CP violation in

$h \rightarrow Z \gamma$

UMass Amherst
May 2, 2015

Marco Farina
Cornell University

First look

The Higgs looks quite SM like

Introduction

How well at the end of LHC?

Luminosity	$300 \mathrm{fb}^{-1}$	$3000 \mathrm{fb}^{-1}$
Coupling parameter	7 -parameter fit	
κ_{γ}	$5-7 \%$	$2-5 \%$
κ_{g}	$6-8 \%$	$3-5 \%$
κ_{W}	$4-6 \%$	$2-5 \%$
κ_{Z}	$4-6 \%$	$2-4 \%$
κ_{u}	$14-15 \%$	$7-10 \%$
κ_{d}	$10-13 \%$	$4-7 \%$
κ_{ℓ}	$6-8 \%$	$2-5 \%$
Γ_{H}	$12-15 \%$	$5-8 \%$
	additional parameters (see text)	
$\kappa_{Z \gamma}$	$41-41 \%$	$10-12 \%$
κ_{μ}	$23-23 \%$	$8-8 \%$
$\mathrm{BR}_{\mathrm{BSM}}$	$<14-18 \%$	$<7-11 \%$

Introduction

How well at the end of LHC?

Luminosity	$300 \mathrm{fb}^{-1}$	$3000 \mathrm{fb}^{-1}$
Coupling parameter	7 -parameter fit	
κ_{γ}	$5-7 \%$	$2-5 \%$
κ_{g}	$6-8 \%$	$3-5 \%$
κ_{W}	$4-6 \%$	$2-5 \%$
κ_{Z}	$4-6 \%$	$2-4 \%$
κ_{u}	$14-15 \%$	$7-10 \%$
κ_{d}	$10-13 \%$	$4-7 \%$
κ_{ℓ}	$6-8 \%$	$2-5 \%$
Γ_{H}	$12-15 \%$	$5-8 \%$
$\kappa_{Z \gamma}$	$41-41 \%$	$10-12 \%$
κ_{μ}	$23-23 \%$	$8-8 \%$
$\mathrm{BR}_{\mathrm{BSM}}$	$<14-18 \%$	$<7-11 \%$

FB asymmetry

- Only one angle.

Claim: you can construct a FB asymmetry

- Just Z_{γ} itself?

A. K orchin, V. Kovalchuk 1303.0365

FB asymmetry

- Only one angle.

Claim: you can construct a FB asymmetry

- Just Z_{γ} itself?

A. K orchin, V. Kovalchuk 1303.0365
- Interference with $\mathrm{\gamma} \mathrm{\gamma}$

Y Chen et al. 1405.6723

- HL-LHC might not be enough

$$
\frac{S}{\sqrt{B}} \sim\left(\frac{A_{\mathrm{FB}}}{0.1}\right) \sqrt{\frac{L}{3000 \mathrm{fb}^{-1}}}
$$

$$
\bar{A}_{\mathrm{FB}} \approx \frac{\Gamma_{Z}}{m_{Z}} \frac{A_{2}^{Z \gamma} A_{3}^{\gamma \gamma}-A_{2}^{\gamma \gamma} A_{3}^{Z \gamma}}{\left(A_{2}^{Z \gamma}\right)^{2}+\left(A_{3}^{Z \gamma}\right)^{2}}
$$

4 leptons

Y. Chen, R. Harnik, R. Vega-Morales 1404.1336

- Intereference with ZZ

4 leptons

- Intereference with ZZ
- HL-LHC necessary (few \% precision)
- How to disentangle different effects? (not a smoking gun)

Lepton colliders?

Felix's Presentation

Testing CPV in Higgs production

- VH Production is equivalent physics to decay because of crossing symmetry
- More sensitive to momentum form factors
- Use ZH production, Z to leptons, Higgs to bottoms

Lepton colliders?

Felix's Presentation

Testing CPV in Higgs production

- VH Production is equivalent physics to decay because of crossing symmetry
- More sensitive to momentum form factors
- Use ZH production, Z

Converted photons?

- Same idea of $\gamma 8$, photons converting to $\mathrm{e}+\mathrm{e}-$ pairs
F. Bishara et al. 1312.2955
- Even more challenging

Our proposal

$$
g g \rightarrow h \rightarrow \gamma Z \rightarrow \gamma \ell^{+} \ell^{-}
$$

- What else can you interefere with?
- "QCD" Background!
- Different set of Higgs couplings involved

$$
\mathcal{L}_{\mathrm{h}}=\frac{c}{v} h F_{\mu \nu} Z^{\mu \nu}+\frac{\tilde{c}}{2 v} h F_{\mu \nu} \tilde{Z}^{\mu \nu}+\frac{c_{g}}{v} h G_{\mu \nu}^{a} G^{a \mu \nu}
$$

Interlude

It is a well known effect in the $\mathrm{\gamma} \mathrm{\gamma}$ case
L. Dixon, MS. Siu hep-ph(0302233
S. Martin 1303.3342

Interlude

It is a well known effect in the $\mathrm{\gamma} \mathrm{\gamma}$ case

L. Dixon, MS. Siu hep-ph(0302233
S. Martin 1303.3342

Kinematics

Back to Zy:
5 independent variables in a $2 \rightarrow 3$ process.
4 in our narrow width, on shell Z approximation

Kinematics

Back to Zy:
5 independent variables in a $2 \rightarrow 3$ process.
4 in our narrow width, on shell Z approximation

Kinematics

Back to Zy:
5 independent variables in a $2 \rightarrow 3$ process.
4 in our narrow width, on shell Z approximation

Under CP

$$
\frac{d \sigma\left(s, \theta_{\gamma} ; \phi_{Z}\right)}{d \cos \theta_{\gamma} d \phi_{Z}}=\left.\frac{d \sigma\left(s, \theta_{\gamma} ;-\phi_{Z}\right)}{d \cos \theta_{\gamma} d \phi_{Z}}\right|_{\xi \rightarrow-\xi} \quad \xi \equiv \tan ^{-1}(\tilde{c} / c)
$$

Massaging
...

Massaging

$$
\frac{d \sigma^{I}}{d \phi_{Z}}=\frac{\sigma_{\text {SM }}^{I}}{2 \pi} \frac{1}{1+b_{0} / a_{0}}\left[1+a_{2} / a_{0} \cos \left(2 \phi_{Z}\right)+b_{0} / a_{0} \cos (\xi)+b_{2} / a_{0} \cos \left(2 \phi_{Z}+\xi\right)\right]
$$

Main result

$$
\frac{d \sigma^{I}}{d \phi_{Z}}=\frac{\sigma_{\mathrm{SM}}^{I}}{2 \pi} \frac{1}{1+b_{0} / a_{0}}\left[1+a_{2} / a_{0} \cos \left(2 \phi_{Z}\right)+b_{0} / a_{0} \cos (\xi)+b_{2} / a_{0} \cos \left(2 \phi_{Z}+\xi\right)\right]
$$

How can we get the coefficients?

$$
\xi \equiv \tan ^{-1}(\tilde{c} / c)
$$

- Do the full computation
- Quick and painless: MCFM (custom)

Fitting main result

$$
\frac{d \sigma^{I}}{d \phi_{Z}}=\frac{\sigma_{\mathrm{SM}}^{I}}{2 \pi} \frac{1}{1+b_{0} / a_{0}}\left[1+a_{2} / a_{0} \cos \left(2 \phi_{Z}\right)+b_{0} / a_{0} \cos (\xi)+b_{2} / a_{0} \cos \left(2 \phi_{Z}+\xi\right)\right]
$$

How can we get the coefficients?

$$
\xi \equiv \tan ^{-1}(\tilde{c} / c)
$$

- Do the full computation
- Quick and painless: MCFM (custom)

$$
\begin{aligned}
& a_{2} / a_{0} \equiv \frac{\mathcal{C}_{+-}^{I}+\mathcal{C}_{-+}^{I}}{\sum_{k} \mathcal{C}_{k k}^{I}}=0.143 \pm 0.001 \\
& b_{0} / a_{0} \equiv \frac{\mathcal{C}_{h_{+}+}^{I}+\mathcal{C}_{h_{--}}^{I}}{\sum_{k} \mathcal{C}_{k k}^{I}}=(6.61 \pm 0.08) \times 10^{-3} \\
& b_{2} / a_{0} \equiv \frac{\mathcal{C}_{h_{+}-}^{I}+\mathcal{C}_{h_{-}+}^{I}}{\sum_{k} \mathcal{C}_{k k}^{I}}=-(0.92 \pm 0.08) \times 10^{-3}
\end{aligned}
$$

Doomed?

$$
\frac{d \sigma^{I}}{d \phi_{Z}}=\frac{\sigma_{\mathrm{SM}}^{I}}{2 \pi} \frac{1}{1+b_{0} / a_{0}}\left[1+a_{2} / a_{0} \cos \left(2 \phi_{Z}\right)+b_{0} / a_{0} \cos (\xi)+b_{2} / a_{0} \cos \left(2 \phi_{Z}+\xi\right)\right]
$$

Very small effect $\mathrm{O}(1 \%)$

$$
\xi \equiv \tan ^{-1}(\tilde{c} / c)
$$

Doomed!

"Easy" observable

$$
\Sigma_{\phi_{Z}} \equiv \frac{1}{\sigma} \int_{-\mathrm{I}+\mathrm{II}-\mathrm{III}+\mathrm{IV}}\left(\frac{d \sigma^{I}}{d \phi_{Z}}\right) d \phi_{Z}
$$

SM $(\xi=0)$ hypothesis rejection at 95% C.L. requires $10^{8} \mathrm{fb}^{-1}$

Future colliders?

- One could use VBF at lepton colliders (not competitive?)
- What about a 100 TeV collider?

Conclusions

- $H \rightarrow Z_{\gamma}$ is hard!
- At least HL-LHC is mandatory: yet very challenging measurements
- Do we need better ideas?

