Hadronic Tests of CP & T

M.J. Ramsey-Musolf U Mass Amherst

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

ACFI Workshop, Amherst November 2014

Goals for this talk

- Set the context: T- and C-violation in EFT framework
- Review the present & prospective EDM results & implications
- Review the theoretical treatment of P-conserving Tand C-violation
- Pose questions for discussion

Key Questions for Workshop: A Personal View

- Are nuclear and hadronic probes of P-conserving T- or C-violation relevant in view of present & prospective EDM results ?
- If so, under what scenarios ?
- Is there any relevant window for non-EDM probes of P- and T-violation ?
- Are there new opportunities for nuclear and hadronic probes of ultra-light weakly coupled bosons ?

Key Questions for Workshop: A Personal View

This talk

- Are nuclear and hadronic probes of P-conserving T- or C-violation relevant in view of present & prospective EDM results ?
- If so, under what scenarios ?
- Is there any relevant window for non-EDM probes of P- and T-violation ?
- Are there new opportunities for nuclear and hadronic probes of ultra-light weakly coupled bosons ?

Outline

- I. Electric Dipole Moments
- II. P-conserving C- or T-violation
- III. Summary and questions

III. Electric Dipole Moments

- Discovery potential & interpretation: need for searches in multiple systems
- Benchmark sensitivities: three examples
- Challenges & new theoretical developments

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Not shown: muon Why Multiple Systems ?

Why Multiple Systems ?

Multiple sources & multiple scales

Effective Operators: The Bridge

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{\bar{\theta}} + \mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}$$

$$\mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}} = \frac{1}{\Lambda^2} \sum_i \alpha_i^{(n)} \, O_i^{(6)}$$

13

+...

Wilson Coefficients: Summary

fermion EDM	(3)
quark CEDM	(2)
3 gluon	(1)
non-leptonic	(2)
semi-leptonic	(3)
induced 4f	(1)
	fermion EDM quark CEDM 3 gluon non-leptonic semi-leptonic induced 4f

12 total + $\overline{\theta}$

light flavors only (e,u,d)

Wilson Coefficients: Summary

$\delta_{\!f}$	fermion EDM	(3)
$\widetilde{\delta}_q$	quark CEDM	(2)
$C_{\widetilde{G}}$	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$m{C}_{arphi$ ud	induced 4f	(1)
C_{quqd} $C_{lequ, \ ledq}$ $C_{arphi ud}$	non-leptonic semi-leptonic induced 4f	(2) (3) (1)

12 total + $\overline{\theta}$ light flavors only (e,u,d)Complementary searches needed

Complementarity: Three Illustrations

- CPV in an extended scalar sector (2HDM): "Higgs portal CPV"
- Weak scale baryogenesis (MSSM)
- Model-independent

Higgs Portal CPV

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6,7} = 0$ for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] \\ - \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

Future Reach: Higgs Portal CPV

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

Present	Future:	Future:
	d _n x 0.1	d _n x 0.01
	d _A (Hg) x 0.1	d _A (Hg) x 0.1
sin a · CPV	d _{ThO} x 0.1	d _{ThO} x 0.1
scalar mixing	d _A (Ra)	d _A (Ra)

Inoue, R-M, Zhang: 1403.4257

EDMs & EW Baryogenesis: MSSM

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

EDMs & EW Baryogenesis: MSSM

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

Wilson Coefficients: Model Independent

$\delta_{\!f}$	fermion EDM	(3)
$oldsymbol{\widetilde{\delta}}_q$	quark CEDM	(2)
$C_{\widetilde{G}}$	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$m{C}_{arphi$ ud	induced 4f	(1)

12 total + $\overline{\theta}$

light flavors only (e,u,d)

Paramagnetic Systems: Two Sources

Paramagnetic Systems: Two Sources

Paramagnetic Systems: Two Sources

26

Hadronic CPV: Nucleons, Nuclei, Atoms

Neutron, proton & light nuclei (future), diamagnetic atoms

Diamagnetic Systems: P- & T-Odd Moments

nuclear finite size: Schiff moment

Schiff moment, MQM,...

EDMs of diamagnetic atoms (¹⁹⁹Hg)

Diamagnetic Systems

Nuclear Moments

Diamagnetic Systems

Nuclear Moments

Diamagnetic Systems

Nuclear Moments

Diamagnetic Systems: Schiff Moments

Atomic effect from nuclear finite size: Schiff moment

EDMs of diamagnetic atoms (¹⁹⁹Hg)

Nuclear Schiff Moment

Nuclear Enhancements

Schiff moment, MQM,...

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

EDMs of diamagnetic atoms (¹⁹⁹Hg)

Nuclear Schiff Moment

Nuclear Enhancements: Octupole Deformation

 $|\pm\rangle = \frac{1}{\sqrt{2}} (| \bullet \rangle \pm | \bullet \rangle)$

Opposite parity states mixed by H^{TVPV}

"Nuclear amplifier"

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

EDMs of diamagnetic atoms (²²⁵Ra)

Thanks: J. Engel

Diamagnetic Global Fit

	$C_T imes 10^7$	$ar{g}^{(0)}_{\pi}$	$ar{g}^{(1)}_{\pi}$	\bar{d}_n (e-cm)
Exact solution	1.265	-6.687×10^{-10}	1.4308×10^{-10}	9.878×10^{-24}
Range from best values of α_{ij}	(-7.6 - 9.5)	$(-5.0 - 4.0) \times 10^{-9}$	$(-0.2 - 0.4) \times 10^{-9}$	$(-5.9 - 7.4) \times 10^{-23}$
Range from best values				
with $\alpha_{g_{\pi}^{1}}(\text{Hg}) = -4.9 \times 10^{-17}$	(-7.6 - 8.4)	$(-7.0 - 4.0) \times 10^{-9}$	$(0 - 0.2) \times 10^{-9}$	$(5.9 - 10.4) \times 10^{-23}$
Range from best values				
with $\alpha_{g_{\pi}^1}(\text{Hg}) = +1.6 \times 10^{-17}$	(-9.2 - 12.4)	$(-4.0 - 4.0) \times 10^{-9}$	$(-0.4 - 0.8) \times 10^{-9}$	$(-5.9 - 5.9) \times 10^{-23}$
Range from full variation of α_{ij}	(-10.8 - 15.6)	$(-10.0 - 8.1) \times 10^{-9}$	$(-0.6 - 1.2) \times 10^{-9}$	$(-12.0 - 14.8) \times 10^{-23}$
Ì	N e⁻	· · · · · · · · · · · · · · · · · · ·		Ν
I	N e	-	π	N N
	Tensor eq	TVP	VπNN	Short distance d _n

Diamagnetic Global Fit

				_		
	$C_T imes 10^7$		$ar{g}^{(0)}_{\pi}$		$\bar{g}^{(1)}_{\pi}$	\bar{d}_n (e-cm)
Exact solution	1.265		-6.687×10^{-10}		1.4308×10^{-10}	9.878×10^{-24}
Range from best values of α_{ij}	(-7.6 - 9.5)		$(-5.0-4.0) \times 10^{-9}$	($-0.2 - 0.4) \times 10^{-9}$	$(-5.9 - 7.4) \times 10^{-23}$
Range from best values						
with $\alpha_{g_{\pi}^1}(\text{Hg}) = -4.9 \times 10^{-17}$	(-7.6 - 8.4)		$(-7.0 - 4.0) \times 10^{-9}$		$(0 - 0.2) \times 10^{-9}$	$(5.9 - 10.4) \times 10^{-23}$
Range from best values						
with $\alpha_{g_{\pi}^1}(\text{Hg}) = +1.6 \times 10^{-17}$	(-9.2 - 12.4))	$(-4.0 - 4.0) \times 10^{-9}$	($-0.4 - 0.8) \times 10^{-9}$	$(-5.9 - 5.9) imes 10^{-23}$
Range from full variation of α_{ij}	(-10.8 - 15.)	5)	$(-10.0 - 8.1) \times 10^{-9}$	($-0.6 - 1.2) \times 10^{-9}$	$(-12.0 - 14.8) \times 10^{-23}$

Isoscalar CEDM

$$\tilde{\delta}_q^{(+)} \left(\frac{v}{\Lambda}\right)^2 \lesssim 0.01 \qquad \Lambda \gtrsim (2 \text{ TeV}) \times \sqrt{\sin \phi_{\text{CPV}}}$$

Caveat: Large hadronic uncertainty

Chupp & R-M: 1407.1064
Nuclear Matrix Elements

$$S = a_0 g \,\bar{g}_{\pi}^{(0)} + a_1 g \,\bar{g}_{\pi}^{(1)} + a_2 g \,\bar{g}_{\pi}^{(2)}$$

Nucl.	Best value		
	<i>a</i> ₀	<i>a</i> ₁	<i>a</i> ₂
¹⁹⁹ Hg ¹²⁹ Xe ²²⁵ Ra	0.01 0.008 1.5	$\pm 0.02 \\ -0.006 \\ 6.0$	0.02 -0.009 -4.0
Range			
a ₀	<i>a</i> ₁		<i>a</i> ₂
0.005-0.05 -0.005-(-0.05) -1-(-6)	-0.03-(+0.09) -0.003-(-0.05) 4-24		0.01-0.06 -0.005-(-0.1) -3-(-15)

Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

$\lambda_{6.7} = 0$ for simplicity

Present

 $sin \alpha_b$: CPV scalar mixing

Schiff Screening & Corrections

EDMs of diamagnetic atoms (¹⁹⁹Hg)

Inoue

Electric Dipole Moments

- Present EDM reach ranges from few to ~ 1000 TeV
- Next generation experiments will increase mass reach by an order of magnitude; sensitivity scales as $(v / \Lambda)^2$
- BSM scenarios & matter-antimatter asymmetry strongly motivate effort required to achieve next generation sensitivity
- Diamagnetic atom sensitivity may be even stronger due to previously neglected $T^{E}_{J=1} \otimes T^{E}_{J=2}$ contribution

II. P-Conserving T- and C-Violation

- Motivation & theoretical background
- Relating TVPC and CVPC interactions and EDMs in the EFT framework
- Open questions

C and P Symmetries (assuming CPT)

D. Mack, MENU

С	C, P, CP Strong, EM	C, P, CP Weak (loop-level)
	Big SM "background" in any search for new forces	Small SM "background" . New sources of P, CP constrained by EDM searches
G	G, P, CP Weak (loop-level) Small SM "background". New sources of P, CP less constrained by EDM searches	G, P, CP Weak Big SM "background" in any search for new forces New sources of PV also constrained by amplitude- sensitive PV asymmetry measurements

C Violation Basics

D. Mack, MENU

The charge conjugation operator C reverses all generalized charges, effectively replacing a particle by its anti-particle.

C violation is known only in

- 1. Weak interactions at tree level which violate P (hence conserving CP)
- 2. Weak interactions at loop level which violate CP

Both C- and CP-violation are among the Sakharov criteria for baryogensis.

Everybody knows strong and EM forces conserve C but direct bounds on C violation in these amplitudes are only ~0.5%. <u>How to improve this?</u>

It is surprisingly hard:

- i. Only a few neutral particles are states of good C and thus suitable for tests $(\gamma, \pi^0, \eta, J/\psi, \text{ or a self-conjugate system like }e^+e^-)$.
- ii. Most of the particles of good C appropriate for initial states aren't easy to make in large quantities (and with sufficiently low backgrounds).

D. Mack, MENU **n** Decays Testing C Violation

Why n's?

- The n full width is only 1.3 keV . It cannot decay by the isospin conserving strong interaction. This means that achievable BR's of 10⁻⁶ to 10⁻⁷ probe the weak scale.
- η decays are flavor-conserving, a sector less thoroughly studied than $\Delta S = 1$, etc.
- Theory calculations predict large mass enhancements, hence relatively crude n decay BR upper limits place tighter constraints than more precise π^0 decay BR upper limits.
- The n has a significant s-sbar content, unlike the π^0 or nucleon.

Considerations of acceptance and phase space have focused us on $\eta \rightarrow 3\gamma$ and $\eta \rightarrow 2\pi^0\gamma$.

Most C test channels are <u>all-neutral</u> except for $\eta \rightarrow \pi^0 \gamma^* \rightarrow \pi^0 l^* l^*$.

44

D. Mack, MENU

Theory Issues for C Violation

Placing the tightest <u>direct</u> limits on C violation sounds interesting to experimentalists, but what about theorists?

•Little literature on C violation with P conservation.

(appropriate models for this would be non-renormalizable - Herczeg)

•Some literature on T violation with P conservation

(under CPT, equivalent to C violation with P conservation).

•By contrast, tremendous literature on CP violation and EDM's.

•C violation without P violation is apparently not on the radar of those working with SUSY, leptoquarks.

•*C* violation does arise in discussions of violation of Lorentz invariance, but the predicted *C* violating *n* decay BR's are effectively zero for any experiment, ever.

We'd like theorists studying T violation with P conservation to know that η decays can place tight limits in an isospin-violating sector.

TVPC Interactions: Background

TVPC Interactions

• Herczeg: No renormalizable TVPC boson-exchange interactions involving only SM fields [Hyperfine Int, **75** (1992) 127]

• Low-energy ($k \ll \Lambda_{EW}$) four fermion flavor conserving interactions first arise at d=7 :

$$\mathcal{O}_{7}^{ff'} = C_{7}^{ff'} \bar{\psi}_{f} \overleftrightarrow{D}_{\mu} \gamma_{5} \psi_{f} \bar{\psi}_{f'} \gamma^{\mu} \gamma_{5} \psi_{f'}$$

Khriplovich '91 Conti & Khriplovich '92 Engel, Frampton, Springer '96

TVPC Interactions, cont'd

• Additional low-energy ($k \leq \Lambda_{EW}$) d=7 interactions:

$$\mathcal{O}_{7}^{\gamma g} = C_{7}^{\gamma g} \bar{\psi} \sigma_{\mu\nu} \lambda^{a} \psi F^{\mu\lambda} G_{\lambda}^{a\nu}$$
$$\mathcal{O}_{7}^{\gamma Z} = C_{7}^{\gamma Z} \bar{\psi} \sigma_{\mu\nu} \psi F^{\mu\lambda} Z_{\lambda}^{\nu}$$

MR-M '99 Kurylov, McLaughlin, MR-M '01 + ...

TPVC Observables

• *"D Coefficient" in β-decay:*

$$\frac{d^3\Gamma}{dE_e d\Omega_e d\Omega_\nu} = \frac{1}{(2\pi)^5} p_e E_e (E_0 - E_e)^2 \xi \left\{ 1 + b \frac{m_e}{E_e} + a \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \langle \frac{\vec{J}}{J} \rangle \cdot \left[A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_\nu}}{E_\nu} + \left[D \frac{\vec{p_e} \times \vec{p_\nu}}{E_e E_\nu} \right] + \dots \right\} \right\}$$

• Correlations in \vec{n} +A scattering:

$$ec{\sigma}_n\cdotec{k}_n imesec{J}~\left(ec{k}_n\cdotec{J}
ight)$$

• $\eta
ightarrow 3\,\gamma$, $\eta
ightarrow 2\pi^{0}\,\gamma$,... :

TPVC Observables

• *"D Coefficient" in β-decay:*

C. Seng talk

$$\frac{d^3\Gamma}{dE_e d\Omega_e d\Omega_\nu} = \frac{1}{(2\pi)^5} p_e E_e (E_0 - E_e)^2 \xi \left\{ 1 + b \frac{m_e}{E_e} + a \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \langle \frac{\vec{J}}{J} \rangle \cdot \left[A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_\nu}}{E_\nu} + \left[D \frac{\vec{p_e} \times \vec{p_\nu}}{E_e E_\nu} \right] + \dots \right\} \right\}$$

• Correlations in \vec{n} +A scattering:

$$ec{\sigma}_n\cdotec{k}_n imesec{J}\,\left(ec{k}_n\cdotec{J}
ight)$$

V. Gudkov, D. Bowman,...talks

• $\eta
ightarrow 3$ γ , $\eta
ightarrow 2\pi^{0}$ γ ,... :

C. Seng, S. Gardner talks

TPVC Interactions & EDMs

• Conti & Khriplovich: TVPC interactions + SM radiative corrections (PV) induce non-vanishing EDMs

• EDM limits imply vanishingly small effects from TVPC interactions

$$C_7^{ff'} \lesssim \left(rac{\Lambda_{TVPC}}{1 \text{ TeV}}
ight) imes 10^{-3}$$

51

How Robust Is Bound?

- Non-renormalizable interactions: EFT, running, matching & "naturalness"
- Illustration with neutrino magnetic moments
- Application to TVPC interactions

Non-Renormalizable Interactions & EFT

Effective Theory I

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{\bar{\theta}} + \mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}$$

$$\mathcal{L}_{\text{BSM}}^{\text{eff}} = \frac{1}{\Lambda^2} \sum_{i} \alpha_i^{(n)} O_i^{(6)}$$
Effective theory I: W, B, H, g, Q, q_R, L, e_R

+...

Effective Theory II

55

Effective Theory II

Matching I & II: compute in II with massive W,Z

Matching

Fermi Effective Theory

Standard Model

Matching

Fermi Effective Theory

Matching

Applying to TVPC Interactions & EDMs

- Khripolovich approach: compute in EFT II w/ cut-off regulator
- Khriplovich approach a la MR-M: compute in EFT II w/ dim reg
- Recast in EFT I framework

Applying to TVPC Interactions & EDMs

$$\mathcal{O}_{7}^{\gamma g} = C_{7}^{\gamma g} \bar{\psi} \sigma_{\mu\nu} \lambda^{a} \psi F^{\mu\lambda} G_{\lambda}^{a\nu}$$
$$\mathcal{O}_{7}^{\gamma Z} = C_{7}^{\gamma Z} \bar{\psi} \sigma_{\mu\nu} \psi F^{\mu\lambda} Z_{\lambda}^{\nu}$$

$$C_5^f \sim e C_7^{\gamma Z} \left(\frac{M_Z}{\Lambda_{\text{TVPC}}}\right)^2 \left(\frac{1}{s_W c_W}\right) g_A^f \left(\frac{1}{96\pi^2}\right) \ln \frac{M_Z^2}{\mu^2}$$

Applying to TVPC Interactions & EDMs

$$\mathcal{O}_{7}^{ff'} = C_{7}^{ff'} \bar{\psi}_{f} \overleftrightarrow{D}_{\mu} \gamma_{5} \psi_{f} \bar{\psi}_{f'} \gamma^{\mu} \gamma_{5} \psi_{f'}$$

$$C_5^f \sim -eC_7^{ff'} \left(\frac{5}{12}\right) \left(\frac{M_Z}{\Lambda_{\text{TVPC}}}\right)^2 Q_f g_V^f g_A^{f'} \left(\frac{G_F M_Z^2}{\sqrt{2}}\right) \\ \times \left(\frac{1}{8\pi^2}\right)^2 \left(\ln\frac{M_Z^2}{\mu^2}\right)^2,$$

62

The EFT I Computation

$$\mathcal{O}_{\rm fWB}^{(8)} = \bar{F}\sigma^{\mu\nu}\frac{\tau^a}{2}Hf_R\widetilde{W}^a_{\mu\alpha}B^\alpha_\nu$$
$$\mathcal{O}_{\rm fW}^{(8)} = \bar{F}\sigma^{\mu\nu}\frac{\tau^a}{2}Hf_R\widetilde{W}^a_{\mu\alpha}H^\dagger H$$
$$\mathcal{O}_{\rm fB}^{(8)} = \bar{F}\sigma^{\mu\nu}Hf_R\widetilde{B}^a_{\mu\alpha}H^\dagger H$$

$$C_{\rm fV}^{(8)} \sim \left(rac{lpha}{4\pi}
ight) \, C_{
m TVPC}^{(8)}$$

Interpretation

$$d_f \sim \frac{1}{v} \left[C_{\rm fV}^{(6)} \left(\frac{v}{\Lambda} \right)^2 + C_{\rm fV}^{(8)} \left(\frac{v}{\Lambda} \right)^8 + \cdots \right]$$

64

Interpretation

Interpretation

Limits: Short Distance Parity Cons

Limits: Naturaleness

Limits: Symmetry or Conspiracy

Implications

A. $\Lambda_{PV} < \Lambda_{TVPC}$: $C_{fV}^{(6)} = 0$

B. "Naturalness"

70

$$\alpha_T = \frac{\langle f | \mathcal{O}_{TVPC}^{(8)} | i \rangle}{\langle f | \mathcal{O}_{QCD} | i \rangle} \sim C_{\text{TVPC}}^{(8)} \left(\frac{v}{\Lambda_{TVPC}} \right) \left(\frac{p}{\Lambda_{TVPC}} \right)^3 \stackrel{<}{_\sim} 10^{-15}$$

for
$$\Lambda_{TVPC} \sim v$$
, p ~ 1 GeV

C. Symmetry or conspiracy

$$\alpha_T = \frac{\langle f | \mathcal{O}_{TVPC}^{(8)} | i \rangle}{\langle f | \mathcal{O}_{QCD} | i \rangle} \sim C_{\text{TVPC}}^{(8)} \left(\frac{v}{\Lambda_{TVPC}} \right) \left(\frac{p}{\Lambda_{TVPC}} \right)^3 \stackrel{<}{_\sim} 10^{-7}$$

for
$$\Lambda_{\text{TVPC}} \sim v$$
, p ~ 1 GeV, and $C_{\text{TVPC}} \sim 1$

II. P-Conserving T- and C-Violation

- Does the conspiracy scenario survive one-loop RGE ?
- If so, does it survive at higher order ?
- Are there well-motivated BSM scenarios that generate non-vanishing C_{TVPC} ?
- What is the corresponding situation for other TVPC observables (D coeff) ?
- What are implications for P-conserving C-violation ?
- Can there be ultralight mediators of P-conserving Tviolation/C-violation that evade these arguments ?

Implications: Further Thoughts

C. Symmetry or conspiracy

 $\mathcal{O}_{fWB}^{(8)} = \bar{F}\sigma^{\mu\nu}\frac{\tau^{a}}{2}Hf_{R}\widetilde{W}_{\mu\alpha}^{a}B_{\nu}^{\alpha}$ $\mathcal{O}_{fWW}^{(8)} = \bar{F}\sigma^{\mu\nu}Hf_{R}\widetilde{W}_{\mu\alpha}^{a}W_{\mu}^{a\alpha}$ $\mathcal{O}_{fBB}^{(8)} = \bar{F}\sigma^{\mu\nu}Hf_{R}\widetilde{B}_{\mu\alpha}B_{\nu}^{\alpha}$ $\mathcal{O}_{fBB}^{(8)} = \bar{F}\sigma^{\mu\nu}Hf_{R}\widetilde{B}_{\mu\alpha}B_{\nu}^{\alpha}$ $\mathcal{O}_{f\gamma Z}^{(8)} = \bar{F}\sigma^{\mu\nu}f_{R}\widetilde{F}_{\mu\alpha}Z_{\nu}^{\alpha}$ EDM $C_{fWB}, C_{fWW}, C_{fBB} \xrightarrow{?} C_{f\gamma Z} = 0, C_{f\gamma Z} \neq 0$ $C_{f\gamma \gamma}O_{f\gamma \gamma} \longrightarrow \gamma$

Summary & Outlook

• C-Violating \leftrightarrow TVPC interactions are a largely unexplored direction for fundamental symmetry tests

• Analyzing their effects for light quark systems requires an EFT approach, as the do not arise at tree-level via renormalizable gauge interactions

• In general, EDMs place stringent constraints on such interactions via EW radiative corrections from the standpoint of short distance parity restoration and/or naturalness

• Exceptions may exist in the presence of a conspiracy or new symmetry at the TVPC matching scale

• Magnitude of low-energy amplitude ~ $(p/\Lambda)^3 < 10^{-7}$ for $\Lambda > v$

• C-Violating \leftrightarrow TVPC interactions are an interesting direction worthy of further exploration 73

II. P-Conserving T- and C-Violation

- Does the conspiracy scenario survive one-loop RGE ?
- If so, does it survive at higher order ?
- Are there well-motivated BSM scenarios that generate non-vanishing C_{TVPC} ?
- What is the corresponding situation for other TVPC observables (D coeff) ?
- What are implications for P-conserving C-violation ?
- Can there be ultralight mediators of P-conserving Tviolation/C-violation that evade these arguments ?

Back Up Slides

EFT Ilustration: $m_v \& \mu_v$

Bell, Cirigliano, R-M, Vogel, Wise '05 Also Bell, Gorchtein, R-M, Vogel, Wang '06 Erwin, Kile, R-M, Wang '07 Kile, R-M '07

Neutrino Magnetic Moments

Can neutrinos have magnetic moments?

Dirac neutrinos

 $\mathbf{v}_L \to e^{i \alpha_L} \mathbf{v}_L \ \mathbf{v}_R \to e^{i \alpha_R} \mathbf{v}_R$ $m_{\mathbf{v}} \, \bar{\mathbf{v}} \mathbf{v} = m_{\mathbf{v}} \{ \bar{\mathbf{v}}_L \mathbf{v}_R + \bar{\mathbf{v}}_R \mathbf{v}_L \}$

 $\mathcal L$ not invariant if $m_{
m v}
eq 0$ and $lpha_L
eq lpha_R$

Magnetic moment operator forbidden

$$\mu_{\nu}\,\bar{\nu}\sigma_{\alpha\beta}\nu\,F^{\alpha\beta}=\mu_{\nu}\{\bar{\nu}_{L}\sigma_{\alpha\beta}\nu_{R}+\bar{\nu}_{R}\sigma_{\alpha\beta}\nu_{L}\}F^{\alpha\beta}$$

The Scale of m_{ν} and μ_{ν}

Minimal extension of the Standard Model with ν_{R} and non-vanishing $m_{\!_{\rm V}}$ gives

$$\mu_{\rm v} \approx 3 \times 10^{-19} \mu_B \ [m_{\rm v}/1 \,{\rm eV}]$$

Too small to be observed

What about new physics at scale $\Lambda > v$? NDA

 $\mu_{\nu} \sim eG/\Lambda$, $m_{\nu} \sim G\Lambda$ $m_{\nu} \sim \frac{\Lambda^2}{2m_e} \frac{\mu_{\nu}}{\mu_B} \sim \frac{\mu_{\nu}}{10^{-18}\mu_B} \left(\frac{\Lambda}{1\,\text{TeV}}\right)^2 \text{eV}$

Evading the NDA Estimates

NDA

$$m_{\nu} \sim \frac{\Lambda^2}{2m_e} \frac{\mu_{\nu}}{\mu_B} \sim \frac{\mu_{\nu}}{10^{-18}\mu_B} \left(\frac{\Lambda}{1\,\mathrm{TeV}}\right)^2 \mathrm{eV}$$

The "Voloshin" mechanism : a loophole

Evading the NDA Estimates

NDA

$$m_{\rm v} \sim \frac{\Lambda^2}{2m_e} \frac{\mu_{\rm v}}{\mu_B} \sim \frac{\mu_{\rm v}}{10^{-18}\mu_B} \left(\frac{\Lambda}{1\,{\rm TeV}}\right)^2 {\rm eV}$$

The "Voloshin" mechanism a loophole

Radiatively-induced neutrino mass

Voloshin sym & generalizations broken by SM gauge & Yukawa interactions: $m_{\!_V}$ bounds on $\mu_{\!_V}$

Dirac Neutrinos

$$\delta m_{\nu} = -C_3^6(\nu) \frac{\nu^3}{2\sqrt{2}\Lambda^2} \qquad \frac{\mu_{\nu}}{\mu_B} = -4\sqrt{2} \left(\frac{m_e \nu}{\Lambda^2}\right) C_+(\nu) \qquad C_+ = C_1^6 + C_2^6$$

Operator Basis:

 $O_M^{(4)} = \bar{L}\tilde{\phi}\nu_R \qquad \tilde{\phi} = i\tau_2\phi^*$ $O_1^{(6)} = g_1(\bar{L}\sigma^{\mu\nu}\tilde{\phi})\ell_R B_{\mu\nu}$ $O_2^{(6)} = g_2(\bar{L}\sigma^{\mu\nu}\tau^a\tilde{\phi})\nu_R W_{\mu\nu}^a$ $O_3^{(6)} = (\bar{L}\tilde{\phi}\nu_R) (\phi^+\phi)$

Dirac Neutrinos

$$\delta m_{\nu} = -C_3^6(\nu) \frac{\nu^3}{2\sqrt{2}\Lambda^2} \qquad \frac{\mu_{\nu}}{\mu_B} = -4\sqrt{2} \left(\frac{m_e \nu}{\Lambda^2}\right) C_+(\nu) \qquad C_+ = C_1^6 + C_2^6$$

Operator Basis:

$$O_M^{(4)} = \bar{L}\tilde{\phi}v_R \qquad \tilde{\phi} = i\tau_2\phi^*$$

$$O_1^{(6)} = g_1(\bar{L}\sigma^{\mu\nu}\tilde{\phi})\ell_R B_{\mu\nu}$$
$$O_2^{(6)} = g_2(\bar{L}\sigma^{\mu\nu}\tau^a\tilde{\phi})\nu_R W_{\mu\nu}^a$$
$$O_3^{(6)} = (\bar{L}\tilde{\phi}\nu_R) (\phi^+\phi)$$

Close under renormalization

Dirac Neutrinos: Mixing

Operator Basis:

$$O_M^{(4)} = \bar{L}\tilde{\phi}\nu_R \qquad \tilde{\phi} = i\tau_2\phi^*$$

$$O_1^{(6)} = g_1(\bar{L}\sigma^{\mu\nu}\tilde{\phi})\ell_R B_{\mu\nu}$$
$$O_2^{(6)} = g_2(\bar{L}\sigma^{\mu\nu}\tau^a\tilde{\phi})\nu_R W_{\mu\nu}^a$$
$$O_3^{(6)} = (\bar{L}\tilde{\phi}\nu_R) (\phi^+\phi)$$

Close under renormalization

Dirac Neutrinos: Mixing & "Naturalness"

Renormalization Group: Leading Log

Solution with $C_3^{6}(\Lambda) = 0$: δm_v generated entirely from radiative corrections

$$\frac{|\mu_{\nu}|}{\mu_{B}} = \frac{G_{F}m_{e}}{\sqrt{2}\pi\alpha} \left[\frac{\delta m_{\nu}}{\alpha\ln(\Lambda/\nu)}\right] \frac{32\pi\sin^{4}\theta_{W}}{9|f|}$$
$$f = (1-r) - \frac{2}{3}r\tan^{2}\theta_{W} - \frac{1}{3}(1+r)\tan^{4}\theta_{W} \qquad r = C_{-}/C_{+}$$

$$\frac{|\mu_{\rm v}|}{\mu_B} \lesssim 8 \times 10^{-15} \times \left(\frac{\delta m_{\rm v}}{1\,{\rm eV}}\right) \frac{1}{|f|}$$

Dirac Neutrinos

$$\delta m_{\nu} = -C_3^6(\nu) \frac{\nu^3}{2\sqrt{2}\Lambda^2} \qquad \frac{\mu_{\nu}}{\mu_B} = -4\sqrt{2} \left(\frac{m_e \nu}{\Lambda^2}\right) C_+(\nu) \qquad C_+ = C_1^6 + C_2^6$$

Operator Basis:

$$\begin{array}{l} O_{M}^{(4)} = \bar{L}\tilde{\phi}v_{R} & \tilde{\phi} = i\tau_{2}\phi^{*} & \text{Matching at}\\ O_{1}^{(6)} = g_{1}(\bar{L}\sigma^{\mu\nu}\tilde{\phi})\ell_{R}B_{\mu\nu} & \\ O_{2}^{(6)} = g_{2}(\bar{L}\sigma^{\mu\nu}\tau^{a}\tilde{\phi})v_{R}W_{\mu\nu}^{a} & \\ O_{3}^{(6)} = (\bar{L}\tilde{\phi}v_{R}) \ (\phi^{+}\phi) & \end{array}$$

Dirac Neutrinos: Matching & "Naturalness"

Solution with $C_3^{\ 6}(\Lambda) = 0$: δm_v generated entirely from radiative corrections via $k_{loop} \sim \Lambda$, thereby inducing nonzero $C_M^{\ 4}(\Lambda)$

$$\delta m_{\nu} \sim \frac{\alpha}{32\pi} \frac{\Lambda^2}{m_e} \frac{\mu_{\nu}}{\mu_B},$$

$$\frac{\mu_{\nu}}{\mu_{B}} \stackrel{<}{{}_\sim} 10^{-14} \left(\frac{1 \text{ TeV}}{\Lambda}\right)^2 \left(\frac{\delta m_{\nu}}{1 \text{ eV}}\right)$$

Interpretation

