#### Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond

M.J. Ramsey-Musolf U Mass Amherst



AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

ACFI Neutron Lifetime Workshop, September 2014

# Outline

I. CKM unitarity: the NP & BSM context
II. CKM unitarity: status
III. CKM unitarity: BSM implications
IV. Summary

### I. NP & BSM Context

Fundamental symmetries and neutrinos in NP in light of the LHC

### Scientific Questions

#### 2007 NSAC LRP:

- What are the masses of neutrinos and how have they shaped the evolution of the universe?
- Why is there more matter than antimatter in the present universe?
- What are the unseen forces that disappeared from view as the universe cooled?

### Scientific Questions

#### 2007 NSAC LRP:

- What are the masses of neutrinos and how have they shaped the evolution of the universe?
- Why is there more matter than antimatter in the present universe?
- What are the unseen forces that disappeared from view as the universe cooled?

# Four Components \*\*

| EDM searches:<br>BSM CPV, Origin of Matter | <i>0vββ decay searches:</i><br>Nature of neutrino, Lepton<br>number violation, Origin of<br>Matter |
|--------------------------------------------|----------------------------------------------------------------------------------------------------|
| Electron & muon prop's &                   | Radioactive decays & other                                                                         |
| interactions:                              | tests                                                                                              |
| SM Precision Tests, BSM                    | SM Precision Tests, BSM                                                                            |
| "diagnostic" probes                        | "diagnostic" probes                                                                                |

# Four Components

| EDM searches:<br>BSM CPV, Origin of Matter | <i>0vββ decay searches:</i><br>Nature of neutrino, Lepton<br>number violation, Origin of<br>Matter |
|--------------------------------------------|----------------------------------------------------------------------------------------------------|
| Electron & muon prop's &                   | Radioactive decays & other                                                                         |
| interactions:                              | tests                                                                                              |
| SM Precision Tests, BSM                    | SM Precision Tests, BSM                                                                            |
| "diagnostic" probes                        | "diagnostic" probes                                                                                |

### The BSM Context: NP & the LHC

What are the BSM interactions and what is the associated mass scale?

♦ Are fundamental interactions "natural" ?



Scalar fields are a simple

Scalar fields are a simple

Scalar fields are theoretically problematic



Scalar fields are a simple

Scalar fields are theoretically problematic

$$H^{0} \qquad \qquad \Delta m^{2} \sim \lambda \Lambda^{2}$$

Discovery of a (probably) fundamental 125 GeV scalar :

Is it telling us anything about  $\Lambda$ ? Naturalness?

Scalar fields are a simple

Scalar fields are theoretically problematic

$$H^{0} \qquad \qquad \Delta m^{2} \sim \lambda \Lambda^{2}$$

Discovery of a (probably) fundamental 125 GeV scalar :

 $m_h^2 \sim \lambda v^2 \& G_F \sim 1/v^2$ : what keeps  $G_F$  "large"?

# **LHC** Implications

- Weak scale BSM physics (e.g., SUSY) is there but challenging for the hadronic collider
- SUSY is there but a bit heavy (some fine tuning)
- We are thinking about the problem incorrectly (cosmological constant???)

# **LHC** Implications

- Weak scale BSM physics (e.g., SUSY) is there but challenging for the hadronic collider
- SUSY is there but a bit heavy (some fine tuning)
- We are thinking about the problem incorrectly (cosmological constant???)

Opportunity for precision tests: weak decays





#### Pair production of squarks





$$\begin{split} \tilde{q} &\to q + \tilde{\chi}_1^0 \\ \tilde{q} &\to q' + \tilde{\chi}^{\pm} \to \ell + \nu + q' + \tilde{\chi}_1^0 \end{split}$$

Final state: 
$$2j + E_T$$
,  $2j + \ell + E_T$ 

No exclusion yet (jets analysis): is sub-TeV SUSY hiding here?

If so, will it show up in precision tests ?





#### Pair production of squarks





$$\begin{split} \tilde{q} &\to q + \tilde{\chi}_1^0 \\ \tilde{q} &\to q' + \tilde{\chi}^{\pm} \to \ell + \nu + q' + \tilde{\chi}_1^0 \end{split}$$

Final state: 
$$2j + E_T$$
,  $2j + \ell + E_T$ 

No exclusion yet (jets analysis): is sub-TeV SUSY hiding here?

If so, will it show up in precision tests ?

CMS: SUS-13-012-pas





#### Pair production of squarks





$$\begin{split} \tilde{q} &\to q + \tilde{\chi}_1^0 \\ \tilde{q} &\to q' + \tilde{\chi}^{\pm} \to \ell + \nu + q' + \tilde{\chi}_1^0 \end{split}$$

Final state: 
$$2j + E_T$$
,  $2j + \ell + E_T$ 

No exclusion yet (jets analysis): is sub-TeV SUSY hiding here?

If so, will it show up in precision tests ?

# **LHC** Implications

- Weak scale BSM physics (e.g., SUSY) is there but challenging for the hadronic collider
- SUSY is there but a bit heavy (some fine tuning)
- We are thinking about the problem incorrectly (cosmological constant???)

Opportunity for SM-suppressed processes: EDMs...

#### **Probing Heavy Scale: EDMs & Precision Tests**

BSM Signal ~ 
$$(v/\Lambda)^2$$



# LHC (lack of) Indications ?

| ATLAS Exotics Searches* - 95% CL Exclusion |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |                                                             |                                                                      |                                                                                                          | ATL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                            |  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 00                                         | 1011L1 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                             |                                                                      |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\int \mathcal{L} dt = (1.0 - 20.3)  \text{fb}^{-1}$                                                                                                                                                                                             | $\sqrt{s} = 7, 8$ lev                                                                                                                                                                                                      |  |
|                                            | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ℓ,γ                                                                                 | Jets                                                        | ET                                                                   | ∫£dt[fb                                                                                                  | <sup>-1</sup> ] Mass limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                  | Reference                                                                                                                                                                                                                  |  |
| Extra dimensions                           | $\begin{array}{l} \text{ADD } G_{\text{KK}} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD odd } \rightarrow \ell q \\ \text{ADD odd } \rightarrow \ell q \\ \text{ADD Odd } A$ | $- 2e, \mu$ 1 e, μ - 2 $\mu$ (SS) ≥ 1 e, μ 2 e, μ 2 e, μ 2 e, μ - 1 e, μ 2 $\gamma$ | 1-2j<br>-<br>1j<br>2j<br>-<br>2j/1J<br>4b<br>≥ 1b,≥ 1J<br>- | Yes<br>-<br>-<br>-<br>Yes<br>-<br>Yes<br>-<br>Yes<br>-<br>Yes<br>Yes | 4.7<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>4.7<br>20.3<br>19.5<br>14.3<br>5.0<br>4.8 | Mo         4.37 TeV           Ma         5.2 TeV           Gase mass         2.68 TeV           Gase mass         1.23 TeV           Gase mass         590-710 GeV           Gase mass         590-710 GeV           Gase mass         2.0 TeV           Mass R <sup>-1</sup> 4.71 TeV <td><math display="block">\begin{array}{l} n-2 \\ n-3\text{HzZ} \\ n-6 \\ n-6, M_D-1.5\text{TeV}, \text{non-rot BH} \\ n-6, M_D-1.5\text{TeV}, \text{non-rot BH} \\ k/M_{PT}-0.1 \\ k/M_{PT}-0.1 \\ k/M_{PT}-0.1 \\ k/M_{PT}-1.0 \\ k/M_{PT}-1.0 \\ BR=0.925 \end{array}</math></td> <td>1210.4491<br/>ATLAS-CONF-2014-030<br/>1311.2006<br/>to be submitted to PRD<br/>1308.4075<br/>1406.4254<br/>1406.4254<br/>1406.4123<br/>1208.2880<br/>ATLAS-CONF-2014-005<br/>ATLAS-CONF-2013-052<br/>1209.2555<br/>ATLAS-CONF-2013-052</td> | $\begin{array}{l} n-2 \\ n-3\text{HzZ} \\ n-6 \\ n-6, M_D-1.5\text{TeV}, \text{non-rot BH} \\ n-6, M_D-1.5\text{TeV}, \text{non-rot BH} \\ k/M_{PT}-0.1 \\ k/M_{PT}-0.1 \\ k/M_{PT}-0.1 \\ k/M_{PT}-1.0 \\ k/M_{PT}-1.0 \\ BR=0.925 \end{array}$ | 1210.4491<br>ATLAS-CONF-2014-030<br>1311.2006<br>to be submitted to PRD<br>1308.4075<br>1406.4254<br>1406.4254<br>1406.4123<br>1208.2880<br>ATLAS-CONF-2014-005<br>ATLAS-CONF-2013-052<br>1209.2555<br>ATLAS-CONF-2013-052 |  |
| Gauge bosons                               | $\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{EGM} W' \to WZ \to \ell\nu \ell'\ell' \\ \operatorname{EGM} W' \to WZ \to qq\ell\ell \\ \operatorname{LRSM} W_R^{\prime} \to t\overline{b} \\ \operatorname{LRSM} W_R \to t\overline{b} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 e, μ<br>2 τ<br>1 e, μ<br>3 e, μ<br>2 e, μ<br>1 e, μ<br>0 e, μ                     | -<br>-<br>2j/1J<br>2b,0-1j<br>≥1b,1J                        | -<br>Yes<br>Yes<br>-<br>Yes<br>J -                                   | 20.3<br>19.5<br>20.3<br>20.3<br>20.3<br>14.3<br>20.3                                                     | Z' mass         2.0 TeV           Z' mass         1.9 TeV           W' mass         3.28 TeV           W' mass         1.52 TeV           W' mass         1.59 TeV           W' mass         1.50 TeV           W' mass         1.50 TeV           W' mass         1.51 TeV           W' mass         1.64 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  | 1405.4123<br>ATLAS-CONF-2013-066<br>ATLAS-CONF-2014-017<br>1406.4456<br>ATLAS-CONF-2014-039<br>ATLAS-CONF-2013-050<br>to be submitted to EPJC                                                                              |  |
| C                                          | CI qqqq<br>CI qqℓℓ<br>CI uutt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>2 е, µ<br>2 е, µ (SS                                                            | 2j<br>)≥1 b,≥1                                              | -<br>-<br>j Yes                                                      | 4.8<br>20.3<br>14.3                                                                                      | Λ 7.8 Tel<br>Λ<br>Λ 3.3 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 η = +1<br>21.8 ΤθV ημ = -1<br> C  = 1                                                                                                                                                                                                          | 1210.1718<br>ATLAS-CONF-2014-030<br>ATLAS-CONF-2013-051                                                                                                                                                                    |  |
| мa                                         | EFT D5 operator (Dirac)<br>EFT D9 operator (Dirac)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 e, μ<br>0 e, μ                                                                    | 1-2j<br>1 J,≤1j                                             | Yes<br>Yes                                                           | 10.5<br>20.3                                                                                             | M, 731 GeV<br>M, 2.4 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at 90% CL for $m(\chi) < 80$ GeV<br>at 90% CL for $m(\chi) < 100$ GeV                                                                                                                                                                            | ATLAS-CONF-2012-147<br>1309.4017                                                                                                                                                                                           |  |
| ΓO                                         | Scalar LQ 1 <sup>st</sup> gen<br>Scalar LQ 2 <sup>nd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 e<br>2 μ<br>1 e,μ,1 τ                                                             | ≥2j<br>≥2j<br>10,1j                                         | -                                                                    | 1.0<br>1.0<br>4.7                                                                                        | LQ mass         860 GeV           LQ mass         885 GeV           LQ mass         534 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \beta = 1 \\ \beta = 1 \\ \beta = 1 \end{array}$                                                                                                                                                                               | 1112.4828<br>1203.3172<br>1303.0526                                                                                                                                                                                        |  |
| Heavy<br>quarks                            | Vector-like quark $TT \rightarrow Ht + X$<br>Vector-like quark $TT \rightarrow Wb + X$<br>Vector-like quark $TT \rightarrow Zt + X$<br>Vector-like quark $BB \rightarrow Zb + X$<br>Vector-like quark $BB \rightarrow Wt + X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 e,µ<br>1 e,µ<br>2/≥3 e,µ<br>2/≥3 e,µ<br>2 e,µ (SS                                 | ≥ 2 b, ≥ 4<br>≥ 1 b, ≥ 3<br>≥2/≥1 b<br>≥2/≥1 b<br>≥2/≥1 b   | j Yes<br>j Yes<br>–<br>–<br>j Yes                                    | 14.3<br>14.3<br>20.3<br>20.3<br>14.3                                                                     | T mass         790 GeV           T mass         670 GeV           T mass         735 GeV           B mass         755 GeV           B mass         720 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T in (T,B) doublet<br>iscepin singlet<br>T in (T,B) doublet<br>B in (B,Y) doublet<br>B in (T,B) doublet                                                                                                                                          | ATLAS-CONF-2013-018<br>ATLAS-CONF-2013-060<br>ATLAS-CONF-2014-036<br>ATLAS-CONF-2014-036<br>ATLAS-CONF-2013-051                                                                                                            |  |
| Excited<br>fermions                        | Excited quark $q^* \rightarrow q\gamma$<br>Excited quark $q^* \rightarrow qg$<br>Excited quark $b^* \rightarrow Wt$<br>Excited lepton $\ell^* \rightarrow \ell\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 γ<br>-<br>1 or 2 e, μ<br>2 e, μ, 1 γ                                              | 1 j<br>2 j<br>1 b, 2 j or 1                                 | –<br>–<br>IjYes<br>–                                                 | 20.3<br>20.3<br>4.7<br>13.0                                                                              | te* mass         3.5 TeV           q* mass         4,09 TeV           b* mass         870 GeV           I* mass         2.2 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | only u* and d*, $\Lambda - m(q^*)$<br>only u* and d*, $\Lambda - m(q^*)$<br>left-handed coupling<br>$\Lambda - 2.2$ TeV                                                                                                                          | 1309.3230<br>to be submitted to PRD<br>1301.1583<br>1308.1364                                                                                                                                                              |  |
| Other                                      | LSTC $a_T \rightarrow W\gamma$<br>LRSM Majorana $\nu$<br>Type III Seesaw<br>Higgs triplet $H^{++} \rightarrow \ell\ell$<br>Mutti-charged particles<br>Magnetic monopoles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 e, μ, 1 γ<br>2 e, μ<br>2 e, μ<br>2 e, μ<br>2 e, μ (SS<br>-                        | - 2j<br><br>) -<br>-<br>-<br>-                              | Yes<br>-<br>-<br>-<br>-                                              | 20.3<br>2.1<br>5.8<br>4.7<br>4.4<br>2.0                                                                  | By mass         D80 GeV           N <sup>0</sup> mass         1.5 TeV           H** mass         245 GeV           H** mass         409 GeV           multi-barged particle mass         409 GeV           monopole mass         862 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $m(W_R) - 2$ TeV, no mixing<br>$ V_e =0.055$ , $ V_p =0.063$ , $ V_r =0$<br>DY production, $BR H^{++} \rightarrow \ell\ell_r^2 = 1$<br>DY production, $ q  = 4a$<br>DY production, $ q  = 1g_O$                                                  | to be submitted to PLB<br>1203.5420<br>ATLAS-CONF-2013-019<br>1210.5070<br>1301.5272<br>1207.6411                                                                                                                          |  |
| <sup>10</sup> Mass scale [TeV]             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |                                                             |                                                                      |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                            |  |

# **LHC** Implications

- Weak scale BSM physics (e.g., SUSY) is there but challenging for the hadronic collider
- SUSY is there but a bit heavy (some fine tuning)
- We are thinking about the problem incorrectly (cosmological constant???)

Naturalness is a misleading guide & there may be new ultralight degrees of freedom: Intensity frontier

### **New Light States ?**

- "Dark" gauge bosons
- *Macroscopic (spin-dependent) forces*





#### The BSM Context: NP & the LHC

What are the BSM interactions and what is the associated mass scale?

♦ Are fundamental interactions "natural" ?

Weak decays provide an invaluable window into possible answers

II. CKM Unitarity: Status

#### Weak Decays: CKM Unitarity



Includes theory error

# CKM Unitarity & V<sub>ud</sub>

$$\begin{aligned}
d \to u \ e^{-} \ \overline{v}_{e} \\
s \to u \ e^{-} \ \overline{v}_{e} \\
b \to u \ e^{-} \ \overline{v}_{e}
\end{aligned}$$

$$\begin{pmatrix}
u \ c \ t
\end{pmatrix} \begin{pmatrix}
V_{ud} \ V_{us} \ V_{ub} \\
V_{cd} \ V_{cs} \ V_{cb} \\
V_{td} \ V_{ts} \ V_{tb}
\end{pmatrix} \begin{pmatrix}
d \\
s \\
b
\end{pmatrix}$$

$$\begin{aligned}
\beta - decay \\
n \to p \ e^{-} \ \overline{v}_{e} \\
A(Z,N) \to A(Z-1,N+1) \ e^{+} \ v_{e} \\
\pi^{+} \to \pi^{0} \ e^{+} \ v_{e}
\end{aligned}$$

$$\begin{aligned}
\frac{G_{F}^{\beta}}{G_{F}^{\mu}} = |V_{ud}| \left(1 + \Delta r_{\beta} - \Delta r_{\mu}\right)
\end{aligned}$$

# Latest Results from UCNA

#### $A_0 = 0.11972(55)_{stat}(98)_{syst}$

Mendenhall, et al Phys. Rev. C **87**, 032501 (2013)







#### Thanks: B. Filippone



#### Two approaches:

#### K<sub>I3</sub> decays:

$$d\Gamma(K_{\ell 3}^{+}) = \frac{G_{\mu}^{2} m_{K}^{5}}{128\pi^{3}} S_{\rm EW} C(t) |V_{us}|^{2} |f_{+}^{K}(0)|^{2} \left[1 + \frac{\lambda_{+}^{K} t}{m_{\pi}^{2}}\right]^{2} \left[1 + 2\Delta_{SU(2)}^{K} + 2\Delta_{EM}^{K\ell}\right]$$

#### K<sub>12</sub> decays:

$$|V_{ud}|^2 + |V_{us}|^2 = |V_{ud}|^2 \left[1 + \frac{|V_{us}|^2}{|V_{ud}|^2}\right]$$

$$\frac{\Gamma_{K_{\ell 2}}}{\Gamma_{\pi_{\ell 2}}} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_\pi^2} \frac{m_K (1 - m_\ell^2 / m_K^2)^2}{m_\pi (1 - m_\ell^2 / m_\pi^2)^2} \left(1 + \delta_{\rm EM}\right)$$

#### Two approaches:

#### K<sub>I3</sub> decays:

$$d\Gamma(K_{\ell 3}^{+}) = \frac{G_{\mu}^{2}m_{K}^{5}}{128\pi^{3}}S_{\rm EW}C(t)|V_{us}|^{2}|f_{+}^{K}(0)|^{2}\left[1 + \frac{\lambda_{+}^{K}t}{m_{\pi}^{2}}\right]^{2}\left[1 + 2\Delta_{SU(2)}^{K} + 2\Delta_{EM}^{K\ell}\right]$$

 $\chi PT$ 

K<sub>12</sub> decays:

$$|V_{ud}|^2 + |V_{us}|^2 = |V_{ud}|^2 \left[1 + \frac{|V_{us}|^2}{|V_{ud}|^2}\right]$$

$$\frac{\Gamma_{K_{\ell 2}}}{\Gamma_{\pi_{\ell 2}}} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_\pi^2} \frac{m_K (1 - m_\ell^2 / m_K^2)^2}{m_\pi (1 - m_\ell^2 / m_\pi^2)^2} (1 + \delta_{\rm EM})$$

#### Two approaches:

#### K<sub>I3</sub> decays:





 $f_K/f_{\pi} = 1.198(2)_{\text{stat}} \begin{pmatrix} +6\\ -8 \end{pmatrix}_{\text{syst}} = 1.197(7),$ 



 $f_+(0) = 0.959(5),$ 

$$|V_{us}/V_{ud}| \times f_K/f_{\pi} = 0.2758(5).$$

 $|V_{us}|f_+(0) = 0.2163(5),$ 

# **CKM Unitarity**



# III. CKM Unitarity: BSM Implications

$$d \rightarrow u \ e^{-} \ \overline{v}_{e}$$
$$s \rightarrow u \ e^{-} \ \overline{v}_{e}$$
$$b \rightarrow u \ e^{-} \ \overline{v}_{e}$$

$$\begin{pmatrix} u & c & t \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$



$$\frac{G_F^{\beta}}{G_F^{\mu}} = |V_{ud}| \left(1 + \Delta r_{\beta} - \Delta r_{\mu}\right)$$
BSM physics



$$d \rightarrow u \ e^{-} \ \overline{v}_{e}$$
$$s \rightarrow u \ e^{-} \ \overline{v}_{e}$$
$$b \rightarrow u \ e^{-} \ \overline{v}_{e}$$

$$\begin{pmatrix} u & c & t \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$





**CKM Unitarity** 

$$d \rightarrow u \ e^{-} \ \overline{v}_{e}$$
$$s \rightarrow u \ e^{-} \ \overline{v}_{e}$$
$$b \rightarrow u \ e^{-} \ \overline{v}_{e}$$

$$\begin{pmatrix} u & c & t \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$





*Next generation:* ~ 10<sup>-4</sup> *precision* 

# **Pion Leptonic Decay**

$$R_{e/\mu} = \frac{\Gamma[\pi^- \to e^- \bar{\mathbf{v}}_e(\gamma)]}{\Gamma[\pi^- \to \mu^- \bar{\mathbf{v}}_\mu(\gamma)]} = \frac{m_e^2}{m_\mu^2} \left[ \frac{m_\pi^2 - m_e^2}{m_\pi^2 - m_\mu^2} \right]^2 \left\{ 1 + \frac{\alpha}{\pi} \left[ F(\frac{m_e}{m_\pi}) - F(\frac{m_\mu}{m_\pi}) + C_{QCD}^{e-\mu}(\mu) \right] + \Delta_{NEW}^{e-\mu} \right\}$$

#### **Pion Leptonic Decay**

$$R_{e/\mu} = \frac{\Gamma[\pi^- \to e^- \bar{\mathbf{v}}_e(\gamma)]}{\Gamma[\pi^- \to \mu^- \bar{\mathbf{v}}_\mu(\gamma)]} = \frac{m_e^2}{m_\mu^2} \left[ \frac{m_\pi^2 - m_e^2}{m_\pi^2 - m_\mu^2} \right]^2 \left\{ 1 + \frac{\alpha}{\pi} \left[ F(\frac{m_e}{m_\pi}) - F(\frac{m_\mu}{m_\pi}) + C_{QCD}^{e-\mu}(\mu) \right] + \Delta_{NEW}^{e-\mu} \right\}$$

SUSY: RPV or loops R-M, Su, Tulin



Probing Slepton Universality



# $\pi_{\ell^2}$ & $\beta$ Decay: Diagnostic Tool



Bauman, Erler, R-M

# $\pi_{\ell^2}$ & $\beta$ Decay: Diagnostic Tool



Bauman, Erler, R-M

# $\pi_{\ell^2}$ & $\beta$ Decay: Diagnostic Tool



Bauman, Erler, R-M



# $\pi_{\ell^2}$ & $\beta$ Decay: Diagnostic





# $\pi_{\ell^2}$ & $\beta$ Decay: Diagnostic





Bauman, Erler, R-M









#### Pair production of squarks





$$\begin{split} \tilde{q} &\to q + \tilde{\chi}_1^0 \\ \tilde{q} &\to q' + \tilde{\chi}^{\pm} \to \ell + \nu + q' + \tilde{\chi}_1^0 \end{split}$$

Final state: 
$$2j + E_T$$
,  $2j + \ell + E_T$ 

No exclusion yet (jets analysis): is sub-TeV SUSY hiding here?

If so, will it show up in precision tests ?





#### Pair production of squarks





#### CKM Unitarity Tests









#### Pair production of squarks



#### CKM Unitarity Tests







### **Effective Operators**

 $\diamond$  What if  $\Lambda_{BSM} >> E_{LHC}$ ?

# **Effective Operators**

$$\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \left[ \left( 1 + \delta_\beta \right) \bar{e} \gamma_\mu (1 - \gamma_5) \nu_e \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_L \, \bar{e} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d + \tilde{\epsilon}_L \, \bar{e} \gamma_\mu (1 + \gamma_5) \nu_\ell \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_R \, \bar{e} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma^\mu (1 + \gamma_5) d \right. \\ \left. + \left. \epsilon_S \, \bar{e} (1 - \gamma_5) \nu_\ell \cdot \bar{u} d \right. \\ \left. + \left. \epsilon_S \, \bar{e} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma_5 d \right. \\ \left. - \left. \epsilon_P \, \bar{e} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma_5 d \right. \\ \left. - \left. \epsilon_P \, \bar{e} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right. \\ \left. + \left. \epsilon_T \bar{e} \sigma$$

$$\varepsilon \sim C (V/\Lambda)^2$$

#### **Effective Operators: LHC & Weak Decays**



V. Cirigliano et al, 1303.6953

#### **Effective Operators: LHC & Weak Decays**



V. Cirigliano et al, 1303.6953

# Worldwide Radioactivity

$$d \rightarrow u e^{-} \overline{v}_{e}$$
$$s \rightarrow u e^{-} \overline{v}_{e}$$
$$b \rightarrow u e^{-} \overline{v}_{e}$$

$$\begin{pmatrix} u & c & t \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$



# **Summary**

- Precision tests of weak decays can provide unique and powerful diagnostic probes of BSM physics, complementing what we may learn from the energy frontier
- Tests of CKM unitarity and lepton universality with ~ 10<sup>-4</sup> precision could uncover "footprints" of BSM interactions that so far have evaded the LHC and address key open questions at the NP/HEP interface
- Achieving a robust value of the neutron lifetime with  $\delta \tau_n < 1s$  is an essential step in this program