T-Violation & Baryogenesis

M.J. Ramsey-Musolf U Mass Amherst

÷+	
4 ⁴⁹⁴ 4	

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

ACFI TRV Workshop December 2018

Themes for This Talk

- So far, connecting tests of TR invariance in neutron physics with the baryon asymmetry has focused on the neutron EDM
- In this context, the neutron EDM provides an important probe that complements information from paramagnetic systems and diamagnetic atoms
- Non-observations of EDMs place severe but not fatal – constraints on baryogenesis scenarios at the TeV scale & below
- There is room for more thought about connections with other neutron TR tests

Goals for This Talk

- Provide a general context for interpreting EDM experiments
- Illustrate the interplay of EDM searches with TeV scale & below baryogenesis scenarios
- Invite discussion

Outline

- I. EDM's: The SM & BSM context
- *II. The Cosmic Matter-Antimatter Asymmetry*
- III. Electroweak Baryogenesis: Examples
- IV. Post-sphaleron Baryogenesis
- V. Outlook

I. EDMs: The SM & BSM Context

 $d_n^{SM} \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$

$$d_n^{SM} \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$$

 $d_n^{CKM} = (1 - 6) \times 10^{-32} \text{ e cm}$
C. Seng arXiv: 1411.1476

$$d_n^{SM} \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$$

 $d_n^{CKM} = (1 - 6) \times 10^{-32} \text{ e cm}^*$
C. Seng arXiv: 1411.1476

* 3.3 x 10⁻³³ e cm < d_p < 3.3 x 10⁻³² e cm

$d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times y_f F$

$$d \sim (10^{-16} \text{ e cm}) \times (v / \Lambda)^2 \times [\sin \phi] \times y_f F$$

CPV Phase: large enough for baryogenesis ?

$$d \sim (10^{-16} \text{ e cm}) x (v / \Lambda)^2 x \sin \phi x y_f F$$

BSM mass scale: TeV ? Much higher ?

 $d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times y_f F$

BSM dynamics: perturbative? Strongly coupled? Dependence on other parameters ?

- Baryon asymmetry
- High energy collisions
- EDMs

Cosmic Frontier Energy Frontier Intensity Frontier

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	1.1 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	1.1 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	1.1 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Not shown: muon

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	1.1 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity Challenge for \$ $sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$

 $M < 500 \; GeV \rightarrow \; sin \phi_{CP} < 10^{\text{-}2}$

System	Limit (e cm) [*]	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	1.1 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity

- EDMs arise at > 1 loop
- CPV is flavor non-diagonal
- CPV is "partially secluded"
- CPV is vector-like

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	1.1 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

• CPV is vector-like

CPV for <WBG

II. The Matter-Antimatter Asymmetry

Cosmic Baryon Asymmetry

$$Y_B = \frac{n_B}{s} = (8.82 \pm 0.23) \times 10^{-11}$$

One number \rightarrow **BSM Physics**

Cosmic Baryon Asymmetry

$$Y_B = \frac{n_B}{s} = (8.82 \pm 0.23) \times 10^{-11}$$

One number \rightarrow **MAREALE INFLORE Explanations**

Cosmic Baryon Asymmetry

$$Y_B = \frac{n_B}{s} = (8.82 \pm 0.23) \times 10^{-11}$$

One number → M M M ... Explanations

Experiment can help:

- Discover ingredients
- Falsify candidates

Baryogenesis Scenarios

26

Baryogenesis Scenarios

Energy Scale (GeV)

27

Electroweak Baryogenesis

Was Y_B generated in conjunction with electroweak symmetry-breaking?

III. Electroweak Baryogenesis

• SUSY

Non-SUSY

EWBG: Ingredients

- Strong first order EWPT: LHC → Excluded for the MSSM → Possible w/ extensions (e.g., NMSSM)
- CPV: SUSY: Sources same as in MSSM + possible additional; non-SUSY

Strong 1st Order EWPT

Definitive probe of the possibilities \rightarrow LHC + next generation colliders

EDMs & EWBG: MSSM + Singlets

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

EDMs & EWBG: MSSM + Singlets

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

Li, Profumo, RM '09-'10

EDMs & EWBG: MSSM + Singlets

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

CPV for <WBG

EW Multiplets: Two-Step EWPT

• Step 2: EWSB along H

Two-Step EW Baryogenesis

 H_{i}

φ

BSM Scalar Sector: at least one SU(2)_L non-singlet plus possibly gauge singlets: "partially secluded sector CPV"

BSM CPV in ϕ H interactions: baryogenesis during step 1

Inoue, Ovanesyan, R-M: 1508.05404; Patel & R-M: 1212.5652; Blinov, Kozaczuk, Morrissey: 1504.05195

Two-Step EW Baryogenesis

Inoue, Ovanesyan, R-M: 1508.05404

Illustrative Model:

New sector: "Real Triplet" Σ Gauge singlet S

 $H \rightarrow$ Set of "SM" fields: 2 HDM

(SUSY: "TNMSSM", Coriano...)

Two CPV Phases:

Triplet phase Singlet phase

Two-Step EW Baryogenesis & EDMs

Insensitive to δ_{S} : electrically neutral \rightarrow "partially secluded"

Two-Step EW Baryogenesis

Two cases: (A) $\delta_{\rm S} = 0$ (B) $\delta_{\Sigma} = 0$

Inoue, Ovanesyan, R-M: 1508.05404

Flavored EW Baryogenesis

Flavor basis (high T)

$$\mathscr{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[(Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$$

Mass basis (T=0)

$$\frac{m_f}{v}\kappa_\tau(\cos\phi_\tau\bar{\tau}\tau + \sin\phi_\tau\bar{\tau}i\gamma_5\tau)h$$

Guo, Li, Liu, R-M, Shu 1609.09849 Chiang, Fuyuto, Senaha 1607.07316

Flavored EW Baryogenesis

Jarlskog invariant

$$J_{A} = \frac{1}{v^{2} \mu_{12}^{\text{HB}}} \sum_{a,b,c=1}^{2} v_{a} v_{b}^{*} \mu_{bc} \text{Tr} \left[Y_{c} Y_{a}^{\dagger} \right]$$

T=0 Higgs couplings Im $(y_{\tau}) \sim Im (J_A)$ EWBG CPV Source $S^{CPV} \sim Im (J_A)$

Flavor basis (high T)

$$\mathscr{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[(Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$$

Mass basis (T=0)

$$\frac{m_f}{v}\kappa_{ au}(\cos\phi_{ au}ar{ au} au+\sin\phi_{ au}ar{ au}i\gamma_5 au)h$$

Guo, Li, Liu, R-M, Shu 1609.09849 Chiang, Fuyuto, Senaha 1607.07316

Flavored EW Baryogenesis

IV. Post-Sphaleron Baryogenesis

- Babu, Mohapatra, Nasri '06
- Babu, Dev, Fortes, Mohapatra '13
- Bell, Corbett, Nee, R-M '18

Model

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	couplings
Δ_{dd}	6	1	-2/3	$d_R d_R$
Δ_{uu}	6	1	4/3	$u_R u_R$
Δ_{ud}	6	1	1/3	$u_R d_R$
Φ	1	1	0	$\Delta_{dd}\Delta_{ud}^2, \Delta_{uu}\Delta_{dd}^2$

Field Content: New Scalars

$$V \supset \frac{\lambda}{2} \Phi \Delta_{dd} \Delta_{ud}^2 + \frac{\lambda'}{2} \Phi \Delta_{uu} \Delta_{dd}^2.$$

BMN original

 $+\frac{f_{\alpha\beta}}{2}\bar{K}\Delta_{uu}(\bar{u}_R)_{\alpha}(u_R)^c_{\beta}$

 $+g_{\alpha\beta}\bar{K}\Delta_{ud}(\bar{u}_R)_{\alpha}(d_R)^c_{\beta}$ $+g'_{\alpha\beta}\bar{K}\Delta_{ud}\epsilon_{ij}(\bar{Q}_i)_{\alpha}(Q_j)^c_{\beta}+h.c., BCNR-M$

 $\mathcal{L}_{\text{Yukawa}} = \frac{h_{\alpha\beta}}{2} \bar{K} \Delta_{dd} (\bar{d}_R)_{\alpha} (d_R)_{\beta}^c$

Yukawa Interactions

Baryogenesis

 $\Delta B = 2$ decays

Constraints

EDMs

$$d_{n} = \sum_{q=u,d} \frac{v^{2}}{M_{\Delta_{ud}}^{2}} \left(\beta_{n}^{q\gamma} \operatorname{Im}[c_{q\gamma}] + \beta_{n}^{qG} \operatorname{Im}[c_{uG}]\right) \qquad \mathbf{d}_{q}$$

$$\bar{g}_{\pi}^{(i)} = \frac{v^{2}}{M_{\Delta_{ud}}^{2}} \gamma_{(i)}^{\pm G} \left(\operatorname{Im}[c_{uG}] \pm \operatorname{Im}[c_{dG}]\right) \qquad \mathbf{\tilde{d}}_{q}$$

Quark mass

Baryon Asymmetry

EDM Constraints

- Original BMN: G' = 0 (RH quarks only)
- Non-zero EDMs: G, G' non-vanishing
- Largest BAU: G = 0, G' non-vanishing, EDM compatible

	$\epsilon_{\rm wave}(M_{\Phi} = 8 \text{ TeV})$	$\epsilon_{\rm vertex}(M_{\Phi} = 8 { m TeV})$	Dilution Factor $(M_{\Phi} = 8 \text{ TeV})$
$G_{\alpha\beta} \sim 1, G'_{\alpha\beta} = 0$	10^{-9}	10^{-14}	10^{-2}
$G'_{\alpha\beta} \sim 1, \ G_{\alpha\beta} = 0$	10^{-7}	10^{-8}	10^{-2}
$G_{\alpha\beta} \sim G'_{\alpha\beta} \sim 10^{-3}$	10^{-7}	10^{-6}	10^{-5}

IV. Outlook

- Searches for permanent EDMs of atoms, molecules, hadrons and nuclei provide powerful probes of BSM physics at the TeV scale and above and constitute important tests of < weak scale baryogenesis
- Studies on complementary systems is essential for first finding and then disentangling new CPV & testing EWBG
- EWBG remains an important baryogenesis scenario for which definitive tests will likely require next generation EDM & collider studies^{**}

Higgs Portal CPV

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

What is the CP Nature of the Higgs Boson ?

- Interesting possibilities if part of an extended scalar sector
- Two Higgs doublets ?

 $H
ightarrow H_1$, H_2

• New parameters:

 $tan \beta = \langle H_1 \rangle / \langle H_2 \rangle$ sin α_b

What is the CP Nature of the Higgs Boson ?

- Interesting possibilities if part of an extended scalar sector
- Two Higgs doublets ?

 $H
ightarrow H_1$, H_2

• New parameters:

$$\frac{\tan \beta}{\beta} = \langle H_1 \rangle / \langle H_2 \rangle$$

$$sin \alpha_b$$

$$CPV : scalar-pseudoscalar$$

$$mixing from V(H_1, H_2)$$

Higgs Portal CPV

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6,7} = 0$ for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] \\ - \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

$$\begin{pmatrix} -s_{\alpha}c_{\alpha_b} & c_{\alpha}c_{\alpha_b} & s_{\alpha_b} \\ s_{\alpha}s_{\alpha_b}s_{\alpha_c} - c_{\alpha}c_{\alpha_c} & -s_{\alpha}c_{\alpha_c} - c_{\alpha}s_{\alpha_b}s_{\alpha_c} & c_{\alpha_b}s_{\alpha_c} \\ s_{\alpha}s_{\alpha_b}c_{\alpha_c} + c_{\alpha}s_{\alpha_c} & s_{\alpha}s_{\alpha_c} - c_{\alpha}s_{\alpha_b}c_{\alpha_c} & c_{\alpha_b}c_{\alpha_c} \end{pmatrix}$$

Higgs Portal CPV

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6,7} = 0$ for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] \\ - \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

CP mixing: $\alpha_b \& \alpha_c$ not independent

Higgs Portal CPV: EDMs

CPV & 2HDM: Type II illustration

$\lambda_{6.7} = 0$ for simplicity

Present

 $sin \alpha_b$: CPV scalar mixing

Future:
d _n x 0.01
<i>d_A(Hg)</i> x 0.1
d _{ThO} x 0.1
d _A (Ra)

Inoue, R-M, Zhang: 1403.4257

Low-Energy / High-Energy Interplay

Higgs Portal CPV: Source for EWBG?

Dorsch et al, 1611.05874

 $lpha_b \propto \delta_1$ – δ_2

Higgs Portal CPV: EDMs

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

sin α_b : CPV scalar mixing

Future:Future: $d_n \ge 0.1$ $d_n \ge 0.01$ $d_A(Hg) \ge 0.1$ $d_A(Hg) \ge 0.1$ $d_{ThO} \ge 0.1$ $d_{ThO} \ge 0.1$ $d_A(Ra) [10^{-27} e cm]$ $d_A(Ra)$

58

Inoue, R-M, Zhang: 1403.4257

Higgs Portal CPV: EDMs & LHC

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

 $d_A(Ra)$

Inoue, R-M, Zhang: 1403.4257

59

*d*_₄(*Ra*) [10⁻²⁷ e cm]

 $sin \alpha_b$: CPV scalar mixing

Higgs Portal CPV: EDMs & LHC

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

Inoue, R-M, Zhang: 1403.4257

Higgs Portal CPV: EDMs & LHC

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

Inoue, R-M, Zhang: 1403.4257

Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

$\lambda_{6,7} = 0$ for simplicity

Present

 $sin \alpha_b$: CPV scalar mixing

Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

$\lambda_{6,7} = 0$ for simplicity

Present

Challenge

 $sin \alpha_b$: CPV scalar mixing

Inoue, R-M, Zhang: 1403.4257

EW Phase Transition: Higgs Portal

EW Phase Transition: Higgs Portal

- Renormalizable
- φ : singlet or charged under SU(2)_L x U(1)_Y
- Generic features of full theory (NMSSM, GUTS...)
- More robust vacuum stability
- Novel patterns of SSB

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: 🗙	1	~	*
Real singlet: Z_2	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet:	1	 ✓ 	*
Real singlet: Z ₂	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features (NMSSM...)

Modified Higgs Self-Coupling

EW Multiplets: Two-Step EWPT

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1505.05195

EW Multiplets: Two-Step EWPT

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1505.05195

EW Multiplets: Two-Step EWPT

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1505.05195