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First-order phase transitions in fundamental physics

Many examples across high-energy and astro-particle physics, and cosmology:

I symmetry restoration at finite temperature and early Universe phase transitions
[Kirzhnits & Linde, PLB42 (1972) 471; Dolan & Jackiw, PRD9 (1974) 3320; Weinberg, PRD9 (1974) 3357]

I generation of the Baryon asymmetry of the Universe
[Everyone in this room! See, e.g., Morrissey & Ramsey-Musolf, New J. Phys. 14 (2012) 125003]

I first-order phase transitions may produce relic gravitational waves
[Well done, LIGO! Witten, PRD30 (1984) 272; Kosowsky, Turner & Watkins, PRD45 (1992) 4514;

Caprini, Durrer, Konstandin & Servant, PRD79 (2009) 083519]

I the perturbatively-calculated SM effective potential develops an instability at
∼ 1011 GeV, given a ∼ 125 GeV Higgs and a ∼ 174 GeV top quark.

[Cabibbo, Maiani, Parisi & Petronzio, NPB158 (1979) 295; Sher, Phys. Rep. 179 (1989) 273; PLB317 (1993) 159; Isidori, Ridolfi
& Strumia, NPB609 (2001) 387; Elias-Miró, Espinosa, Giudice, Isodori, Riotto & Strumia, PLB709 (2012) 222; Degrassi, Di Vita,

Elias-Miró, Espinosa, Giudice, Isidori & Strumia, JHEP1208 (2012) 098; Alekhin, Djouadi & Moch, PLB716 (2012) 214;
Bednyakov, Kniehl, Pikelner & Veretin, PRL115 (2015) 201802; Di Luzio, Isidori & Ridolfi, PLB753 (2016) 150–160; . . . ]

I dynamics of both topological and non-topological defects, and non-perturbative
phenomena in non-linear field theories, e.g., domain walls, Q balls, oscillons, etc.



Pete’s tunneling-rate checklist

I phenomenology: impact of non-renormalizable operators/sensitivity to UV
completion/new (or other) physics?

I experiment: measurement (or limit setting) on model parameters?

I environment: impact of “seeds;” is it sufficient to consider the decay of an
initially homogeneous state?

[Grinstein & Murphy, JHEP 1512 (2015) 063; Gregory, Moss and Withers JHEP 1403 (2014) 081; Burda, Gregory and Moss
PRL115 (2015) 071303; JHEP 1508 (2015) 114; JHEP 1606 (2016) 025]

I theory:
I gauge dependence?

[Tamarit and Plascencia, JHEP1610 (2016) 099]

I interpretation of the non-convexity of the effective potential?
[Weinberg & Wu, PRD36 (1987) 2474; Alexandre & Farakos, JPA41 (2008) 015401; Branchina, Faivre & Pangon, JPG36

(2009) 015006; Einhorn & Jones, JHEP0704 (2007) 051]

I implementation of RG improvement?
[Gies & Sondenheimer, EPJC75 (2015) 68]

I incorporation of the inhomogeneity of the solitonic background (this talk);
how important are gradients?

[Garbrecht & Millington, PRD91 (2015) 105021, cf. Goldstone & Jackiw, PRD11 (1975) 1486; Garbrecht & Millington,
PRD92 (2015) 125022; for a summary, see arXiv: 1703.05417]



Semi-classical tunneling rate

Archetype: Euclidean Φ4 theory with tachyonic mass (µ2 > 0):

L =
1

2!

(
∂µΦ

)2 −
1

2!
µ2Φ2 +

1

3!
gΦ3 +

1

4!
λΦ4 + U0

[for self-consistent numerical studies, see Bergner & Bettencourt, PRD69 (2004) 045002; PRD69 (2004) 045012;
Baacke & Kevlishvili, PRD71 (2005) 025008; PRD75 (2007) 045001]

Non-degenerate minima:

ϕ ≡ 〈Φ〉 = v± ≈ ± v −
3g

2λ
, v2 =

6µ2

λ

U(ϕ)

ϕ
+ v

− v

−U(ϕ)

ϕ
+ v− v

The Coleman bounce:

ϕ
∣∣
x4→±∞

= + v , ϕ̇
∣∣
x4 = 0

= 0 , ϕ
∣∣
|x|→∞ = + v

[Coleman, PRD15 (1977) 2929; Callan, Coleman, PRD16 (1977) 1762;
Coleman Subnucl. Ser. 15 (1979) 805; Konoplich, Theor. Math. Phys. 73 (1987) 1286]



Semi-classical tunneling rate

In hyperspherical coordinates, the boundary conditions are

ϕ
∣∣
r→∞ = + v , dϕ/dr

∣∣
r = 0

= 0 ,

with the bounce corresponding to the kink

[Dashen, Hasslacher & Neveu, PRD10 (1974) 4114; ibid. 4130; ibid. 4138]

ϕ(r) = v tanh γ(r − R) , γ = µ/
√

2 .

ϕ(r)

γ(r −R)

+ v

− v

true
vacuum

false
vacuum

The bounce looks like a bubble of radius R = 12λ/g/v , where the latter is found by
minimizing the energy difference between the latent heat of the true vacuum and the
surface tension of the bubble.



Semi-classical tunneling rate

The tunneling rate Γ is calculated from the path integral

Z [0] =

∫
[dΦ]e−S[Φ]/~ , Γ/V = 2

∣∣ImZ [0]
∣∣/V /T .

[see Callan & Coleman, PRD16 (1977) 1762]

Expanding around the kink Φ = ϕ(0) + ~1/2Φ̂, the spectrum of the operator

G−1(ϕ(0); x , y) ≡
δ2S[Φ]

δΦ(x)δΦ(y)

∣∣∣∣∣
Φ =ϕ(0)

= δ(4)(x − y)
(
− ∆(4) + U′′(ϕ(0))

)
contains four zero eigenvalues (translational invariance of the bounce action) and one
negative eigenvalue (dilatations of the bounce).

Writing B(0) ≡ S[ϕ],

Z [0] = −
i

2
e−B(0)/~

∣∣∣∣∣ λ0 det
(5) G−1(ϕ(0))

(VT )2
(
B(0)

2π~
)4

(4γ2)5 det(5) G−1(v)

∣∣∣∣∣
−1/2

.



Non-perturbative treatment of quantum effects: the effective action

If the instability arises from radiative effects (including thermal effects), the quantum
(statistical) path is non-perturbatively far away from the classical
(zero-temperature) path.

Specifically, the tree-level fluctuation operator will have a positive-definite spectrum,
whereas the one-loop fluctuation operator will not.

The 2PI effective action is defined by the Legendre transform

Γ[φ,∆] = maxJ,K
[
− ~ ln Z [J,K ] + Jxφx + 1

2
Kxy

(
φxφy + ~∆xy

)]
.

[Cornwall, Jackiw & Tomboulis, PRD10 (1974) 2428]

Method of external sources: Turn the evaluation of the effective action on its head,
such that the physical limit corresponds to non-vanishing sources.

[Garbrecht & Millington, NPB906 (2016) 105–132; see also PRD91 (2015) 105021]

By constraining these sources subject to the consistency relation

δS[φ]

δφx

∣∣∣∣
φ=ϕ

− Jx [φ,∆] − Kxy [φ,∆]ϕy =
δΓ[φ,∆]

δφx

∣∣∣∣
φ=ϕ

= 0 ,

we can force the system along the quantum (statistical) path.



Quantum-corrected bounce
For the tree-level instability, we may find the leading corrections to the bounce and
tunneling rate by making use of the 1PI effective action.

[Jackiw, PRD9 (1974) 1686]

The tunneling rate per unit volume is related to the 1PI effective action via

Γ/V = 2|Im e−Γ[ϕ(1)]/~|/V /T .

The quantum-corrected bounce ϕ(1)(x) ≡ ϕ(0) + ~ δϕ satisfies

− ∂2ϕ(1)(x) + U′(ϕ(1); x) + ~Π(ϕ(0); x)ϕ(0)(x) = 0 ,

including the tadpole correction

Π(ϕ(0); x) =
λ

2
G(ϕ(0); x , x) .

If we employ the method of external sources, the self-consistent choice of Jx [φ] for
this method of evaluation is

Jx [φ] = − ~Π(ϕ(0); x)ϕ(0)(x) .

[see Garbrecht & Millington, PRD91 (2015) 105021; NPB906 (2016) 105–132]



Approximations

The radial part of the 1PI Klein-Gordon equation for the Φ Green’s function is[
−

d2

dr2
−

3

r

d

dr
+

j(j + 2)

r2
− µ2 +

λ

2
ϕ2(r)

]
G(r , r ′) =

δ(r − r ′)

r3
.

Making the following approximations, we can solve for the Φ Green’s function
analytically:

1. Thin-wall approximation µR � 1: drop the damping term.

2. Planar-wall approximation: replace the sum over discrete angular momenta by an
integral over linear momenta, i.e.

j(j + 2)~
µ2R2

−→
k2

µ2
.

R

z⊥z‖



Green’s function

Defining

u(′) ≡ ϕ(0)(r (′))/v ,

m ≡
(
1 + k2/4/γ2

)1/2
,

the result for the Green’s function is

[Garbrecht & Millington, PRD91 (2015) 105021]

G(u, u′,m) =
1

2γm

[
ϑ(u − u′)

(
1− u

1 + u

)m
2
(

1 + u′

1− u′

)m
2

×
(

1− 3
(1− u)(1 + m + u)

(1 + m)(2 + m)

)(
1− 3

(1− u′)(1−m + u′)

(1−m)(2−m)

)
+ (u ↔ u′)

]
.

We can then find the (manifestly-real) renormalized tadpole self-energy:

ΠR(u) =
3λγ2

16π2

[
6 + (1− u2)

(
5−

π
√

3
u2

)]
.

The variation in the background field u ∈ [−1,+1] gives order-1 corrections to the
tadpole self-energy, i.e. gradient effects contribute at LO in the equation of motion.



Tunneling rate

Expanding the 1PI effective action Γ[ϕ(1)] about ϕ(0), the tunneling rate per unit
volume is

Γ/V =

(
B

2π~

)2

(2γ)5|λ0|−
1
2 exp

[
−

1

~

(
B(0) + ~B(1) + ~2B(2) + ~2B(2)′

)]
.

I one-loop corrections captured by the fluctuation determinant:

B(1) =
1

2
tr(5)

(
lnG−1(ϕ(0)) − lnG−1(v)

)
I two-loop (1PR) corrections (i) B(2) from the action of the corrected bounce and

(ii) B(2)′ from expanding the fluctuation determinant:

B(2) = −
1

2

∫
d4x ϕ(0)(x)Π(ϕ(0); x)δϕ(x) = −

1

2
B(2)′

We have ignored O(~2) 2PI corrections, and so we need to ensure that our
perturbative truncation is meaningful . . .



Spectators

To this end and to enhance the radiative effects (while remaining in a perturbative
regime), we consider an N-field model:

[see ’t Hooft, NPB72 (1974) 461]

L ⊃
N∑

i = 1

[
1

2

(
∂µXi

)2
+

1

2
m2

XX
2
i +

λ

4
Φ2X 2

i

]
.

For m2
X � γ2, the X renormalized tadpole correction is

[Garbrecht & Millington, PRD91 (2015) 105021]

ΣR(u) =
λγ2

8π2

γ2

m2
X

[
72 +

(
1− u2

)(
40− 3u2

)]
.

Dominant ~ and ~2 corrections in 1/N expansion:



Quantum-corrected bounce

δϕ(u) = −
v

γ

∫ 1

−1
du′

u′G(u, u′,m)
∣∣
k = 0

1− u′2

(
ΠR(u′) + NΣR(u′)

)
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X : 0 (solid), 0.5 (dashed), 1 (dash-dotted) and 1.5 (dotted)

[Qualitative agreement with Bergner & Bettencourt, PRD69 (2004) 045002]

−→ reduction in bounce action −→ increase in tunneling rate.



Why go to all this trouble?

When determining the quantum corrections to the tunneling configuration, it is
tempting to:

1. Calculate the Coleman-Weinberg (or thermal) effective potential assuming a
homogeneous, constant field configuration.

2. Promote this homogeneous, constant field to a spacetime-dependent in order to
obtain the quantum equation of motion for the bounce.

This procedure does not fully capture the back-reaction of the gradients of the
tunneling configuration on the quantum corrections.

[e.g. of calculations in the homogeneous background, see e.g. Frampton, PRL37 (1976) 1378; PRD15 (1977) 2922; Camargo-Molina,
O’Leary, Porod & Staub, EPJC73 (2013) 2588]

How significant can the impact of these gradients be, both on the bounce and the
tunneling rate?



Gradients can be important classically

Consider the following Euclidean theory with abyssal potential:

L =
1

2!

(
∂µΦ

)2 −
λ

4!
Φ4 , λ > 0 .

In hyperradial coordinates, the equation of motion is

−
d2

dr2
ϕ −

3

r

d

dr
ϕ −

λ

3!
ϕ3 = 0 .

The damping term provides an effective barrier (a gradient barrier), and the bounce
corresponds to the Fubini-Lipatov instanton

[Fubini, Nuovo Cim A 34 (1976) 521; Lipatov, Sov. Phys. JETP 45 (1977) 216]

ϕ(r) =
ϕ(0)

1 + r2/R2
, ϕ(0) =

√
48

λ

1

R
.

Can the impact of gradient effects on the quantum/thermal corrections have a
significant impact on the tunneling barrier and therefore the tunneling rate?

[Garbrecht and Millington, in progress]



N-field Coleman-Weinberg model [Coleman & Weinberg, PRD7 (1973) 1888;
Garbrecht & Millington, PRD92 (2015) 125022]

Start with a classically scale-invariant model (for g = 0):

L =
1

2

(
∂µΦ

)2 +
1

2

N∑
i = 1

(
∂µXi )

2 +
1

4
λΦ2

N∑
i = 1

X 2
i +

1

4
κ

N∑
i,j = 1

X 2
i X

2
j +

1

6
g Φ3︸ ︷︷ ︸

Z2−breaking

+

⇒ UR = 0 in the false vacuum︷︸︸︷
U0

Renormalized one-loop effective potential (ρ ≡ 6κ/λ):

UR
eff (ϕ) =

λ2

16π2
ϕ

4

[
N

(
ln

3ϕ2

ρM2
− 3

2

)
+ F (ρ) +

g

6
ϕ

3 + U0

]
+ O(g2)

The field ϕ obtains a vacuum expectation value for χ1 = 0:

v ≈ ±
√
ρM2

3
exp

(
1

2
+

F (ρ)

2N

)
, F ≈ 2 for ρ = 3 .

-3 -2 -1 0 1 2 3

-1

0

1

2

φ /M

U
R
/M

4
×

10
4



1/N power counting

1/N power counting tells us that we can consistently:

I treat the equation of motion for ϕ at the 1PI level [only need diagram (a)]:

− ∂2ϕ + Π(ϕ; x)ϕ(x) = 0 , Π(ϕ; x) =
λN

2
S(ϕ; x , x) .

I treat the equation of motion for the X propagator at tree-level:(
− ∂2 +

λ

2
ϕ2

)
S(ϕ; x , y) = δ(4)(x − y) .

I neglect the Φ propagator altogether.

(a)
(b)

(c)



Iterative procedure

Introducing a small Z2 breaking (g small), we use the thin- and planar-wall
approximations, as before, and employ an iterative procedure:

[Garbrecht & Millington, PRD92 (2015) 125022]

1. Calculate a first approximation to the bounce by promoting the homogeneous
field configuration in the CW effective potential to a spacetime-dependent one:

− ∂2ϕ + UR
eff
′(ϕ) = 0 .

2. Solve for the X Green’s function.

3. Calculate the tadpole correction, renormalizing in the homogeneous false
vacuum.

4. Insert the tadpole correction into the quantum equation of motion and solve for
the bounce.

5. Iterate over steps 2 to 5 until solution has converged sufficiently.

This essentially undoes a gradient expansion, putting back the full dependence on the
inhomogeneity of the solitonic configuration.



Numerical results

Numerical procedure cross-checked with 3 independent codes: 2 using Mathematica’s
differential solvers and 1 using Chebyshev pseudo-spectral collocation methods.

[Boyd, Chebyshev and Fourier Spectral Methods, 2nd Ed., Dover Publications, New York (2001)]

Numerical sample: M = 1 with 0.04 ≤ λ2N ≤ 0.4 (consistency of perturbative
1/N regime checked numerically).

Self-consistent bounce:

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

u

φ
/
v

-1.0 -0.5 0.0 0.5 1.0

-0.6

-0.4

-0.2

0.0

u

Π
R
/
γ

2



Numerical results

Dominant dependence on the gradients observed in the one-loop fluctuation
determinant B(1).

[Garbrecht & Millington, PRD92 (2015) 125022; see also arXiv: 1703.05417]
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Difference between the Coleman-Weinberg effective potential and self-consistent
results shows scaling ∼ λN relative to the one-loop CW corrections.

Thus, gradient effects can compete with two-loop effects, i.e. at NLO in the
tunneling rate, confirming analytic arguments of E. Weinberg, PRD47 (1993) 4614.

Many methods for calculating the fluctuation determinant on the market: the heat
kernel method, the Gel’fand-Yaglom theorem or . . .



Fluctuation determinant: direct integration

Instead of dealing with numerical Laplace transforms (as in the heat kernel method),
we use the direct integration method due to Baacke and Junker.

[Baacke & Junker, MPLA8 (1993) 2869; PRD49 (1994) 2055; 50 4227;
Baacke & Daiber, PRD51 (1995) 795; Baacke, PRD78 (2008) 065039]

Use a partial-wave decomposition of the eigenfunctions of the fluctuation operator
with eigenvalues λnj :

fnj{`}(x) = φnj (r) Yj{`}(er )︸ ︷︷ ︸
hyperspherical harmonics

The one-loop corrections can be written:

B(1) =
N

2

∑
n,j,{`}

ln
λnj

λ
(v)
nj

=
N

2

∑
n,j

(j + 1)2 ln
λnj

λ
(v)
nj

Shift the mass by an amount s ∈ R and decompose the Green’s function as

Ss(ϕ; x , x) =
1

2π2

∑
n,j

(j + 1)2
φ∗nj (r)φnj (r)

λnj + s
.

We can then show that

B(1) = −
N

2

∫ Λ2

0
ds

∫
d4x

(
Ss(ϕ; x , x) − Ss(v ; x , x)

)
.



Extensions
Fermions?

Consider a toy Higgs-Yukawa theory with N fermions:

L ⊃
N∑

i = 1

Ψ̄iγµ∂µΨi + κ
N∑

i = 1

Ψ̄iΦΨi .

We must carefully handle the four-dimensional angular-momentum structure:
[Ai, Garbrecht & Millington, in preparation]

D(x , x ′) =
∑
λ

[
aλ(r , r ′) + bλ(r , r ′)γ · x

]
D̃λ(er , e

′
r ) ,

γ · x
[
r · ∂ − J

r2
aλ + m(r)bλ

]
+ m(r)aλ +

[
∂

∂r
+
J + 3

r

]
rbλ =

δ(r − r ′)

r3

The smaller the coupling of the scalar or fermion spectators, the larger the relative
impact of the gradients (but the smaller the overall corrections).

Beyond thin wall?

Consider the scale-invariant, classical abyssal potential, highlighted earlier.

The quantum corrections play a pivotal role at LO in breaking the scale invariance.
However, we must carefully handle the zero and negative eigenmodes, and
perturbative truncations need to be treated delicately.

[Garbrecht & Millington, in preparation]



So how important are gradients?

It depends on . . .

. . . the parametric dependence of the vev on the couplings:

In the Coleman-Weinberg SSB example, the gradients had an impact (on the loop
corrections) only at NLO. In the archetypal tree-level SSB example, there were
corrections at LO.

⇐ In the tree-level case, the vev is enhanced by a factor of 1/
√
λ relative to the mass.

In the Coleman-Weinberg example, the couplings were such that the vev was
comparable to the mass.

. . . the symmetry of the critical bubble about the bubble wall:

In the thin-wall regime, the gradient corrections are suppressed due to the symmetry
about the centre of the bubble wall: the field is going through zero just where the
gradients are maximal. This is not expected to be the case in the thick-wall regime.

. . . the relevance of quantum effects to the negative-semi-definite eigenmodes:

Watch this space for full details of the abyssal example highlighted above . . .



Conclusions

I Described how a Green’s function method can be used to calculate
self-consistent quantum corrections to tunnneling configurations, whilst
accounting fully for the background inhomogeneity of the tunneling soliton.

I Described the relative importance of gradient effects in relation to both the
relative size of the mass and vev of the field, and the thin- vs. thick-wall regimes.

I Highlighted the impact quantum corrections can have on the negative
semi-definite eigenmodes.

I What about first-order thermal phase transitions? Can we embed all of the above
methodology into non-equilibrium field theory and, in so doing, account fully for
gradients in the one-loop, finite-temperature corrections?

I Much more to come soon . . .

Thank you for your attention.



Back-up slides
Explicit results (tree-level example)

B =
8π2R3γ3

λ

B(1) = −B

(
3λ

16π2

)[
π

3
√

3
+ 21 +

2542

15

γ2

m2
χ

N

]

B(2) + B(2)′ =
1

2

∫
d4x ϕ(u)

(
ΠR(u) + NΣR(u)

)
δϕ(u)

= −
B

3

(
3λ

16π2

)2[291

8
−

37

4

π
√

3
+

5

56

π2

3

+

(
667

2
−

2897

42

π
√

3

)
γ2

m2
χ

N +
5829

14

γ4

m4
χ

N2

]



Back-up slides
Fluctuation determinant: heat-kernel method (used for tree-level example)

[Diakonov, Petrov & Yung, PLB130 (1983) 385; Sov. J. Nucl. Phys. 39 (1984) 150 [Yad. Fiz. 39 (1984) 240]; Konoplich,
Theor. Math. Phys. 73 (1987) 1286 [Teor. Mat. Fiz. 73 (1987) 379; Vassilevich, Phys. Rept. 388 (2003) 279; Carson & McLerran, PRD41

(1990) 647; Carson, Li, McLerran &Wang, PRD42 (1990) 2127; Carson, PRD42 (1990) 2853]

Fluctuation determinant over the positive-definite modes:

tr(5) lnG−1(ϕ; x) = −
∫

d4x

∫ ∞
0

dτ

τ
K(ϕ; x , x |τ) .

The heat kernel is the solution to the heat-flow equation

∂τK(ϕ; x , x ′|τ) = G−1(ϕ; x)K(ϕ; x , x ′|τ) ,

with K(ϕ; x , x ′|0) = δ(4)(x − x ′) .

It’s Laplace transform

K(ϕ; x , x ′|s) =

∫ ∞
0

dτ e−sτ K(ϕ; x , x ′|τ)

is just the Green’s function with k2 → k2 + s.

[cf. Gel’fand-Yaglom thoerem, JMP1 (1960) 48;
Baacke & Kiselev PRD48 (1993); Dunne & Kirsten, JPA39 (2006) 11915; Dunne, JPA41 (2008) 304006]
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Additional numerical results
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