CPV: EDM's \& Electroweak Baryogenesis

M.J. Ramsey-Musolf
U Mass Amherst

- Amherst Center for Fundamental Interactions

Physics at the interface: Energy, Intensity, and Cosmic frontiers
University of Massachusetts Amherst
http://www.physics.umass.edu/acfi/

ACFI CPV Workshop

March 2018

Goals for This Talk

- Illustrate the interplay of EDM searches with EW baryogenesis
- Introduce EDM physics
- \quad Set the stage for remainder of the workshop

Outline

I. EDM's: The SM \& BSM context
II. The Cosmic Matter-Antimatter Asymmetry
III. Electroweak Baryogenesis: Examples
IV. Outlook

I. EDMs: The SM \& BSM Context

EDMs \& SM Physics

$$
d_{n}^{S M} \sim\left(10^{-16} \mathrm{e} \mathrm{~cm}\right) \times \theta_{Q C D}+d_{n}{ }^{C K M}
$$

EDMs \& SM Physics

$$
\begin{aligned}
& d_{n} \text { SM } \sim\left(10^{-16} \mathrm{e} \mathrm{~cm}\right) \times \theta_{Q C D}+d_{n}^{C K M} \\
& \begin{array}{l}
d_{n}{ }^{C K M}=(1-6) \times 10^{-32} \mathrm{e} \mathrm{~cm} \\
\text { c. Seng arxiv: } 1411.1476
\end{array}
\end{aligned}
$$

EDMs \& SM Physics

$$
\begin{aligned}
& d_{n} \text { SM } \sim\left(10^{-16} \mathrm{e} \mathrm{~cm}\right) \times \theta_{Q C D}+d_{n}^{C K M} \\
& \begin{array}{l}
d_{n} \text { CKM }=(1-6) \times 10^{-32} \mathrm{e} \mathrm{~cm} \\
\text { c. Seng arxiv: } 1411.1476
\end{array} \\
& * 3.3 \times 10^{-33} \mathrm{e} \mathrm{~cm}<d_{p}<3.3 \times 10^{-32} \mathrm{e} \mathrm{~cm}
\end{aligned}
$$

EDMs \& BSM Physics

$$
d \sim\left(10^{-16} \mathrm{ecm}\right) \times(v / \Lambda)^{2} \times \sin \phi \times y_{f} F
$$

EDMs \& BSM Physics

$$
\begin{gathered}
d \sim\left(10^{-16} \mathrm{e} \mathrm{~cm}\right) \times(v / \Lambda)^{2} \times \sin \phi \times y_{f} F \\
\text { CPV Phase: large enough for baryogenesis ? }
\end{gathered}
$$

EDMs \& BSM Physics

$d \sim\left(10^{-16} \mathrm{ecm}\right) \times(v / \Lambda)^{2} \times \sin \phi \times y_{f} F$
 BSM mass scale: TeV ? Much higher?

EDMs \& BSM Physics

$$
d \sim\left(10^{-16} \mathrm{e} \mathrm{~cm}\right) \times(v / \Lambda)^{2} \times \sin \phi \times y_{f} F
$$

BSM dynamics: perturbative? Strongly coupled? Dependence on other parameters?

EDMs \& BSM Physics

EDMs \& BSM Physics

- Baryon asymmetry
- High energy collisions
- EDMs

Cosmic Frontier
Energy Frontier
Intensity Frontier

EDMs: New CPV?

System	Limit (e cm) *	SM CKM CPV	BSM CPV
199 Hg	7.4×10^{-30}	10^{-33}	10^{-29}
ThO	$8.7 \times 10^{-29 * *}$	10^{-38}	10^{-28}
n	3.3×10^{-26}	10^{-31}	10^{-26}

* $95 \% \mathrm{CL} \quad{ }^{* *} \mathrm{e}^{-}$equivalent \quad New $\mathrm{Hf} \mathrm{F}^{+}: 1.3 \times 10^{-28} 1704.07928$

EDMs: New CPV?

System	Limit (e cm) *	SM CKM CPV	BSM CPV
199 Hg	7.4×10^{-30}	10^{-33}	10^{-29}
ThO	$8.7 \times 10^{-29} * *$	10^{-38}	10^{-28}
n	3.3×10^{-26}	10^{-31}	10^{-26}

* 95% CL \quad ** e^{-}equivalent \quad New $H f F^{+}: 1.3 \times 10^{-28} 1704.07928$

Mass Scale Sensitivity
$\psi \begin{cases}\operatorname{linn}^{\varphi} \gamma & \sin \phi_{C P} \sim 1 \rightarrow M>5000 \mathrm{GeV} \\ \boldsymbol{e}_{\varphi} & M<500 \mathrm{GeV} \rightarrow \sin \phi_{C P}<10^{-2}\end{cases}$

EDMs: New CPV?

System	Limit (e cm) *	SM CKM CPV	BSM CPV
199 Hg	7.4×10^{-30}	10^{-33}	10^{-29}
ThO	$8.7 \times 10^{-29 * *}$	10^{-38}	10^{-28}
n	3.3×10^{-26}	10^{-31}	10^{-26}

* 95\% CL ** e- equivalent New Hf F^{+}: $1.3 \times 10^{-28} 1704.07928$

Not shown: muon

proton
\& nuclei
atoms
~ $100 \times$ better sensitivity

EDMs: New CPV?

System	Limit (e cm) *	SM CKM CPV	BSM CPV
199 Hg	7.4×10^{-30}	10^{-33}	10^{-29}
ThO	$8.7 \times 10^{-29 * *}$	10^{-38}	10^{-28}
n	3.3×10^{-26}	10^{-31}	10^{-26}

* $95 \% \mathrm{CL} \quad$ ** e^{-}equivalent \quad New $\mathrm{Hf} \mathrm{F}^{+}: 1.3 \times 10^{-28} 1704.07928$

Mass Scale Sensitivity

EDMs: New CPV?

System	Limit (e cm) *	SM CKM CPV	BSM CPV
199 Hg	7.4×10^{-30}	10^{-33}	10^{-29}
ThO	$8.7 \times 10^{-29} * *$	10^{-38}	10^{-28}
n	3.3×10^{-26}	10^{-31}	10^{-26}

* $95 \% \mathrm{CL} \quad$ ** e^{-}equivalent \quad New $\mathrm{Hf} \mathrm{F}^{+}: 1.3 \times 10^{-28} 1704.07928$

Mass Scale Sensitivity
Challenge for EWBG

- EDMs arise at > 1 loop
- CPV is flavor non-diagonal
- CPV is "partially secluded"

EDMs: New CPV?

System	Limit (e cm) *	SM CKM CPV	BSM CPV
199 Hg	7.4×10^{-30}	10^{-33}	10^{-29}
ThO	$8.7 \times 10^{-29 * *}$	10^{-38}	10^{-28}
n	3.3×10^{-26}	10^{-31}	10^{-26}

* 95% CL \quad ** e- equivalent \quad New Hf $F^{+}: 1.3 \times 10^{-28} 1704.07928$

Mass Scale Sensitivity
This talk

--- EDMs arise at >1 loop

- CPV is flavor non-diagonal
- CPV is "partially secluded"

II. The Matter-Antimatter Asymmetry

Cosmic Baryon Asymmetry

$$
Y_{B}=\frac{n_{B}}{s}=(8.82 \pm 0.23) \times 10^{-11}
$$

One number \rightarrow BSM Physics

Cosmic Baryon Asymmetry

$$
Y_{B}=\frac{n_{B}}{s}=(8.82 \pm 0.23) \times 10^{-11}
$$

One number \rightarrow 似... Explanations

Cosmic Baryon Asymmetry

$$
Y_{B}=\frac{n_{B}}{s}=(8.82 \pm 0.23) \times 10^{-11}
$$

One number \rightarrow 似... Explanations

Experiment can help:

- Discover ingredients
- Falsify candidates

Baryogenesis Scenarios

Baryogenesis Scenarios

Baryogenesis Scenarios

Era of EWSB: $t_{\text {univ }} \sim 10 \mathrm{ps}$

Electroweak Baryogenesis

Was Y_{B} generated in conjunction with electroweak symmetry-breaking?

III. Electroweak Baryogenesis

EWBG: Ingredients

- Strong first order EWPT: LHC \rightarrow Excluded for the MSSM \rightarrow Possible w/ extensions (e.g., NMSSM)
- CPV: SUSY: Sources same as in MSSM + possible additional; non-SUSY

EW Phase Transition: Higgs Portal

Increasing m_{h}
\longleftarrow New scalars

$$
\mathcal{O}_{4}=\lambda_{\phi H} \phi^{\dagger} \phi H^{\dagger} H \quad \mathbf{+} \ldots
$$

EW Phase Transition: Higgs Portal

Increasing m_{h}
« New scalars

$$
\mathcal{O}_{4}=\lambda_{\phi H} \phi^{\dagger} \phi H^{\dagger} H
$$

$$
+\ldots
$$

- Renormalizable
- ϕ : singlet or charged under $\operatorname{SU}(2)_{L} \times U(1)_{Y}$
- Generic features of full theory (NMSSM, GUTS...)
- More robust vacuum stability
- Novel patterns of SSB

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: $Z_{又}$	$\mathbf{1}$	\checkmark	\checkmark
Real singlet: Z_{2}	$\mathbf{1}$	\nearrow	\nearrow
Complex Singlet	2	\nearrow	\nearrow
EW Multiplets	$3+$	\nearrow	\nearrow

May be low-energy remnants of UV complete theory \& illustrative of generic features

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: $\mathrm{Z}_{\mathrm{又}}$	$\mathbf{1}$	\checkmark	\checkmark
Real singlet: Z_{2}	$\mathbf{1}$	\checkmark	\nearrow
Complex Singlet	$\mathbf{2}$	\nearrow	\nearrow
EW Multiplets	$3+$	\nearrow	\nearrow

May be low-energy remnants of UV complete theory \& illustrative of generic features (NMSSM...)

EW Phase Transition: Singlets

Increasing m_{h}
\longleftarrow New scalars

Real Singlet: $\quad \phi \rightarrow S$
Simplest Extension:
two states $h_{1} \& h_{2}$

Profumo, R-M, Shaugnessy JHEP 0708 (2007) 010

EW Phase Transition: Singlets

Modified Higgs Self-Coupling

Profumo, R-M, Wainwright, Winslow: 1407.5342; see also Noble \& Perelstein 0711.3018

EW Phase Transition: Singlets

Modified Higgs Self-Coupling

Profumo, R-M, Wainwright, Winslow: 1407.5342; see also Noble \& Perelstein 0711.3018

EW Phase Transition: Singlets

Increasing m_{h}
\longleftarrow New scalars
Resonant di-Higgs production:

No \& RM, arXiv:1310.6035 : LHC Discovery w/ $100 \mathrm{fb}^{-1}$

EW Phase Transition: Singlets

EDMs \& EWBG: MSSM + Singlets

Heavy sfermions: LHC consistent \& suppress
1-loop EDMs

Sub-TeV EW-inos: LHC \& EWB viable but non-universal phases

EDMs \& EWBG: MSSM + Singlets

Heavy sfermions: LHC consistent \& suppress
1-loop EDMs

Li, Profumo, RM ‘09-’10

Sub-TeV EW-inos: LHC \& EWB viable but non-universal phases

EDMs \& EWBG: MSSM + Singlets

Heavy sfermions: LHC consistent \& suppress
1-loop EDMs

Sub-TeV EW-inos: LHC \& EWB viable but non-universal phases

EW Multiplets: Two-Step EWPT

Increasing m_{h}

\longleftarrow New scalars

- Step 1: thermal loops
- Step 2: tree-level barrier

EW Multiplets: Two-Step EWPT

Increasing m_{h}
\longleftarrow New scalars

- Step 1: thermal loops
- Step 2: tree-level barrier

EW Multiplets: Two-Step EWPT

Increasing m_{h}
\longleftarrow New scalars

Real Triplet $\quad \Sigma \sim(1,3,0)$
Two-step EWPT \& dark matter

EW Multiplets: Two-Step EWPT

Increasing m_{h}
\longleftarrow New scalars

Two-Step EW Baryogenesis

$H_{j} \quad$ St'd Model Scalar Sector
$\phi \quad B S M$ Scalar Sector: at least one SU(2) _ non-singlet plus possibly gauge singlets: "partially secluded sector CPV"

BSM CPV in ϕ H interactions: baryogenesis during step 1

Two-Step EW Baryogenesis

Illustrative Model:

New sector: "Real Triplet" $\quad \Sigma$ Gauge singlet S
$H \rightarrow$ Set of "SM" fields: 2 HDM
(SUSY: "TNMSSM", Coriano...)
Two CPV Phases:
δ_{Σ} : Triplet phase
δ_{S} :
Singlet phase

Inoue, Ovanesyan, R-M: 1508.05404

Two-Step EW Baryogenesis \& EDMs

Two-Step EW Baryogenesis

Two cases: (A) $\delta_{S}=0 \quad$ (B) $\delta_{\Sigma}=0$

Inoue, Ovanesyan, R-M: 1508.05404

What is the CP Nature of the Higgs Boson?

- Interesting possibilities if part of an extended scalar sector
- Two Higgs doublets ?

$$
H \rightarrow H_{1}, H_{2}
$$

- New parameters:

$$
\begin{aligned}
& \left.\tan \beta=<H_{1}>/<H_{2}\right\rangle \\
& \sin \alpha_{b}
\end{aligned}
$$

What is the CP Nature of the Higgs Boson?

- Interesting possibilities if part of an extended scalar sector
- Two Higgs doublets ?

$$
H \rightarrow H_{1}, H_{2}
$$

- New parameters:

$\tan \beta=<H_{1}>/<H_{2}>$	
$\sin \alpha_{b}$	CPV : scalar-pseudoscalar mixing from $V\left(H_{1}, H_{2}\right)$

Higgs Portal CPV

CPV \& 2HDM: Type I \& I/

Higgs Portal CPV: EDMs

CPV \& 2HDM: Type II illustration
$\lambda_{6,7}=0$ for simplicity

Present
$\sin \alpha_{b}: C P V$
scalar mixing

Future:

$$
\begin{aligned}
& d_{n} \times 0.1 \\
& d_{A}(\mathrm{Hg}) \times 0.1 \\
& d_{\text {ThO }} \times 0.1 \\
& d_{A}(R a)\left[10^{-27} \mathrm{e} \mathrm{~cm}\right]
\end{aligned}
$$

Future:

$$
\begin{aligned}
& d_{n} \times 0.01 \\
& d_{A}(H g) \times 0.1 \\
& d_{T h O} \times 0.1 \\
& d_{A}(R a)
\end{aligned}
$$

Higgs Portal CPV: EDMs

CPV \& 2HDM: Type II illustration
$\lambda_{6,7}=0$ for simplicity

Present
$\sin \alpha_{b}: C P V$
scalar mixing

Future:

$$
\begin{aligned}
& d_{n} \times 0.1 \\
& d_{A}(\mathrm{Hg}) \times 0.1 \\
& d_{\text {Tho }} \times 0.1 \\
& d_{A}\left(\text { Ra) }\left[10^{-27} \mathrm{e} \mathrm{~cm}\right]\right.
\end{aligned}
$$

Future:

$$
\begin{aligned}
& d_{n} \times 0.01 \\
& d_{A}(H g) \times 0.1 \\
& d_{T h O} \times 0.1 \\
& d_{A}(R a)
\end{aligned}
$$

Low-Energy / High-Energy Interplay

Higgs Portal CPV: Source for EWBG?

Dorsch et al, 1611.05874

$$
\alpha_{b} \propto \delta_{1}-\delta_{2}
$$

CPV for EWBG

IV. Outlook

- Searches for permanent EDMs of atoms, molecules, hadrons and nuclei provide powerful probes of BSM physics at the TeV scale and above and constitute important tests of weak scale baryogenesis
- Studies on complementary systems is essential for first finding and then disentangling new CPV \& testing EWBG
- EWBG remains an important baryogenesis scenario for which definitive tests will likely require next generation EDM \& collider studies**
- Analysis of EDM implications of other baryogenesis scenarios is an important and interesting topic \rightarrow Many interesting discussions during remainder of this WS

Back Up Slides

Higgs Portal CPV

$$
\begin{aligned}
V= & \frac{\lambda_{1}}{2}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2}+\lambda_{3}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{4}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{2}^{\dagger} \phi_{1}\right)+\frac{1}{2}\left[\lambda_{5}\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+\text { h.c. }\right] \\
& -\frac{1}{2}\left\{m_{11}^{2}\left(\phi_{1}^{\dagger} \phi_{1}\right)+\left[m_{12}^{2}\left(\phi_{1}^{\dagger} \phi_{2}\right)+\text { h.c. }\right]+m_{22}^{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{1}=\operatorname{Arg}\left[\lambda_{5}^{*}\left(m_{12}^{2}\right)^{2}\right] \\
& \delta_{2}=\operatorname{Arg}\left[\lambda_{5}^{*}\left(m_{12}^{2}\right) v_{1} v_{2}^{*}\right]
\end{aligned}
$$

EWSB

$$
\delta_{2} \approx \frac{1-\left\lvert\, \frac{\lambda_{5} v_{1} v_{2}}{m_{12}^{2}}\right.}{1-2\left|\frac{\lambda_{5} v_{1} v_{2}}{m_{12}^{2}}\right|} \delta_{1}
$$

$h, H^{0}, A^{0} \rightarrow h_{1,2,3}$
$\left(\begin{array}{ccc}-s_{\alpha} c_{\alpha_{b}} & c_{\alpha} c_{\alpha_{b}} & s_{\alpha_{b}} \\ s_{\alpha} s_{\alpha_{b}} s_{\alpha_{c}}-c_{\alpha} c_{\alpha_{c}} & -s_{\alpha} c_{\alpha_{c}}-c_{\alpha} s_{\alpha_{b}} s_{\alpha_{c}} & c_{\alpha_{b}} s_{\alpha_{c}} \\ s_{\alpha} s_{\alpha_{b}} c_{\alpha_{c}}+c_{\alpha} s_{\alpha_{c}} & s_{\alpha} s_{\alpha_{c}}-c_{\alpha} s_{\alpha_{b}} c_{\alpha_{c}} & c_{\alpha_{b}} c_{\alpha_{c}}\end{array}\right)$

Higgs Portal CPV

$\lambda_{6,7}=0$ for simplicity

$$
0,7 \text { 0, }
$$

$$
\begin{aligned}
V= & \frac{\lambda_{1}}{2}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2}+\lambda_{3}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{4}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{2}^{\dagger} \phi_{1}\right)+\frac{1}{2}\left[\lambda_{5}\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+\text { h.c. }\right] \\
& -\frac{1}{2}\left\{m_{11}^{2}\left(\phi_{1}^{\dagger} \phi_{1}\right)+\left[m_{12}^{2}\left(\phi_{1}^{\dagger} \phi_{2}\right)+\text { h.c. }\right]+m_{22}^{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)\right\} .
\end{aligned}
$$

$\delta_{1}=\operatorname{Arg}\left[\lambda_{5}^{*}\left(m_{12}^{2}\right)^{2}\right]$,
$\delta_{2}=\operatorname{Arg}\left[\lambda_{5}^{*}\left(m_{12}^{2}\right) v_{1} v_{2}^{*}\right]$
$\xrightarrow{\text { EWSB }}$

$$
\delta_{2} \approx \frac{1-\left|\frac{\lambda_{5} v_{1} v_{2}}{m_{12}^{2}}\right|}{1-2\left|\frac{\lambda_{5} v_{1} v_{2}}{m_{12}^{2}}\right|} \delta_{1}
$$

$h, H^{0}, A^{0} \rightarrow h_{1,2,3}$

| $\left(\begin{array}{cc}-s_{\alpha} c_{\alpha_{b}} & c_{\alpha} c_{\alpha_{b}} \\ s_{\alpha} s_{\alpha_{b}} s_{\alpha_{c}}-c_{\alpha} c_{\alpha_{c}}-s_{\alpha} c_{\alpha_{c}}-c_{\alpha} s_{\alpha_{b}} s_{\alpha_{c}} & c_{\alpha_{b} s_{\alpha_{c}}} \\ \hline s_{\alpha} s_{\alpha_{b}} c_{\alpha_{c}}+c_{\alpha} s_{\alpha_{c}} & s_{\alpha} s_{\alpha_{c}}-c_{\alpha} s_{\alpha_{b}} c_{\alpha_{c}} \\ c_{\alpha_{b}} c_{\alpha_{c}}\end{array}\right)$ |
| :---: | :---: | :---: |

CP mixing: $\alpha_{b} \& \alpha_{c}$ not independent

Had \& Nuc Uncertainties

CPV \& 2HDM: Type II illustration

$$
\lambda_{6,7}=0 \text { for simplicity }
$$

Present

$\sin \alpha_{b}: C P V$
scalar mixing

Had \& Nuc Uncertainties

CPV \& 2HDM: Type II illustration

$$
\lambda_{6,7}=0 \text { for simplicity }
$$

Present

Challenge

$\sin \alpha_{b}: C P V$
scalar mixing

Flavored EW Baryogenesis

Flavor basis (high T)

$$
\mathscr{L}_{\text {Yukawa }}^{\text {Lepton }}=-\overline{E_{L}^{i}}\left[\left(Y_{1}^{E}\right)_{i j} \Phi_{1}+\left(Y_{2}^{E}\right)_{i j} \Phi_{2}\right] e_{R}^{j}+\text { h.c. }
$$

Mass basis ($T=0$)
$\frac{m_{f}}{v} \kappa_{\tau}\left(\cos \phi_{\tau} \bar{\tau} \tau+\sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau\right) h$
Guo, Li, Liu, R-M, Shu 1609.09849
Chiang, Fuyuto, Senaha 1607.07316

Flavored EW Baryogenesis

Jarlskog invariant

$$
J_{A}=\frac{1}{v^{2} \mu_{12}^{\mathrm{HB}}} \sum_{a, b, c=1}^{2} v_{a} v_{b}^{*} \mu_{b c} \operatorname{Tr}\left[Y_{c} Y_{a}^{\dagger}\right]
$$

T=0 Higgs couplings
$\operatorname{Im}\left(y_{\tau}\right) \sim \operatorname{Im}\left(J_{A}\right)$
EWBG CPV Source
$S C P V \sim \operatorname{Im}\left(J_{A}\right)$

Flavor basis (high T)
$\mathscr{L}_{\text {Yukawa }}^{\text {Lepton }}=-\overline{E_{L}^{i}}\left[\left(Y_{1}^{E}\right)_{i j} \Phi_{1}+\left(Y_{2}^{E}\right)_{i j} \Phi_{2}\right] e_{R}^{j}+$ h.c.
Mass basis ($T=0$)
$\frac{m_{f}}{v} \kappa_{\tau}\left(\cos \phi_{\tau} \bar{\tau} \tau+\operatorname{sPV} \rightarrow \tau \tau\right.$
Guo, Li, Liu, R-M, Shu 1609.09849
Chiang, Fuyuto, Senaha 1607.07316

Flavored EW Baryogenesis

$$
\begin{aligned}
& \Delta \phi_{\tau} \sim 10^{\circ}: \\
& 3 a b^{-1} @ L H C 14
\end{aligned}
$$

