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First-order phase transitions in fundamental physics

Many examples across high-energy and astro-particle physics, and cosmology:

> symmetry restoration at finite temperature and early Universe phase transitions
[Kirzhnits & Linde, PLB42 (1972) 471; Dolan & Jackiw, PRD9 (1974) 3320; Weinberg, PRD9 (1974) 3357]

> generation of the Baryon asymmetry of the Universe
[Everyone in this room! See, e.g., Morrissey & Ramsey-Musolf, New J. Phys. 14 (2012) 125003]

> first-order phase transitions may produce relic gravitational waves

[Well done, LIGO! Witten, PRD30 (1984) 272; Kosowsky, Turner & Watkins, PRD45 (1992) 4514;
Caprini, Durrer, Konstandin & Servant, PRD79 (2009) 083519]

> the perturbatively-calculated SM effective potential develops an instability at
~ 10! GeV, given a ~ 125 GeV Higgs and a ~ 174 GeV top quark.

[Cabibbo, Maiani, Parisi & Petronzio, NPB158 (1979) 295; Sher, Phys. Rep. 179 (1989) 273; PLB317 (1993) 159; Isidori, Ridolfi
& Strumia, NPB609 (2001) 387; Elias-Miré, Espinosa, Giudice, Isodori, Riotto & Strumia, PLB709 (2012) 222; Degrassi, Di Vita,
Elias-Miré, Espinosa, Giudice, Isidori & Strumia, JHEP1208 (2012) 098; Alekhin, Djouadi & Moch, PLB716 (2012) 214;
Bednyakov, Kniehl, Pikelner & Veretin, PRL115 (2015) 201802; Di Luzio, Isidori & Ridolfi, PLB753 (2016) 150-160; ...]

» dynamics of both topological and non-topological defects, and non-perturbative
phenomena in non-linear field theories, e.g., domain walls, Q balls, oscillons, etc.



Pete's tunneling-rate checklist

> phenomenology: impact of non-renormalizable operators/sensitivity to UV
completion/new (or other) physics?

> experiment: measurement (or limit setting) on model parameters?

> environment: impact of “seeds;” is it sufficient to consider the decay of an
initially homogeneous state?

[Grinstein & Murphy, JHEP 1512 (2015) 063; Gregory, Moss and Withers JHEP 1403 (2014) 081; Burda, Gregory and Moss
PRL115 (2015) 071303; JHEP 1508 (2015) 114; JHEP 1606 (2016) 025]

> theory:

> gauge dependence?
[Tamarit and Plascencia, JHEP1610 (2016) 099]

> interpretation of the non-convexity of the effective potential?

[Weinberg & Wu, PRD36 (1987) 2474; Alexandre & Farakos, JPA41 (2008) 015401; Branchina, Faivre & Pangon, JPG36
(2009) 015006; Einhorn & Jones, JHEP0704 (2007) 051]

> implementation of RG improvement?
[Gies & Sondenheimer, EPJCTS5 (2015) 68]

> incorporation of the inhomogeneity of the solitonic background (this talk);

how important are gradients?

[Garbrecht & Millington, PRD91 (2015) 105021, cf. Goldstone & Jackiw, PRD11 (1975) 1486; Garbrecht & Millington,
PRD92 (2015) 125022; for a summary, see arXiv: 1703.05417]



Semi-classical tunneling rate

Archetype: Euclidean ®* theory with tachyonic mass (u? > 0):
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[for self-consistent numerical studies, see Bergner & Bettencourt, PRD69 (2004) 045002; PRD69 (2004) 045012;
Baacke & Kevlishvili, PRD71 (2005) 025008; PRD75 (2007) 045001]
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[Coleman, PRD15 (1977) 2929; Callan, Coleman, PRD16 (1977) 1762;
Coleman Subnucl. Ser. 15 (1979) 805; Konoplich, Theor. Math. Phys. 73 (1987) 1286]



Semi-classical tunneling rate

In hyperspherical coordinates, the boundary conditions are

= +v, dga/dr!rzo =0,

el o

with the bounce corresponding to the kink

[Dashen, Hasslacher & Neveu, PRD10 (1974) 4114; ibid. 4130; ibid. 4138]
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The bounce looks like a bubble of radius R = 12)\/g/v, where the latter is found by
minimizing the energy difference between the latent heat of the true vacuum and the
surface tension of the bubble.



Semi-classical tunneling rate

The tunneling rate I" is calculated from the path integral
z[0) = /[d¢]e*5[°1/ﬁ . IV = 2[mzo)|/V/T.

[see Callan & Coleman, PRD16 (1977) 1762]

Expanding around the kink ® = () 4+ /2, the spectrum of the operator
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contains four zero eigenvalues (translational invariance of the bounce action) and one
negative eigenvalue (dilatations of the bounce).

Writing BO) = S[y],
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Non-perturbative treatment of quantum effects: the effective action

If the instability arises from radiative effects (including thermal effects), the quantum
(statistical) path is non-perturbatively far away from the classical
(zero-temperature) path.

Specifically, the tree-level fluctuation operator will have a positive-definite spectrum,
whereas the one-loop fluctuation operator will not.

The 2P effective action is defined by the Legendre transform
Mg, A] = maxyk [—hin Z[J, K] + Jxdx + 2 Ky (dxdy + hAL)] .

[Cornwall, Jackiw & Tomboulis, PRD10 (1974) 2428]

Method of external sources: Turn the evaluation of the effective action on its head,
such that the physical limit corresponds to non-vanishing sources.

[Garbrecht & Millington, NPB906 (2016) 105-132; see also PRD91 (2015) 105021]

By constraining these sources subject to the consistency relation

5S[¢] or[e, A]
— L[, D] — Kyld, Alp, = —2=d
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=0,

we can force the system along the quantum (statistical) path.



Quantum-corrected bounce

For the tree-level instability, we may find the leading corrections to the bounce and
tunneling rate by making use of the 1Pl effective action.

[Jackiw, PRD9 (1974) 1686]
The tunneling rate per unit volume is related to the 1P| effective action via

/v = 2ime "V v T

The quantum-corrected bounce () (x) = ¢ + 7dyp satisfies
=W (x) + U'(pM;x) + N x) o0(x) = 0,

including the tadpole correction

Ne®;x) =

2 66 :x,).

If we employ the method of external sources, the self-consistent choice of Ji[¢] for
this method of evaluation is

o] = —ane@; x)e@(x) .

[see Garbrecht & Millington, PRD91 (2015) 105021; NPB906 (2016) 105-132]



Approximations
The radial part of the 1Pl Klein-Gordon equation for the ¢ Green's function is

+ %cpz(r) G(r,r') = Lr; r’).
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dr? r dr r2

Making the following approximations, we can solve for the ® Green'’s function
analytically:
1. Thin-wall approximation R > 1: drop the damping term.

2. Planar-wall approximation: replace the sum over discrete angular momenta by an
integral over linear momenta, i.e.

G+ 2)h K2
(J2 2) - -
H*R W




Green's function

Defining

o) = (p(O)(,(/))/V ,

m= (1+K2/4/?)"?
the result for the Green's function is

[Garbrecht & Millington, PRD91 (2015) 105021]
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We can then find the (manifestly-real) renormalized tadpole self-energy:

o = B fs- 5]

The variation in the background field u € [—1, +1] gives order-1 corrections to the
tadpole self-energy, i.e. gradient effects contribute at LO in the equation of motion.



Tunneling rate

Expanding the 1Pl effective action [[o()] about »(®), the tunneling rate per unit
volume is

2
r/yv = (—) (27)%| Xo| 2 exp{— %(B(O) +aBM + 2B 4 ﬁ2B(2)’)} .
™ !
> one-loop corrections captured by the fluctuation determinant:
BM — %tr(‘r’)(InG’l(go(o)) ~InG(v)

> two-loop (1PR) corrections (i) B from the action of the corrected bounce and
(i) B from expanding the fluctuation determinant:

B0 = 2 [at O0n(e: 05000 = - 1 8O

We have ignored O(h2) 2PI corrections, and so we need to ensure that our
perturbative truncation is meaningful ...



Spectators

To this end and to enhance the radiative effects (while remaining in a perturbative
regime), we consider an N-field model:
[see 't Hooft, NPB72 (1974) 461]
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For mi > 42, the X renormalized tadpole correction is

[Garbrecht & Millington, PRD91 (2015) 105021]
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Dominant % and h? corrections in 1/N expansion:
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Quantum-corrected bounce
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N~2/m3: 0 (solid), 0.5 (dashed), 1 (dash-dotted) and 1.5 (dotted)

[Qualitative agreement with Bergner & Bettencourt, PRD69 (2004) 045002]

— reduction in bounce action — increase in tunneling rate.



Why go to all this trouble?

When determining the quantum corrections to the tunneling configuration, it is
tempting to:

1. Calculate the Coleman-Weinberg (or thermal) effective potential assuming a
homogeneous, constant field configuration.

2. Promote this homogeneous, constant field to a spacetime-dependent in order to
obtain the quantum equation of motion for the bounce.

This procedure does not fully capture the back-reaction of the gradients of the
tunneling configuration on the quantum corrections.

[e-g. of calculations in the homogeneous background, see e.g. Frampton, PRL37 (1976) 1378; PRD15 (1977) 2022; Camargo-Molina,
O'Leary, Porod & Staub, EPJC73 (2013) 2588]

How significant can the impact of these gradients be, both on the bounce and the
tunneling rate?



Gradients can be important classically

Consider the following Euclidean theory with abyssal potential:

1 I
ﬁ_i(aﬂcb) - a® A > 0.

In hyperradial coordinates, the equation of motion is

The damping term provides an effective barrier (a gradient barrier), and the bounce
corresponds to the Fubini-Lipatov instanton

[Fubini, Nuovo Cim A 34 (1976) 521; Lipatov, Sov. Phys. JETP 45 (1977) 216]
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Can the impact of gradient effects on the quantum/thermal corrections have a
significant impact on the tunneling barrier and therefore the tunneling rate?

[Garbrecht and Millington, in progress]



. . Col & Weinberg, PRD7 (1973) 1888;
N—flé'd Colema n—Welnberg model Garb[reshetm&fnMiIIingetlgn,erPgRD92 (2(%15) 1)25022]

Start with a classically scale-invariant model (for g = 0):

= UR = 0 in the false vacuum
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Renormalized one-loop effective potential (p = 61/)):
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The field ¢ obtains a vacuum expectation value for x; = 0:
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1/N power counting
1/N power counting tells us that we can consistently:

> treat the equation of motion for ¢ at the 1Pl level [only need diagram (a)]:

—8%p + NM(p;x)p(x) = 0, N(p;x) = %S(g@;x,x).

> treat the equation of motion for the X propagator at tree-level:

N
<_ o + 5“02) S(pixy) = W(x—y).

> neglect the ® propagator altogether.




Iterative procedure

Introducing a small Z, breaking (g small), we use the thin- and planar-wall
approximations, as before, and employ an iterative procedure:

[Garbrecht & Millington, PRD92 (2015) 125022]

1. Calculate a first approximation to the bounce by promoting the homogeneous
field configuration in the CW effective potential to a spacetime-dependent one:

— 9% + Uf'(¢) = 0.
2. Solve for the X Green’s function.

3. Calculate the tadpole correction, renormalizing in the homogeneous false
vacuum.

4. Insert the tadpole correction into the quantum equation of motion and solve for
the bounce.

5. lterate over steps 2 to 5 until solution has converged sufficiently.

This essentially undoes a gradient expansion, putting back the full dependence on the
inhomogeneity of the solitonic configuration.



Numerical results

Numerical procedure cross-checked with 3 independent codes: 2 using Mathematica's
differential solvers and 1 using Chebyshev pseudo-spectral collocation methods.

[Boyd, Chebyshev and Fourier Spectral Methods, 2nd Ed., Dover Publications, New York (2001)]

Numerical sample: M = 1 with 0.04 < X2N < 0.4 (consistency of perturbative
1/N regime checked numerically).

Self-consistent bounce:
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Numerical results

Dominant dependence on the gradients observed in the one-loop fluctuation

determinant B(1).

[Garbrecht & Millington, PRD92 (2015) 125022; see also arXiv: 1703.05417]
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Difference between the Coleman-Weinberg effective potential and self-consistent
results shows scaling ~ AN relative to the one-loop CW corrections.

Thus, gradient effects can compete with two-loop effects, i.e. at NLO in the

tunneling rate, confirming analytic arguments of E. Weinberg, PRD47 (1993) 4614.

Many methods for calculating the fluctuation determinant on the market: the heat
kernel method, the Gel’fand-Yaglom theorem or . ..



Fluctuation determinant: direct integration
Instead of dealing with numerical Laplace transforms (as in the heat kernel method),
we use the direct integration method due to Baacke and Junker.

[Baacke & Junker, MPLAS (1993) 2869; PRD49 (1994) 2055; 50 4227;
Baacke & Daiber, PRD51 (1995) 795; Baacke, PRD78 (2008) 065039]

Use a partial-wave decomposition of the eigenfunctions of the fluctuation operator
with eigenvalues \,;:
ey (x) = éni(r) Yjgey(er)
N—_——
hyperspherical harmonics

The one-loop corrections can be written:

N N Anj
1) _ _ : 2 n
BY = = S == §_(1+1) |n/\(v)
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Shift the mass by an amount s € R and decompose the Green's function as

r)énj(r)
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We can then show that

A2
B — —g/ ds/d4x (Ss(cp;x,x) — Ss(v;x,x)) .
0



Extensions
Fermions?

Consider a toy Higgs-Yukawa theory with N fermions:
N N
LD D Uiydu Vi + kY Uov; .
i=1 i=1
We must carefully handle the four-dimensional angular-momentum structure:
[Ai, Garbrecht & Millington, in preparation]

D(val) = Z [ak(rv r’)+bA(r,r')fy-x}5>\(e,,e’,),
A

r-o—J

0 5(r—r
X|——5—a+ m(r)b)\} + m(r)ay + {L + @}rbA Ar=r)
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The smaller the coupling of the scalar or fermion spectators, the larger the relative
impact of the gradients (but the smaller the overall corrections).

Beyond thin wall?

Consider the scale-invariant, classical abyssal potential, highlighted earlier.

The quantum corrections play a pivotal role at LO in breaking the scale invariance.
However, we must carefully handle the zero and negative eigenmodes, and
perturbative truncations need to be treated delicately.

[Garbrecht & Millington, in preparation]



So how important are gradients?

It depends on ...
... the parametric dependence of the vev on the couplings:

In the Coleman-Weinberg SSB example, the gradients had an impact (on the loop
corrections) only at NLO. In the archetypal tree-level SSB example, there were
corrections at LO.

<= In the tree-level case, the vev is enhanced by a factor of l/ﬁ relative to the mass.
In the Coleman-Weinberg example, the couplings were such that the vev was
comparable to the mass.

...the symmetry of the critical bubble about the bubble wall:

In the thin-wall regime, the gradient corrections are suppressed due to the symmetry
about the centre of the bubble wall: the field is going through zero just where the
gradients are maximal. This is not expected to be the case in the thick-wall regime.

... the relevance of quantum effects to the negative-semi-definite eigenmodes:

Watch this space for full details of the abyssal example highlighted above ...



Conclusions

> Described how a Green’s function method can be used to calculate
self-consistent quantum corrections to tunnneling configurations, whilst
accounting fully for the background inhomogeneity of the tunneling soliton.

> Described the relative importance of gradient effects in relation to both the
relative size of the mass and vev of the field, and the thin- vs. thick-wall regimes.

> Highlighted the impact quantum corrections can have on the negative
semi-definite eigenmodes.

» What about first-order thermal phase transitions? Can we embed all of the above
methodology into non-equilibrium field theory and, in so doing, account fully for
gradients in the one-loop, finite-temperature corrections?

» Much more to come soon ...

Thank you for your attention.



Back-up slides
Explicit results (tree-level example)
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Back-up slides
Fluctuation determinant: heat-kernel method (used for tree-level example)

[Diakonov, Petrov & Yung, PLB130 (1983) 385; Sov. J. Nucl. Phys. 39 (1984) 150 [Yad. Fiz. 39 (1984) 240]; Konoplich,
Theor. Math. Phys. 73 (1987) 1286 [Teor. Mat. Fiz. 73 (1987) 379; Vassilevich, Phys. Rept. 388 (2003) 279; Carson & McLerran, PRD41
(1990) 647; Carson, Li, McLerran &Wang, PRD42 (1990) 2127; Carson, PRD42 (1990) 2853]

Fluctuation determinant over the positive-definite modes:

(5) —1(, . _ 4, [°0dT .
tr® In G (i x) = — [d¥x K(p; x, x|T) .
0

o
The heat kernel is the solution to the heat-flow equation

O K(pix,x'|1) = G Hpix)K(i x, X'|7) ,

with K(i; x,x'|0) = 6 (x — x).
It's Laplace transform
o0
K(p;x,x'|s) = / dr e K(¢; x, X'|T)
0

is just the Green’s function with k2 — k2 +s.

[cf. Gel'fand-Yaglom thoerem, JMP1 (1960) 48;
Baacke & Kiselev PRD48 (1993); Dunne & Kirsten, JPA39 (2006) 11915; Dunne, JPA41 (2008) 304006]
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