FB asymmetry
- Just Zy itself?

A. K orchin, V. Kovalchuk 1303.0365

Interference with yy

Y Chen et al. 1405.6723

HL-LHC might not be enough

$$\frac{S}{\sqrt{B}} \sim \left(\frac{A_{\rm FB}}{0.1}\right) \sqrt{\frac{L}{3000 \text{ fb}^{-1}}}$$

$$\bar{A}_{\rm FB} pprox rac{\Gamma_Z}{m_Z} rac{A_2^{Z\gamma} A_3^{\gamma\gamma} - A_2^{\gamma\gamma} A_3^{Z\gamma}}{(A_2^{Z\gamma})^2 + (A_3^{Z\gamma})^2}$$

4 leptons

Intereference with ZZ

4 leptons

Intereference with ZZ

- HL-LHC necessary (few % precision)
- How to disentangle different effects? (not a smoking gun)

Lepton colliders?

Felix's Presentation

Testing CPV in Higgs production

- VH Production is equivalent physics to decay because of crossing symmetry
 - More sensitive to momentum form factors
 - Use ZH production, Z to leptons, Higgs to bottoms

Anderson, et. al. [1309.4819]

Lepton colliders?

Felix's Presentation

Testing CPV in Higgs production

- VH Production is equivalent physics to decay because of crossing symmetry
 - More sensitive to momentum form factors
 - Use ZH production, Z

Anderson, et. al. [1309.4819]

Converted photons?

Same idea of γγ, photons converting to e+e- pairs

F. Bishara et al. 1312.2955

Even more challenging

Our proposal

$$gg \to h \to \gamma Z \to \gamma \ell^+ \ell^-$$

- What else can you interefere with?
- "QCD" Background!
- Different set of Higgs couplings involved

$$\mathcal{L}_{\rm h} = \frac{c}{v} h F_{\mu\nu} Z^{\mu\nu} + \frac{\tilde{c}}{2v} h F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{c_g}{v} h G^a_{\mu\nu} G^{a\mu\nu}$$

Interlude

It is a well known effect in the yy case

- L. Dixon, MS. Siu hep-ph(0302233
- S. Martin 1303.3342

Interlude

It is a well known effect in the yy case

- L. Dixon, MS. Siu hep-ph(0302233
- S. Martin 1303.3342

Kinematics

Back to Zy:

5 independent variables in a $2 \rightarrow 3$ process.

4 in our narrow width, on shell Z approximation

Kinematics

Back to Zy:

5 independent variables in a $2 \rightarrow 3$ process.

4 in our narrow width, on shell Z approximation

$$\frac{d\sigma(s,\theta_{\gamma};\theta_{Z},\phi_{Z})}{d(\cos\theta_{\gamma})d(\cos\theta_{Z})d\phi_{Z}} = \frac{(s-m_{Z}^{2})}{2^{11}\pi^{3}s^{2}} \frac{\left|\mathcal{M}(s,\theta_{\gamma};\theta_{Z},\phi_{Z})\right|^{2}}{m_{Z}\Gamma_{Z}}$$

Kinematics

Back to Zy:

5 independent variables in a $2 \rightarrow 3$ process.

4 in our narrow width, on shell Z approximation

Under CP

$$\frac{d\sigma(s,\theta_{\gamma};\phi_{Z})}{d\cos\theta_{\gamma}d\phi_{Z}} = \frac{d\sigma(s,\theta_{\gamma};-\phi_{Z})}{d\cos\theta_{\gamma}d\phi_{Z}}\bigg|_{\xi\to-\xi}$$

$$\xi \equiv \tan^{-1}(\tilde{c}/c)$$

Massaging

. . .

Massaging

. . .

$$\frac{d\sigma^I}{d\phi_Z} = \frac{\sigma_{\rm SM}^I}{2\pi} \frac{1}{1 + b_0/a_0} \left[1 + a_2/a_0 \cos(2\phi_Z) + b_0/a_0 \cos(\xi) + b_2/a_0 \cos(2\phi_Z + \xi) \right]$$

Main result

$$\frac{d\sigma^I}{d\phi_Z} = \frac{\sigma_{\rm SM}^I}{2\pi} \frac{1}{1 + b_0/a_0} \left[1 + a_2/a_0 \cos(2\phi_Z) + b_0/a_0 \cos(\xi) + b_2/a_0 \cos(2\phi_Z + \xi) \right]$$

How can we get the coefficients?

$$\xi \equiv \tan^{-1}(\tilde{c}/c)$$

- Do the full computation
- Quick and painless: MCFM (custom)

Fitting main result

$$\frac{d\sigma^I}{d\phi_Z} = \frac{\sigma_{\rm SM}^I}{2\pi} \frac{1}{1 + b_0/a_0} \left[1 + a_2/a_0 \cos(2\phi_Z) + b_0/a_0 \cos(\xi) + b_2/a_0 \cos(2\phi_Z + \xi) \right]$$

How can we get the coefficients?

$$\xi \equiv \tan^{-1}(\tilde{c}/c)$$

- Do the full computation
- Quick and painless: MCFM (custom)

$$a_2/a_0 \equiv \frac{C_{+-}^I + C_{-+}^I}{\sum_k C_{kk}^I} = 0.143 \pm 0.001$$

$$b_0/a_0 \equiv \frac{C_{h_{++}}^I + C_{h_{--}}^I}{\sum_k C_{kk}^I} = (6.61 \pm 0.08) \times 10^{-3}$$

$$b_2/a_0 \equiv \frac{C_{h_{+-}}^I + C_{h_{-+}}^I}{\sum_k C_{kk}^I} = -(0.92 \pm 0.08) \times 10^{-3}$$

Doomed?

$$\frac{d\sigma^I}{d\phi_Z} = \frac{\sigma_{\rm SM}^I}{2\pi} \frac{1}{1 + b_0/a_0} \left[1 + a_2/a_0 \cos(2\phi_Z) + b_0/a_0 \cos(\xi) + b_2/a_0 \cos(2\phi_Z + \xi) \right]$$

Very small effect O(1%)

$$\xi \equiv \tan^{-1}(\tilde{c}/c)$$

Doomed!

"Easy" observable

$$\Sigma_{\phi_Z} \equiv \frac{1}{\sigma} \int_{-I+II-III+IV} \left(\frac{d\sigma^I}{d\phi_Z} \right) d\phi_Z$$

SM (ξ =0) hypothesis rejection at 95% C.L. requires 10^8 fb⁻¹

Future colliders?

- One could use VBF at lepton colliders (not competitive?)
- What about a 100TeV collider?

Conclusions

H → Zy is hard!

 At least HL-LHC is mandatory: yet very challenging measurements

Do we need better ideas?