#### The Electroweak Box

# M.J. Ramsey-Musolf

U Mass Amherst



AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

EW Box Workshop, ACFI September 2017



## **Goals For This Talk**

- Set the context for the workshop
- Introduce topics to be addressed in more detail during following talks & discussions
- Pose some challenges for the future

## **Goals For This Talk**

- Set the context for the workshop
- Introduce topics to be addressed in more detail during following talks & discussions
- Pose some challenges for the future

**Caveat:** I will not provide a comprehensive review, and some results are undoubtedly out of date. Omissions are not intentional, and I welcome corrections, updates, and other input!

## **Outline**

- I. Context
- II. PV Electron Scattering
- III. CC Weak Interactions
- IV. Time Reversal
- V. Workshop Questions



#### **Two EW Boson Exchange**



#### **Two EW Boson Exchange**



- QED ( $\gamma\gamma$ ) in semileptonic interactions is still a puzzle !
- No direct probes of EW boxes (γZ, γW) available, but reliable SM computations needed. Can we trust the quoted theoretical uncertainties ? Can we reduce them further ?

**Two-boson exchange in semileptonic processes: important for** elastic PV eN & eA scattering (<sup>12</sup>C) & nuclear  $\beta$ -decay; beam normal asymmetry, Olympus... provide tests



 $V = Z^0, W, \gamma$ 

**Two-boson exchange in semileptonic processes: important for** elastic PV eN & eA scattering (<sup>12</sup>C) & nuclear  $\beta$ -decay; beam normal asymmetry, Olympus... provide tests



**Two-boson exchange in semileptonic processes: important for** elastic PV eN & eA scattering (<sup>12</sup>C) & nuclear  $\beta$ -decay; beam normal asymmetry, Olympus... provide tests



## **Two EW Boson Exchange**



|    | dσ | $A_n$ | $A_{PV}$ | ft <sub>1/2</sub> | а,А      | δ( <b>Ε</b> ) | $d_A$ |
|----|----|-------|----------|-------------------|----------|---------------|-------|
| γγ | ~  | ~     | ~        | ×                 | ×        | ×             | ~     |
| γΖ | ×  | ×     | ~        | ×                 | ×        | ×             | ×     |
| γW | ×  | ×     | ×        | ~                 | <b>~</b> | ~             | ×     |

**Two-boson exchange in semileptonic processes: important for** elastic PV eN & eA scattering (<sup>12</sup>C) & nuclear  $\beta$ -decay; beam normal asymmetry provides, Olympus... provide tests



**Proposal:** (1) carry out a consistent set of computations for  $A_n$ , PV asymmetry, &  $\delta_{NS}$  using different methods (2) develop a program of  $A_n$  measurements to test computations



## **II. PV Electron Scattering**

#### **Parity-Violation & Weak Charges**



Parity-Violating electron scattering

$$A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \Big[ Q_W + F(Q^2, \theta) \Big]$$

Atomic parity-violation

 $E_1^{PV} / \beta = i e \mathcal{M} \times 10^{-11} a_0 (Q_W / N) / \beta$ 

#### **Parity-Violation & Weak Charges**



Parity-Violating electron scattering

$$A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[ Q_W + F(Q^2, \theta) \right]$$

Atomic parity-violation

$$E_1^{PV} / \beta = i e \mathcal{M} \times 10^{-11} a_0 (Q_W / N) / \beta$$

### **Parity-Violation & Neutral Currents**



Parity-Violating electron scattering

$$A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \Big[ Q_W + F(Q^2,\theta) \Big]$$

Assume SM NC correct & use to probe hadron & nuclear struture

#### **Parity-Violation & Neutral Currents**



R. Carlini, PANIC 2017 Beijing

#### Weak Mixing in the SM: Uncertainties

$$\hat{s}^2 \frac{d\hat{\alpha}}{dt} - \hat{\alpha} \frac{d\hat{s}^2}{dt} = \frac{b_2}{\pi} \hat{\alpha}^2 + \sum_j \frac{b_{2j}}{\pi^2} \hat{\alpha}^2 \hat{\alpha}_j + \cdots$$

$$\sin^2 \hat{\theta}_W(\mu) = \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_0)} \sin^2 \hat{\theta}_W(\mu_0) + \frac{\sum_i N_i^c \gamma_i Q_i T_i}{\sum_i N_i^c \gamma_i Q_i^2} \bigg[ 1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_0)} \bigg],$$

Full  $SU(2)_1 \times U(1)_Y RGE$ 

Erler & R-M

Relate running of  $\sin^2 \theta_W$  to running of  $\alpha$ 

1. Run  $\alpha$  & sin<sup>2</sup> $\theta_W$  to  $\mu \sim m_c$ 

2. Bound s-quark contribution to  $\alpha(m_c)$  -- relative to u and d contributions -- using heavy quark and SU(3)<sub>f</sub> limits Uncertainties:  $sin^2 \theta_W(0)$ +/- 3 x 10<sup>-5</sup> :  $\Delta \alpha^{(3)}(m_c)$ +/- 5 x 10<sup>-5</sup>:  $\Delta \alpha^{(2)}(m_s)$ +/- 3 x 10<sup>-5</sup>: OZI +/- 1.5 x 10<sup>-4</sup> :  $sin^2 \theta_W(M_Z)$ 

$$A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2\pi\alpha}} \left[ Q_W + F(Q^2, E) \right] \qquad \stackrel{\text{Erler, Kurylov}}{\underset{R-M}{\overset{\& R-M}{\overset{\& R-M}}}$$

$$E-Independent \qquad e^- \qquad W \qquad p^- \qquad e^- \qquad Z \qquad p^- \qquad$$

 $e^{-}$ 

e

Z

w

р

$$A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \Big[ Q_W + F(Q^2, E) \Big]$$

*E-dependent: E* = 1.165 GeV

| Ref. [11]         | Ref. [15]                              | Ref. [17]            | This work **         |
|-------------------|----------------------------------------|----------------------|----------------------|
| $(3\pm 3)10^{-3}$ | $\bigl(4.7^{+1.1}_{-0.4}\bigr)10^{-3}$ | $(5.7\pm0.9)10^{-3}$ | $(5.4\pm2.0)10^{-3}$ |

- [11] Gorchtein & Horowitz
- [15] Sibirtsev et al
- [17] Rislow & Carlson
- \*\* Gorchtein, Horowitz, R-M 1102.3910 [nucl-th]





R. Carlini, PANIC 2017 Beijing



R. Carlini, PANIC 2017 Beijing

$$A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \Big[ Q_W + F(Q^2, E) \Big]$$

*E-dependent: E* = 1.165 GeV

| Ref. [11]         | Ref. [15]                    | Ref. [17]            | This work            |
|-------------------|------------------------------|----------------------|----------------------|
| $(3\pm 3)10^{-3}$ | $(4.7^{+1.1}_{-0.4})10^{-3}$ | $(5.7\pm0.9)10^{-3}$ | $(5.4\pm2.0)10^{-3}$ |

Lower energy measurement



 $E = 180 MeV, Q^2 = 0$ 

[1.32 +/- 0.05 (mod avg) +/- 0.27 (bkg) <sup>+0.11</sup><sub>-0.08</sub> (res) ] x 10 <sup>-3</sup>

 $e^{-}$ 

 $e^{-}$ 

w

p

p

$$A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \Big[ Q_W + F(Q^2, E) \Big]$$

Dominant E-dependence

$$\operatorname{Re}\Box_{\gamma Z_{A}}(\nu) = \frac{2\nu}{\pi} \int_{\nu_{\pi}}^{\infty} \frac{d\nu'}{\nu'^{2} - \nu^{2}} \operatorname{Im}\Box_{\gamma Z_{A}}(\nu')$$
  

$$\operatorname{Re}\Box_{\gamma Z_{V}}(\nu) = \frac{2}{\pi} \int_{\nu_{\pi}}^{\infty} \frac{\nu' d\nu'}{\nu'^{2} - \nu^{2}} \operatorname{Im}\Box_{\gamma Z_{V}}(\nu')$$
  

$$e^{-\frac{\nu'}{\mu}}$$

e<sup>-</sup>

**p** 

$$\mathrm{Im}\Box_{\gamma Z_A}(\nu) = \alpha_{\mathrm{em}} g_A^e \int_{W_{\pi}^2}^s \frac{dW^2}{(s-M^2)^2} \int_0^{Q_{max}^2} \frac{dQ^2}{1+\frac{Q^2}{M_Z^2}} \left[ F_1^{\gamma Z} + \frac{s(Q_{max}^2-Q^2)}{Q^2(W^2-M^2+Q^2)} F_2^{\gamma Z} \right]$$

Two Issues:

[1] Existence of sufficient SF data in relevant kinematic region

[2] Isospin rotating  $F^{\gamma\gamma} \rightarrow F^{\gamma Z}$ 

$$A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \Big[ Q_W + F(Q^2, E) \Big]$$

*E-dependent: E* = 1.165 GeV

| Ref. [11]        | Ref. [15]                    | Ref. [17]            | This work              |
|------------------|------------------------------|----------------------|------------------------|
| $(3\pm3)10^{-3}$ | $(4.7^{+1.1}_{-0.4})10^{-3}$ | $(5.7\pm0.9)10^{-3}$ | $(5.4 \pm 2.0)10^{-3}$ |

#### Additional measurements



*Dominant contributions; scarce data* 

e

 $e^{-}$ 

р

p

Measure  $A_{PV}$  in extrapolation region: direct probe of  $F^{\gamma Z}$ 

Z

w

#### **EW Radiative Corrections to Moller**

A. Czarnecki & W.J. Marciano PRD(1996)

- $A_{RL}(ee) = \alpha (1-4\sin^2\theta_W)$   $\sin^2\theta_W(m_Z)_{MS} = 0.23124(6)$  or running + 3.01(25)<sub>hadronic</sub>%  $\sin^2\theta_W(Q=0) = 0.23820(60)$ 
  - + WWbox (+3.6%)  $\gamma$ Zbox...(-5.5%) partial cancellation + other small 1 loop corrections  $\rightarrow$  -40(3)% reduction!

E158  $\Delta A_{RL}/A_{RL} = \pm 12.5\%$  vs Running unc.  $\pm 6\%$ ?

Erler & Ramsey-Musolf  $\rightarrow$  factor of 8.6 error reduction! +3.01(25)%  $\rightarrow$  +2.99(3)% <u>Theory ±0.6% vs Moller exp ±2.4%</u>  $\Delta sin^2 \theta_W^{RC} \sim \pm 0.00007!$  Pristine Potentially another factor of 2 reduction via lattice <u>W. Marciano</u>

#### **Beam Normal Asymmetry**

- Increasingly important for many precision measurements.
- Can isolate some radiative corrections with only polarized electrons (no need for positrons).
- PREX, CREX provide unique data sets on high Z targets. Comparing these to low Z data allows "Rosenbluth like" separations of different coulomb distortion, dispersion ... contributions vs Z.
   Instead of long / transverse vs angle, have coulomb distortion / dispersion contributions vs Z.
- Analyzing high Z and low Z data together can provide important additional insight even if only interested in low Z experiments.



#### **Beam Normal Asymmetry**



- Coulomb distortions are coherent, order Zα. Important for PREX (Pb has Z=82).
- Dispersion corrections order α (not Zα). Important for QWEAK because correction is order α/Q<sub>w</sub> ~ 10% relative to small Born term (Q<sub>w</sub>). --- M. Gorshteyn
- Both Coulomb distortion and dispersion cor. can be important for Transverse Beam Asymmetry An for <sup>208</sup>Pb. Note Born term gives zero by time reversal symmetry.

#### **Beam Normal Asymmetry**

- Left / Right cross section asymmetry for electrons with transverse polarization.
- Potential systematic error for PV from small trans components of beam polarization.
- A<sub>n</sub> vanishes in Born approx (time reversal) --> Sensitive probe of 2 or more photon effects. Can measure radiative corrections directly!
- Full dispersion calculations include all excited states but only for 2 photon exchange.

## A<sub>n</sub> for a Range of Nuclei



#### **Coulomb Distortions for PREX**

 We sum elastic intermediate states to all orders in Zα by solving Dirac equ. for e moving in coulomb V and weak axial A potentials.

 $A \propto G_F \rho_W(r) \approx 10 \text{ eV}$   $V(r) \approx 25 \text{MeV}$ 

 Right handed e sees V+A, left handed V-A

 $A_{pv} = [d\sigma/d\Omega|_{V+A} - d\sigma/d\Omega|_{V-A}]/2d\sigma/d\Omega$ 

 Coulomb distortions reduce A<sub>pv</sub> by ~30%, but they are accurately calculated. Q<sup>2</sup> shared between "hard" weak, and soft interactions so weak amplitude G<sub>F</sub>Q<sup>2</sup> reduced.



## **III. CC Weak Interactions**

## Weak Decays: New Interactions

# Decay Correlations: Scalar & Tensor Currents

#### SUSY Corrections to CKM Unitarity



*Neutron & Nuclear*  $\beta$ *-decay:*  $0^+ \rightarrow 0^+$ *, Nab,* <sup>6</sup>*He...* 

36





## $0^+ \rightarrow 0^+$ Dispersion Corrections: $\delta_{NS}$



Towner & Hardy, PRC 91 (2015) 2, 025501

## $0^+ \rightarrow 0^+$ Dispersion Corrections: $\delta_{NS}$



Towner & Hardy, PRC 91 (2015) 2, 025501





J. Engel





J. Engel





#### **Dispersion Corrections: pp Reaction**



**Project: pionless EFT computation** 

44

## **IV. Time Reversal**

## Diamagnetic Systems: P- & T-Odd Moments



nuclear finite size: Schiff moment



Schiff moment, MQM,...

EDMs of diamagnetic atoms (<sup>199</sup>Hg)

## **Diamagnetic Systems**

Nuclear Moments



## **Diamagnetic Systems**

Nuclear Moments



## **Diamagnetic Systems**

Nuclear Moments



## **Diamagnetic Systems: Schiff Moments**



Atomic effect from nuclear finite size: Schiff moment

EDMs of diamagnetic atoms (<sup>199</sup>Hg)



## **Nuclear Schiff Moment**

#### Nuclear Enhancements



Schiff moment, MQM,...



Nuclear polarization: mixing of opposite parity states by  $H^{TVPV} \sim 1 / \Delta E$ 

EDMs of diamagnetic atoms (<sup>199</sup>Hg)

## **Nuclear Schiff Moment**

#### Nuclear Enhancements: Octupole Deformation



Calculated <sup>225</sup>Ra density

 $|\pm\rangle = \frac{1}{\sqrt{2}} \left( | \bullet \rangle \pm | \bullet \rangle \right)$ 

Opposite parity states mixed by  $H^{TVPV}$ 



"Nuclear amplifier"

Nuclear polarization: mixing of opposite parity states by  $H^{TVPV} \sim 1 / \Delta E$ 

EDMs of diamagnetic atoms (<sup>225</sup>Ra)

Thanks: J. Engel

## **Schiff Screening & Corrections**



EDMs of diamagnetic atoms ( <sup>199</sup>Hg )

PT PT PT PT T  $C_{J} E \times O EDM, Schiff...$   $T^{M}_{J} O \times E E MQM...$   $T^{E}_{J} \otimes T^{E}_{J=1} \otimes T^{E}_{J=2} ?$ 

S. Inoue, MRM 53

**Two-boson exchange in semileptonic processes: important for** elastic PV eN & eA scattering (<sup>12</sup>C) & nuclear  $\beta$ -decay; beam normal asymmetry, Olympus... provide tests



## V. Workshop Questions

- What is the path forward for improving our understanding of γγ exchange in semileptonic processes?
- How reliable are the present contributions of Zγ and Wγ boxes for nucleons and nuclei ?
- What additional theoretical developments/ computations are needed?
- Is there a program of experimental measurements that could be used to refine theoretical predictions ?

# **Back Up Slides**