EW phase transition in a hierarchical 2HDM

G. Dorsch, S. Huber, K. Mimasu, J. M. No ACFI workshop, UMass Amherst

> Phys. Rev. Lett. 113 (2014) 211802 [arXiv:1405.5537]

September 18th, 2015

Introduction

- Our raison d'être (during this workshop): strongly firstorder electroweak phase transition (SFOEWPT)
 - A convincing motivation for physics beyond the SM
 - Need new bosonic states to alter the Higgs potential
 - Extended scalar sectors
- Two Higgs Doublet Model (2HDM)
 - New neutral, charged scalar states \checkmark
 - Possible new source of CP violation ✓ (Baryogenesis)
 - Unique collider signatures \checkmark

- Simple extension of the SM Higgs sector
 - One more SU(2)_L doublet
 - A limiting case of well-known BSM scenarios: MSSM, composite Higgs,...
- Generalised scalar potential and Yukawa sector
 - For the latter, a \mathbb{Z}_2 symmetry typically imposed to avoid strong constraints from Flavour-Changing Neutral Currents (FCNC)
- Both doublets share the role of EW symmetry breaking
- Complex parameters in the generalised potential
 - CP violation

$$\mathcal{L}_{y} = -\bar{F}_{L}(\Gamma_{1}\Phi_{1} + \Gamma_{2}\Phi_{2})f_{R} + \cdots$$

$$V_{s}(\Phi_{1}, \Phi_{2}) = -\mu_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} - \mu_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} - \frac{\mu^{2}}{2}(e^{i\phi}\Phi_{1}^{\dagger}\Phi_{2} + h.c.)$$

$$+ \frac{\lambda_{1}}{2}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{\lambda_{2}}{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{2})$$

$$+ \left\{\frac{\lambda_{5}}{2}(\Phi_{1}^{\dagger}\Phi_{2})^{2} + \left(\lambda_{6}(\Phi_{1}^{\dagger}\Phi_{1}) + \lambda_{7}(\Phi_{2}^{\dagger}\Phi_{2})\right)(\Phi_{1}^{\dagger}\Phi_{2}) + h.c.\right\}$$

- Yukawa interactions
 - Cannot simultaneously diagonalise both Yukawa matrices →FCNC
- Generalised potential
 - New mass scales, μ_1 , $\mu_2 \& \mu$ (=soft \mathbb{Z}_2 breaking mass + phase Φ)
 - New self couplings of which $\lambda_{6,7}$ can be complex (CP violation)
 - $\lambda_{6,7}$ explicitly break \mathbb{Z}_2 parity

$$\begin{aligned} V_s'(\Phi_1, \Phi_2) &= -\mu_1^2 \Phi_1^{\dagger} \Phi_1 - \mu_2^2 \Phi_2^{\dagger} \Phi_2 - \frac{\mu^2}{2} (\Phi_1^{\dagger} \Phi_2 + h.c.) \\ &+ \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ &+ \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + \frac{\lambda_5}{2} \left((\Phi_1^{\dagger} \Phi_2)^2 + h.c. \right) \end{aligned}$$

- We consider the CP conserving, \mathbb{Z}_2 -symmetric potential
 - $\Phi = \lambda_{6,7} = 0$ & no spontaneous CP violation
 - 1) for simplicity 2) phase transition is not sensitive to small CPV effects
 - CP violating case is interesting from a baryogenesis point of view
- 8 parameters, 6 after EWSB (fixing vev and Higgs mass)

- EW minimum defines tan β , the ratio of two vevs
- Scalar field content:
 - ϕ_1 : SM Higgs (h) and Goldstone bosons eaten by W,Z
 - ϕ_2 : CP even (H₀) and odd (A₀) neutral Higgs + charged Higgs (H_±)
- Physical CP even states h, H_0 mix with angle α
 - Gauge interactions of scalar sector defined by sin(α-β)
 - Convention: α - β =0 means h interactions are SM-like: **Alignment**
- 2HDM types defined by \mathbb{Z}_2 assignments of RH fermions:

Constraints

- EW precision observables (EWPO)
 - $SU(2)_{L}$ doublets preserve custodial symmetry of EW vacuum
 - W/Z mass relationship affected only at loop level \rightarrow T-parameter
- FCNCs
 - Strongest bounds come from $b \rightarrow Xs \gamma$, $B_0 \overline{B}_0$ mixing
 - Constrain the [$m_{H_{\pm}}$, tan β] plane (type II: $m_{H_{\pm}} > 380 \text{ GeV}$)
- LHC
 - Light Higgs properties constrain [**a**,β]
 - Direct searches for heavy scalars, dependent on the full parameter space

The 2HDM & EWPT

[G. C. Dorsch, S. J. Huber, J. M. No; JHEP 1310 (2013) 029]

- Restrict ourselves to Type I
 - All fermions couple to the same doublet
 - No lower bound on H_{\pm} mass from flavour constraints
- EWPT is largely insensitive to 2HDM type
 - By convention, dominant fermionic coupling (top) is always the same
 - Models mainly differ in experimental constraints
- Our goal:
 - Investigate the viable 2HDM parameter space for a SFOEWPT
 - Incorporate latest experimental constraints
 - Connect with new LHC signatures

The 2HDM & EWPT

- Size of parameter space motivates a scan
- Developed a numerical code combining experimental & physicality constraints
 - Interfaced with 2HDMC, HiggsBounds/HiggsSignals
 - Ensure (1-loop) stability & (tree-level) perturbative unitarity
 - EWPO constraints
 - Light Higgs properties from LHC, Tevatron (signal strengths)
 - Direct searches from LEP, Tevatron & LHC
 - Flavour constraints

Parameter scan

- Satisfaction of the above defines a 'physical point'
- For each physical point, determine the strength of the EW phase transition
 - Point at which the thermal 1-loop effective potential has two degenerate minima at [0, $v_{\rm C}]$
 - Defines critical temperature T_C
 - SFOEWPT declared if $v_C/T_C > 1$
- Evaluate the additional effect of requiring of a SFOEWPT on the previously existing constraints in the 2HDM parameter space

Observations

- Preference for alignment limit
 - **α**-β ~ 0
 - Imposed by experimental constraints
 - Maintained by SFOEWPT requirement
- Moderate tan β (scan only went up to 10)
- Mass splitting (~v) between A₀ and H₀
 - Relatively light H_0 (m_{H0} < 300 GeV)
 - Heavy $A_0 (m_{A0} > 300 \text{ GeV})$
 - As m_{H0} increases, range of \mathbf{a} - β decreases

Interpretations

- SFOEWPT requirement points to a very specific realisation of the 2HDM... why?
- Preference for alignment
 - Away from alignment, both CP even states 'share' the vev
 - If the states are heavier in the unbroken phase, PT gets weaker
- Large mass splittings
 - Generically want large self couplings for large effects on the potential
 - Some of these control the splittings, but why $m_{A0} > m_{H0}$?
 - Interplay between physicality constraints for low μ & large λ 's
 - See G. Dorsch's thesis

Interpretations

- Not only a specific realisation but also a very original one
- 'Hierarchical' 2HDM
- Majority of analyses are quite 'SUSY-oriented'
 - v, μ set the scale of the states, λ 's drive the splittings
 - Gauge origin of the self-couplings in SUSY
 - Near degenerate spectrum with splittings « v
- Points more towards strongly-coupled UV completions for such a scenario
- Unique collider signatures!

H2HDM at Colliders

• Summary

- Large ($\geq v$) mass splittings are strongly preferred
- Heavy A₀ (≥300 GeV), Lighter H₀ (≤ 300 GeV)
- Close to alignment (SM-like 125 GeV Higgs)
- Moderate tan β
- Heavy CP-even Higgs searches focus on WW, ZZ, ff channels
- CP-odd searches:
 - WW/ZZ forbidden for A₀ in CP conserving scenario
 - Only fermionic (very difficult if mA0 > 2mt!)

H2HDM at Colliders

- Large splittings open $S_i \rightarrow S_j V$
 - S: scalar (h, A₀, H₀, H_±), V: gauge boson (W_±, Z)
 - Often assumed to be kinematically forbidden
 - Until this summer, only $A_0 \rightarrow Z h \& H_0 \rightarrow hh$ searches existed
- 'Smoking gun' for the SFOEWPT: $A_0 \rightarrow Z H_0$
 - Not alignment suppressed ~ $\cos(\mathbf{a}-\beta)$
 - In contrast to $A_0 \rightarrow Z h \sim sin(\mathbf{a}-\beta)$
- Determine the LHC prospects for this signature

$A_0 \rightarrow Z H_0$ benchmarks

- Choose benchmarks compatible with 'physicality' and SFOEWPT requirements
 - Consider alignment limit & departure from alignment
 - Search strategy governed by decay mode of H₀

 $mH_0 = 180 \text{ GeV}$ $mA_0 = 400 \text{ GeV}$ $mH_{\pm} = 400 \text{ GeV}$

tan
$$\beta = 2$$

 $\mu = 100 \text{ GeV}$
 $\mathbf{a} - \beta = 0.001\pi$ (A)
 $\mathbf{a} - \beta = 0.1\pi$ (B)

- Competing decay channels are tt and $W_{\pm}H_{\mp}$
 - tt depends on (tanβ)⁻²
 - Availability of charged Higgs decay depends on $m_{\text{H}\pm}$
 - Choose mH degenerate for simplicity, presence of other decay will ~ halve BR(Z H_0)

- Clear preference for bb and WW in A & B respectively
 - hh depends on $\boldsymbol{\mu}$ and could be more important for other choices
 - Choose leptonic modes for Z & W for simplicity
 - A: bbll final state & B: 412v final state

- FeynRules implementation of Type I 2HDM
- Generated signal & backgrounds with MadGraph5_aMC@NLO
 - Pythia for parton shower & hadronisation
 - Delphes for detector simulation
- Cut & count analyses to extract signal vs. background
 - NLO k-factors used for signal & background predictions
 - Obtained from literature for backgrounds, used SusHi for signal
- Looked at 13 TeV LHC prospects
 - Suspected that 8 TeV data might be sensitive to this parameter space

See also [B. Coleppa, F. Kling, S.Su; JHEP 1409 (2014) 161]

$A_0 \rightarrow Z H_0 \rightarrow bbll$

- Main backgrounds: Zbb, tt, ZZ, Zh
- Simple event selection
 - Anti-kT jets, R=0.6
 - 2 b-tags within $|\eta| < 2.5$
 - Parametrised tagging efficiency as per [CMS-PAS-BTV-13-001]
 - 2 isolated, same-flavour leptons
 - Lepton $|\eta| < 2.5(2.7)$ for electrons(muons)
 - Leading lepton pT > 40 GeV
 - Sub-leading lepton pT > 20 GeV

$A_0 \rightarrow Z H_0 \rightarrow bbll$

k-factor:	1.6	1.5	1.4	-	-	
	Signal	$t\bar{t}$	$Z b \overline{b}$	ZZ	Zh	
Event selection	14.6	1578	424	7.3	2.7	
$80 < m_{\ell\ell} < 100~{\rm GeV}$	13.1	240	388	6.6	2.5	
$\begin{array}{l} H_T^{\rm bb} > 150 {\rm GeV} \\ H_T^{\ell\ell \rm bb} > 280 {\rm GeV} \end{array}$	8.2	57	83	0.8	0.74	σ(fb)
$\Delta R_{bb} < 2.5, \Delta R_{\ell\ell} < 1.6$	5.3	5.4	28.3	0.75	0.68	
$m_{bb}, m_{\ell\ell bb} { m signal \ region}$	3.2	1.37	3.2	< 0.01	< 0.02	

• Cut flow

- Z-mass window for leptons
- Cuts on total H_T , with & without leptons
- ΔR of bb and II systems

• Final observables: invariant mass of bb and bbll systems

- Energy losses expected due to finite resolution & imperfect reconstruction
- m_{bb} within (m_{H0} 20) ± 30 GeV & m_{bbll} within (m_{A0} 20) ± 40 GeV
- Statistics only significance of 5σ for 20 fb⁻¹
- Assuming 10% uncertainty (CLs) →40 fb⁻¹

See also [B. Coleppa, F. Kling, S.Su; arXiv:1404.1922]

$A_0 \rightarrow Z H_0 \rightarrow IIWW \rightarrow 4I2v$

- Away from alignment, this is a promising channel
- $A_0 \rightarrow Z H_0 \rightarrow IIZZ \rightarrow 4I2j$ also powerful
- Main background: $ZZ \rightarrow 4I + rare processes: Ztt, Zh, ZWW$
- Similar selection to bbll analysis
 - 4 isolated leptons in same-flavour pairs, $p_T > 20 \text{ GeV}$
 - Leading lepton $p_T > 40 \text{ GeV}$
 - Z-mass window for one pair as in bbll case
- No further selection required
 - Other handles if needed e.g. $\Delta R \& Z$ -veto on other II system

$A_0 \rightarrow Z H_0 \rightarrow IIWW \rightarrow 4I2v$

13 TeV LHC L= 60 fb⁻¹

- Transverse mass variables:
 - mT4l > 290 GeV → sig = 0.88fb, bkg = 1.39 fb
 - Statistics only significance of 5σ for 60 fb⁻¹
 - Assuming 10% uncertainty → 200 fb⁻¹

Low background situation! Investigate reducible backgrounds further

- A SFOEWPT provides physical motivation for the H2HDM
- We demonstrated a unique & promising LHC signature

Search for H/A decaying into Z and A/H, with $Z \rightarrow \ell \ell$ and A/H \rightarrow bb or A/H $\rightarrow \tau \tau$

The CMS Collaboration

CMS-PAS-HIG-15-001 May 2015

Abstract

A search is performed for a new heavy resonance decaying to a Z boson and a light resonance, where the light resonance decays to either a pair of bottom quarks or a pair of tau leptons and the Z boson decays to two electrons or two muons. The search exploits a data sample collected during 2012 by the CMS experiment at the center-of-mass energy of $\sqrt{s} = 8$ TeV and corresponding to an integrated luminosity of $\mathcal{L} = 19.8$ fb⁻¹. No significant deviation from the standard model expectations is observed and limits are set on benchmark production processes predicted in a model with two Higgs doublets.

 To our knowledge, first time that the EW phase transition has been cited as the primary physical motivation for an LHC search

- Covers both $A_0 \rightarrow Z H_0 \& H_0 \rightarrow Z A_0$
- Excludes our benchmark at 8 TeV

Type I

Future

- H2HDM is already being constrained by the LHC
- 13 TeV & future colliders will significantly improve limits
 - Strongly coupled UV completion = TeV scale composite resonances
- Many processes yet to be searched for
 - 4l2v final state
 - One hadronically decaying W \rightarrow 2l2j2v
 - Z decay to neutrinos \rightarrow 2I + MET (4v) & permutations
 - Tri-Z →4l2j
 - Other possible $H_0 \rightarrow Z A_0$ signatures
 - Charged Higgs decays [B. Coleppa, F. Kling, S.Su; JHEP 1412 (2014) 148]

Further motivation

- Relaxing assumptions about a near-degenerate spectrum alters the picture of existing 2HDM constraints at the LHC
 - Opening up these new channels reduces the BR of other decay modes

Conclusions

- Requirement of a SFOEWPT points to Hierarchical 2HDM
 - Close to alignment, moderate tan β
 - Radically different mass spectrum from usual assumptions
 - New decay channels & smoking gun signature of $A_0 \rightarrow Z H_0$
- Thanks to EW Baryogensis, H2HDM is now very relevant
- Many new signatures to cover
- Fill the gaps left in the collider limits 2HDM parameter space when moving from a degenerate to a hierarchical spectrum
- Stay tuned: bigger paper in the pipeline

BACKUP

bbll final state

- SM Higgs production & $A_0 \rightarrow Z$ h can have this final state
 - Resonant production >> off-shell SM associated production
 - Near alignment $A_0 \rightarrow Z$ h is suppressed

Type I

Type II

