Electric Dipole Moments: Phenomenology & Implications

M.J. Ramsey-Musolf U Mass Amherst

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

ACFI Workshop, Amherst May 2015

Outline

- I. Experimental situation
- II. Effective operators
- III. Illustrative examples
- IV. Paramagnetic & diamagnetic systems
- V. Theoretical issues

I. Experimental Situation

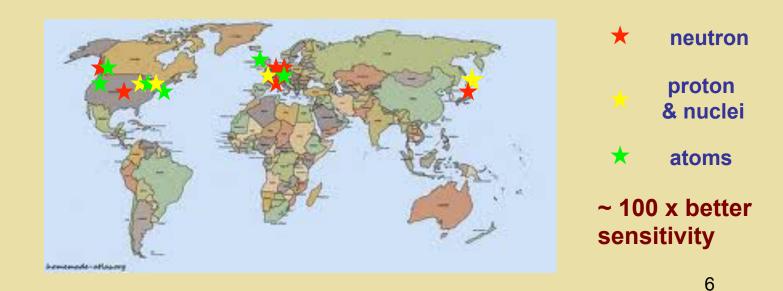
EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

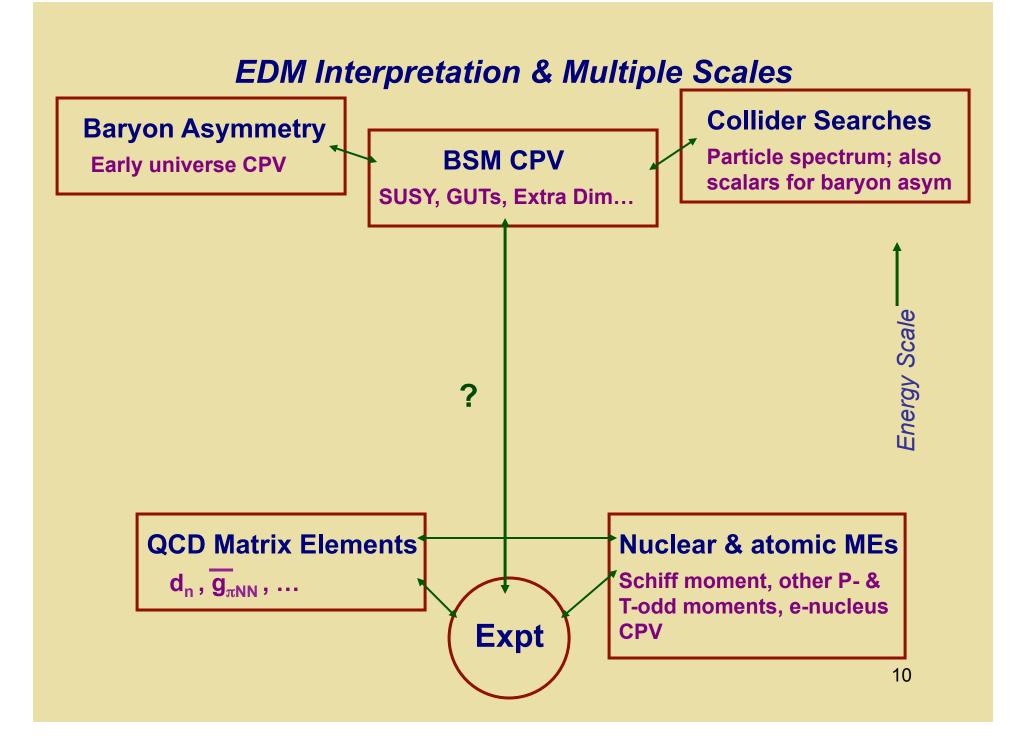

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

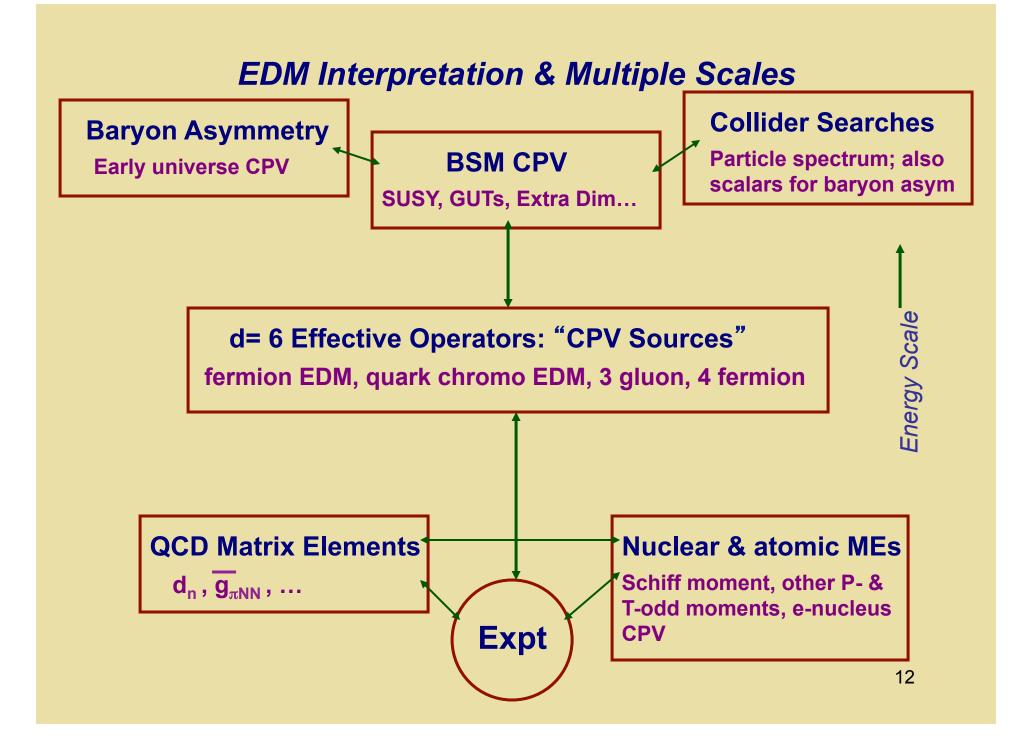

Not shown: muon

II. Effective Operators

Why Multiple Systems ?

Why Multiple Systems ?

Multiple sources & multiple scales


Effective Operators: The Bridge

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{\bar{\theta}} + \mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}$$

$$\mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}} = \frac{1}{\Lambda^2} \sum_i \alpha_i^{(n)} \, O_i^{(6)}$$

11

+...

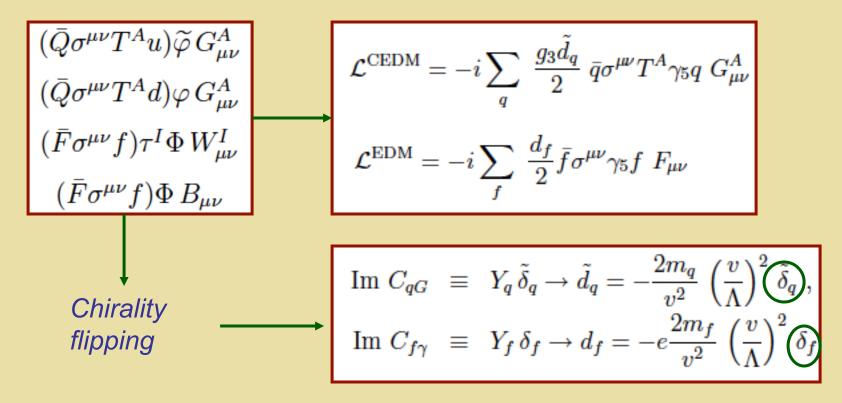
Pure Gauge	Gauge-Higgs		Gauge-Higgs-Fermion	
$Q_{\widetilde{G}} = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{uG}	$(\bar{Q}\sigma^{\mu u}T^A u)\widetilde{\varphi}G^A_{\mu u}$
$Q_{\widetilde{W}} \varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{dG}	$(\bar{Q}\sigma^{\mu u}T^Ad)\varphiG^A_{\mu u}$
	$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{fW}	$(\bar{F}\sigma^{\mu u}f)\tau^{I}\Phi W^{I}_{\mu u}$
	$Q_{arphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{fB}	$(\bar{F}\sigma^{\mu\nu}f)\Phi B_{\mu\nu}$

Weinberg 3 gluon

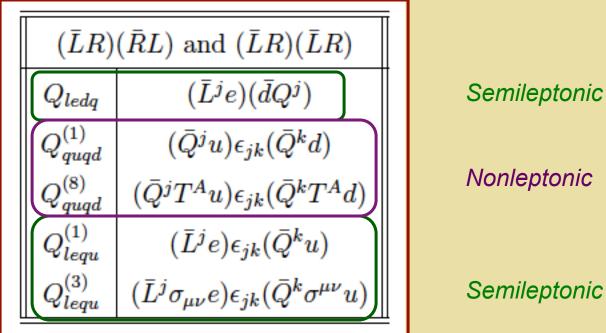
Pure Gauge	Gauge-Higgs		Gauge-Higgs-Fermion	
$Q_{\widetilde{G}} = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi \widetilde{G}} = arphi$	$^{\dagger}\varphi \widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{uG}	$(\bar{Q}\sigma^{\mu u}T^A u)\widetilde{\varphi}G^A_{\mu u}$
$Q_{\widetilde{W}} = \varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{arphi \widetilde{W}} = arphi^{\dagger}$	$^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{dG}	$(\bar{Q}\sigma^{\mu u}T^Ad)\varphiG^A_{\mu u}$
	$Q_{arphi \widetilde{B}} = arphi$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu\nu} B^{\mu\nu}$	Q_{fW}	$(\bar{F}\sigma^{\mu u}f)\tau^{I}\Phi W^{I}_{\mu u}$
	$Q_{arphi \widetilde{W}B} arphi^{\dagger}$	$\tau^{I}\varphi \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{fB}	$(\bar{F}\sigma^{\mu\nu}f)\Phi B_{\mu\nu}$

$$arphi^{\star} arphi
ightarrow arphi^{2}$$

θ -term renormalization


Pure Gauge	Gauge-Higgs		Gauge-Higgs-Fermion	
$Q_{\widetilde{G}} = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{uG}	$(\bar{Q}\sigma^{\mu u}T^A u)\widetilde{\varphi}G^A_{\mu u}$
$Q_{\widetilde{W}} = \varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{arphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{dG}	$(\bar{Q}\sigma^{\mu\nu}T^Ad)\varphiG^A_{\mu\nu}$
	$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{fW}	$(\bar{F}\sigma^{\mu\nu}f)\tau^{I}\Phi W^{I}_{\mu\nu}$
	$Q_{arphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{fB}	$(\bar{F}\sigma^{\mu\nu}f)\Phi B_{\mu\nu}$

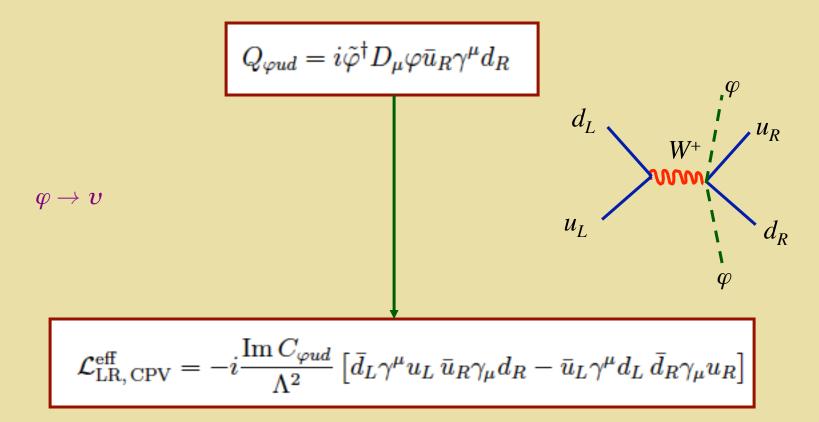
Quark chromo-EDM


Pure Gauge	Gauge-Higgs		Gauge-Higgs-Fermion	
$Q_{\widetilde{G}} f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu u} G^{A\mu u}$	Q_{uG}	$(\bar{Q}\sigma^{\mu\nu}T^A u)\widetilde{\varphi}G^A_{\mu\nu}$
$Q_{\widetilde{W}} = \varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{arphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{dG}	$(\bar{Q}\sigma^{\mu\nu}T^Ad)\varphi G^A_{\mu\nu}$
	$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{fW}	$(\bar{F}\sigma^{\mu\nu}f)\tau^{I}\Phi W^{I}_{\mu\nu}$
	$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\overline{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{fB}	$(\bar{F}\sigma^{\mu\nu}f)\Phi B_{\mu\nu}$

Fermion EDM

Wilson Coefficients: EDM & CEDM

 $\delta_{\!f}$, $\delta_{\!q}$ appropriate for comparison with other d=6 Wilson coefficients


Semileptonic

Semileptonic: atomic & molecular EDMs

$$\mathcal{L}_{CPV}^{eq} = i \frac{\text{Im}C_{\ell e d q}}{2\Lambda^2} \left[\bar{e}\gamma_5 e \ \bar{d}d - \bar{e}e \ \bar{d}\gamma_5 d \right] - i \frac{\text{Im}C_{\ell e q u}^{(1)}}{2\Lambda^2} \left[\bar{e}\gamma_5 e \ \bar{u}u + \bar{e}e \ \bar{u}\gamma_5 u \right]$$
$$- \frac{\text{Im}C_{\ell e q u}^{(3)}}{2\Lambda^2} \epsilon_{\mu\nu\alpha\beta} \ \bar{e}\sigma^{\mu\nu}e \ \bar{u}\sigma^{\alpha\beta}u$$

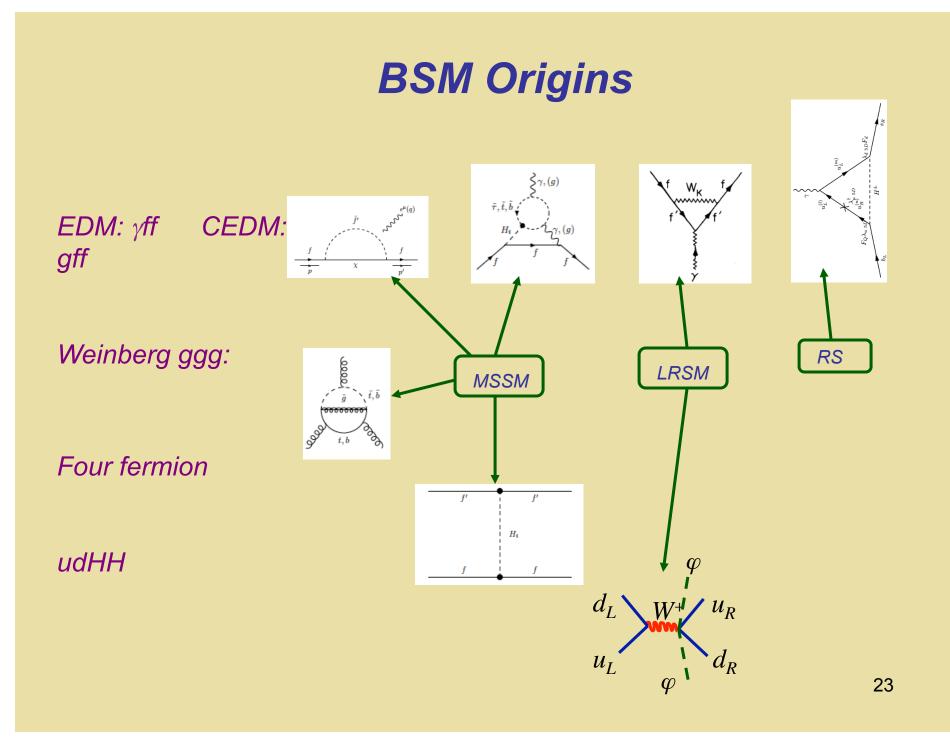
$$\mathcal{L}_{CPV}^{qq} = i \frac{g_3^2 \operatorname{Im} C_{quqd}^{(1)}}{2\Lambda^2} \left[\bar{u}\gamma_5 u \ \bar{d}d + \bar{u}u \ \bar{d}\gamma_5 d - \bar{d}\gamma_5 u \ \bar{u}d - \bar{d}u \ \bar{u}\gamma_5 d \right] + i \frac{g_3^2 \operatorname{Im} C_{quqd}^{(8)}}{2\Lambda^2} \left[\bar{u}\gamma_5 T^A u \ \bar{d}T^A d + \bar{u}T^A u \ \bar{d}\gamma_5 T^A d - \bar{d}\gamma_5 T^A u \ \bar{u}T^A d - \bar{d}T^A u \ \bar{u}\gamma_5 T^A d \right]$$

Nonleptonic: hadronic EDMs & Schiff moment

Nonleptonic: hadronic EDMs & Schiff moment

Wilson Coefficients: Summary

$\delta_{\!f}$	fermion EDM	(3)
$\widetilde{oldsymbol{\delta}}_q$	quark CEDM	(2)
$C_{\widetilde{G}}$	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$m{C}_{arphi$ ud	induced 4f	(1)


12 total + $\overline{\theta}$

light flavors only (e,u,d)

Wilson Coefficients: Summary

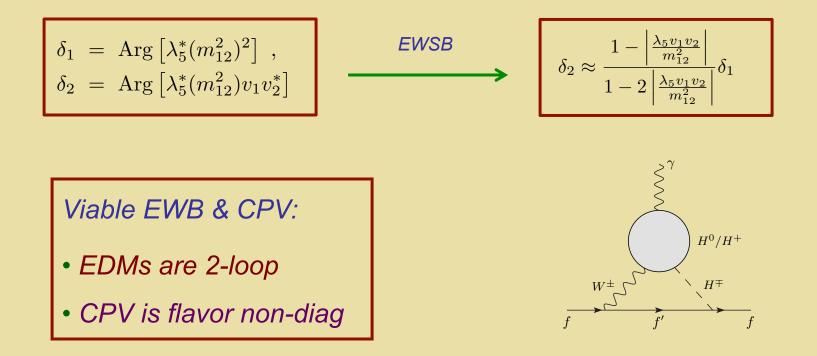
$\delta_{\!f}$	fermion EDM	(3)
$\widetilde{oldsymbol{\delta}}_q$	quark CEDM	(2)
$C_{\widetilde{G}}$	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$oldsymbol{\mathcal{C}}_{arphi$ ud	induced 4f	(1)

12 total + $\overline{\theta}$ light flavors only (e,u,d)Complementary searches needed

III. Illustrative Examples

Complementarity: Three Illustrations

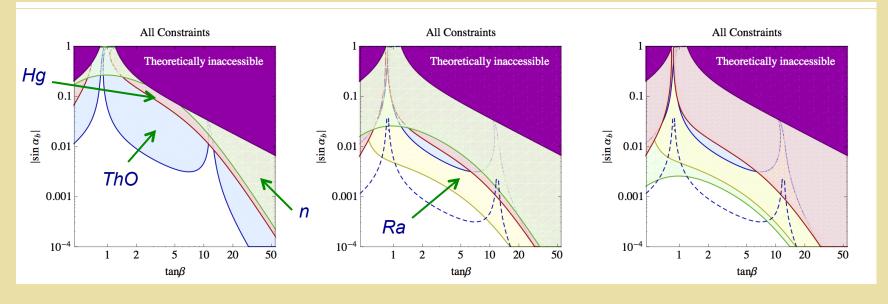
- CPV in an extended scalar sector (2HDM): "Higgs portal CPV"
- Weak scale baryogenesis (MSSM)
- Model-independent


Higgs Portal CPV

Inoue, R-M, Zhang: 1403.4257

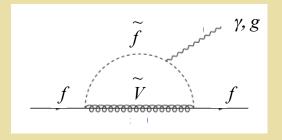
CPV & 2HDM: Type I & II

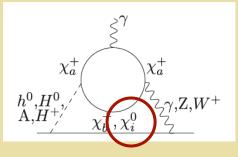
 $\lambda_{6,7} = 0$ for simplicity


$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] \\ - \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

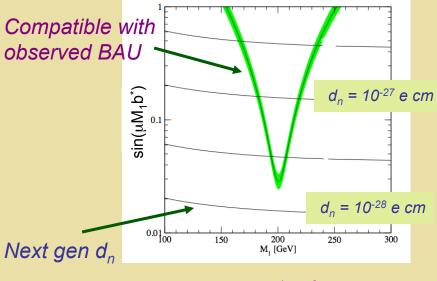
Future Reach: Higgs Portal CPV

CPV & 2HDM: Type II illustration

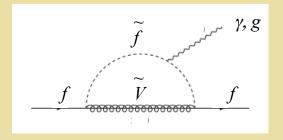

 $\lambda_{6.7} = 0$ for simplicity

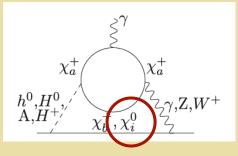

Present	Future:	Future:
	d _n x 0.1	<i>d_n</i> x 0.01
	d _A (Hg) x 0.1	<i>d_A(Hg)</i> x 0.1
sin $lpha_{b}$: CPV	d _{ThO} x 0.1	d _{ThO} x 0.1
scalar mixing	d _A (Ra)	d _A (Ra)

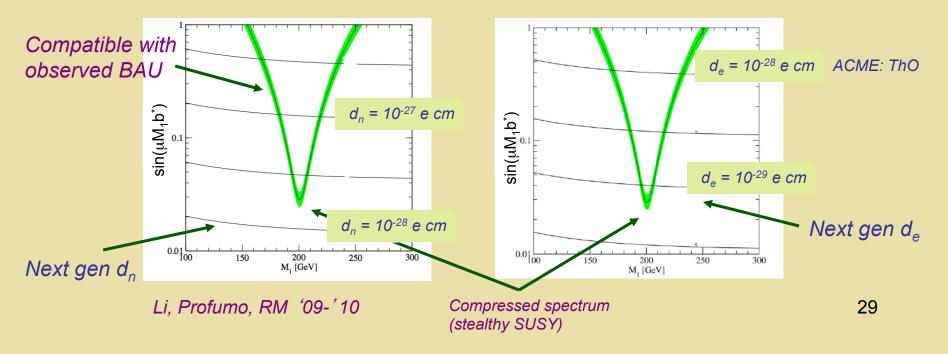
Inoue, R-M, Zhang: 1403.4257


EDMs & EW Baryogenesis: MSSM

Heavy sfermions: LHC consistent & suppress 1-loop EDMs


Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases


Li, Profumo, RM '09-'10


EDMs & EW Baryogenesis: MSSM

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

Wilson Coefficients: Model Independent

$\delta_{\!f}$	fermion EDM	(3)
$\widetilde{oldsymbol{\delta}}_q$	quark CEDM	(2)
$C_{\widetilde{G}}$	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$m{C}_{arphi}$ ud	induced 4f	(1)

12 total + $\overline{\theta}$

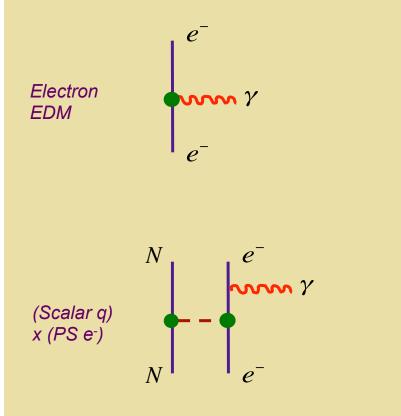
light flavors only (e,u,d)

IV. Paramagnetic & Diamagnetic Systems

EDM Classification

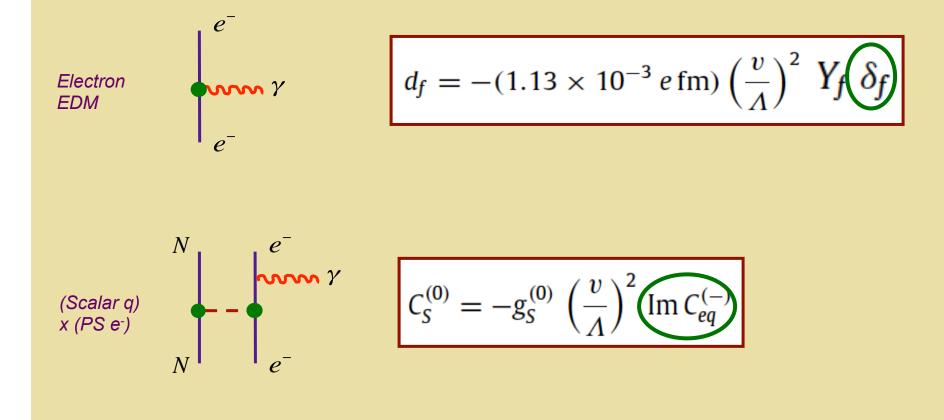
- Paramagnetic: unpaired electron spin (ThO & YbF molecules, TI atom...)
- Diamagnetic: no unpaired electron spin (neutron, ¹⁹⁹Hg, ²²⁵Ra...)

Global Analysis: Input

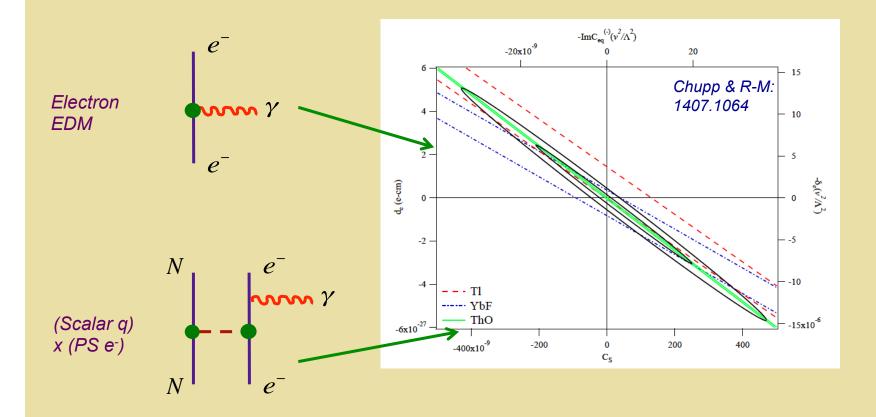

System	Year/ref	Result					
	Paramagnetic systemss						
Cs	1989 [37]	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	ecm				
		$d_e = (-1.5 \pm 5.6) \times 10^{-26}$	ecm				
Tl	2002 [9]	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	ecm				
		$d_e = (6.9 \pm 7.4) \times 10^{-28}$	ecm				
YbF	2011 [8]	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	ecm				
ThO	2014 [7]	$\omega^{NE} = 2.6 \pm 5.8$	$\mathrm{mrad/s}$				
		$d_e = (-2.1 \pm 4.5) \times 10^{-29}$	ecm				
		$C_S = (-1.3 \pm 3.0) \times 10^{-9}$					
	D	iamagnetic systems					
¹⁹⁹ Hg		$d_A = (0.49 \pm 1.5) \times 10^{-29}$	ecm				
¹²⁹ Xe		$d_A = (0.7 \pm 3) \times 10^{-27}$	ecm				
TlF		$d = (-1.7 \pm 2.9) \times 10^{-23}$	ecm				
neutron	2006 [4]	$d_n = (0.2 \pm 1.7) \times 10^{-26}$	ecm				

Global Analysis: Input

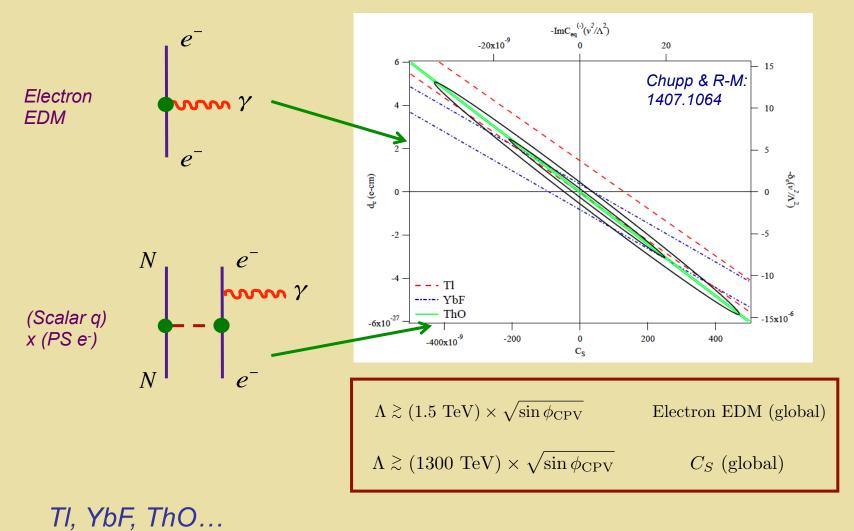
System	Year/ref	Result	
Paramagnetic systemss			
Cs	1989 [37]	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	ecm
		$d_e = (-1.5 \pm 5.6) \times 10^{-26}$	ecm
Tl	2002 [9]	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	ecm
		$d_e = (6.9 \pm 7.4) \times 10^{-28}$	ecm
YbF	2011 [8]	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	ecm
ThO	2014 [7]	$\omega^{NE} = 2.6 \pm 5.8$	$\mathrm{mrad/s}$
		$d_e = (-2.1 \pm 4.5) \times 10^{-29}$	ecm
		$C_S = (-1.3 \pm 3.0) \times 10^{-9}$	
Diamagnetic systems			
¹⁹⁹ Hg	2009 [5]	$d_A = (0.49 \pm 1.5) \times 10^{-29}$	ecm
¹²⁹ Xe	2001 [38]	$d_A = (0.7 \pm 3) \times 10^{-27}$	ecm
TlF	2000 [39]	$d = (-1.7 \pm 2.9) \times 10^{-23}$	ecm
neutron	2006 [4]	$d_n = (0.2 \pm 1.7) \times 10^{-26}$	ecm


Paramag

Paramagnetic Systems: Two Sources



TI, YbF, ThO....


Paramagnetic Systems: Two Sources

Paramagnetic Systems: Two Sources

Paramagnetic Systems: Two Sources

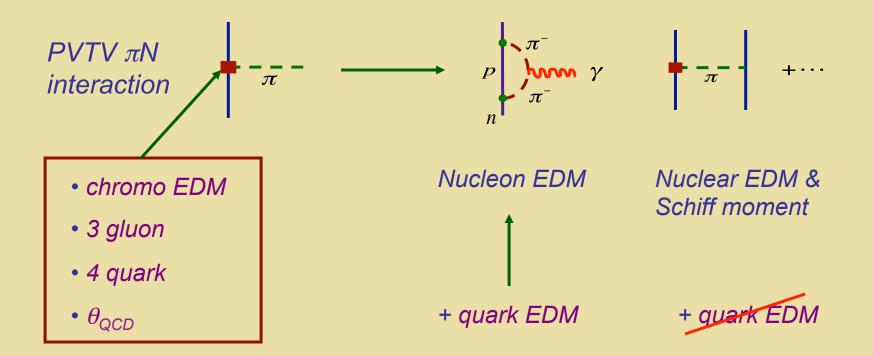
38

Global Analysis: Diamagnetic Systems

System	Year/ref	Result				
Paramagnetic systemss						
Cs	1989 [37]	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	ecm			
		$d_e = (-1.5 \pm 5.6) \times 10^{-26}$	ecm			
Tl	2002 [9]	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	ecm			
		$d_e = (6.9 \pm 7.4) \times 10^{-28}$	ecm			
YbF	2011 [8]	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	ecm			
ThO	2014 [7]	$\omega^{NE} = 2.6 \pm 5.8$	$\mathrm{mrad/s}$			
		$d_e = (-2.1 \pm 4.5) \times 10^{-29}$	ecm			
		$C_S = (-1.3 \pm 3.0) \times 10^{-9}$				
Diamagnetic systems						
¹⁹⁹ Hg		$d_A = (0.49 \pm 1.5) \times 10^{-29}$	ecm			
¹²⁹ Xe		$d_A = (0.7 \pm 3) \times 10^{-27}$	ecm			
TlF		$d = (-1.7 \pm 2.9) \times 10^{-23}$	ecm			
neutron	2006 [4]	$d_n = (0.2 \pm 1.7) \times 10^{-26}$	ecm			

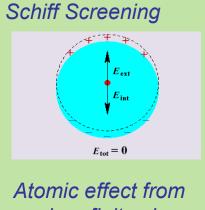
Diamagnetic Systems

$$\mathcal{L}_{N\pi}^{\text{PVTV}} = -\frac{2\bar{N}\left(\bar{d}_{0} + \bar{d}_{1}\tau_{3}\right)S_{\mu}N v_{\nu}F^{\mu\nu}}{+\bar{N}\left[\bar{g}_{\pi}^{(0)}\tau\cdot\pi + \bar{g}_{\pi}^{(1)}\pi^{0} + \bar{g}_{\pi}^{(2)}\left(3\tau_{3}\pi^{0} - \tau\cdot\pi\right)\right]N} \\ + \bar{C}_{1}\bar{N}N \,\partial_{\mu}\left(\bar{N}S^{\mu}N\right) + \bar{C}_{2}\bar{N}\tau N \cdot \partial_{\mu}\left(\bar{N}S^{\mu}\tau N\right) + \cdots$$

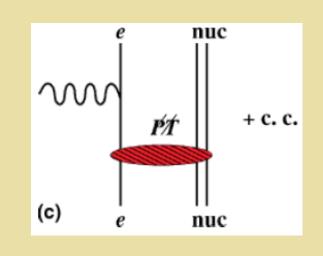

Nucleon EDMs

Nonleptonic: hadronic EDMs, Schiff moment (atomic EDMs)

Diamagnetic Systems

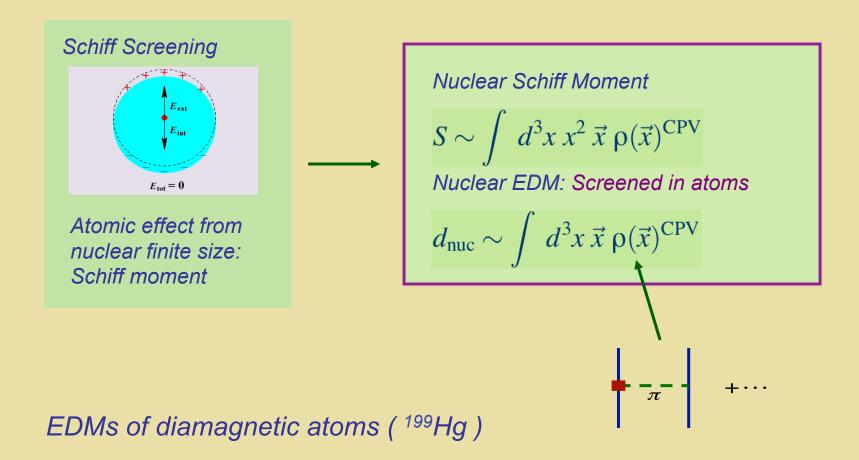

Nonleptonic: hadronic EDMs, Schiff moment (atomic EDMs)

Hadronic CPV: Nucleons, Nuclei, Atoms

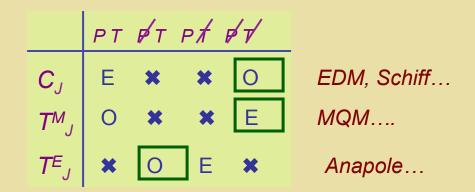


Neutron, proton & light nuclei (future), diamagnetic atoms

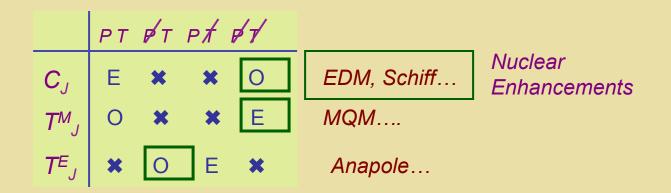
Diamagnetic Systems: P- & T-Odd Moments


nuclear finite size: Schiff moment

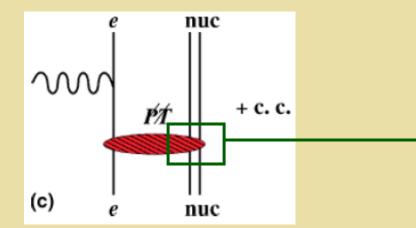
Schiff moment, MQM,...


EDMs of diamagnetic atoms (¹⁹⁹Hg)

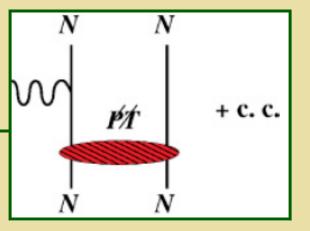
Nuclear Schiff Moment I


Diamagnetic Systems

Nuclear Moments


Diamagnetic Systems

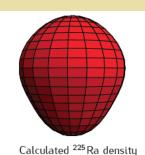
Nuclear Moments



Nuclear Schiff Moment

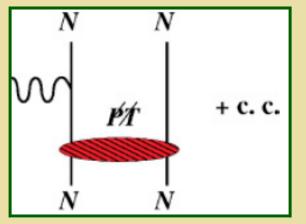
Nuclear Enhancements

Schiff moment, MQM,...



Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

EDMs of diamagnetic atoms (¹⁹⁹Hg)


Nuclear Schiff Moment

Nuclear Enhancements: Octupole Deformation

 $|\pm\rangle = \frac{1}{\sqrt{2}} (| \bullet \rangle \pm | \bullet \rangle)$

Opposite parity states mixed by H^{TVPV}

"Nuclear amplifier"

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

EDMs of diamagnetic atoms (²²⁵Ra)

Thanks: J. Engel

Diamagnetic Global Fit

	$C_T \times 10^7$	$\bar{g}_{\pi}^{(0)}$	$ar{g}^{(1)}_{\pi}$	\bar{d}_n (e-cm)
Exact solution	1.265	$\frac{g_{\pi}}{-6.687 \times 10^{-10}}$	$\frac{g_{\pi}}{1.4308 \times 10^{-10}}$	9.878×10^{-24}
Range from best values of α_{ij}	(-7.6 - 9.5)	$(-5.0 - 4.0) \times 10^{-9}$	$(-0.2 - 0.4) \times 10^{-9}$	$(-5.9 - 7.4) \times 10^{-23}$
Range from best values	((0.0) / 10
with $\alpha_{g_{\pi}^{1}}(\text{Hg}) = -4.9 \times 10^{-17}$	(-7.6 - 8.4)	$(-7.0 - 4.0) \times 10^{-9}$	$(0 - 0.2) \times 10^{-9}$	$(5.9 - 10.4) \times 10^{-23}$
Range from best values				
with $\alpha_{g_{\pi}^1}(\text{Hg}) = +1.6 \times 10^{-17}$	(-9.2 - 12.4)	$(-4.0 - 4.0) \times 10^{-9}$	$(-0.4 - 0.8) \times 10^{-9}$	$(-5.9 - 5.9) \times 10^{-23}$
Range from full variation of α_{ij}	(-10.8 - 15.6)	$(-10.0 - 8.1) \times 10^{-9}$	$(-0.6 - 1.2) \times 10^{-9}$	$(-12.0 - 14.8) \times 10^{-23}$
1	V			N
		νν γ	1	
	• - - •			$\phi m \gamma$
			π	
7	$V e^{-}$			NT
1	v e			N
	T			
	Tensor eq	IVP	νν πΝΝ	Short distance d _n

Diamagnetic Global Fit

			-			
			(-)			
	$C_T \times 10^7$		$\bar{g}^{(0)}_{\pi}$		$ar{g}^{(1)}_{\pi}$	\bar{d}_n (e-cm)
Exact solution	1.265		-6.687×10^{-10}		1.4308×10^{-10}	9.878×10^{-24}
Range from best values of α_{ij}	(-7.6 - 9.5)		$(-5.0-4.0) \times 10^{-9}$	($-0.2 - 0.4) \times 10^{-9}$	$(-5.9 - 7.4) \times 10^{-23}$
Range from best values						
with $\alpha_{g_{\pi}^1}(\text{Hg}) = -4.9 \times 10^{-17}$	(-7.6 - 8.4)		$(-7.0 - 4.0) \times 10^{-9}$		$(0 - 0.2) \times 10^{-9}$	$(5.9 - 10.4) \times 10^{-23}$
Range from best values						
with $\alpha_{g_{\pi}^1}(\text{Hg}) = +1.6 \times 10^{-17}$		r 1		-		$(-5.9-5.9) imes 10^{-23}$
Range from full variation of α_{ij}	(-10.8 - 15.0)	5)	$(-10.0 - 8.1) \times 10^{-9}$	(•	$-0.6 - 1.2) \times 10^{-9}$	$(-12.0 - 14.8) \times 10^{-23}$
		-				

Isoscalar CEDM

$$\tilde{\delta}_q^{(+)} \left(\frac{v}{\Lambda}\right)^2 \lesssim 0.01 \qquad \Lambda \gtrsim (2 \text{ TeV}) \times \sqrt{\sin \phi_{\text{CPV}}}$$

Caveat: Large hadronic uncertainty

Chupp & R-M: 1407.1064

V. Theoretical Issues

Hadronic Matrix Elements

$$d_{N} = \alpha_{N} \,\bar{\theta} + \left(\frac{v}{\Lambda}\right)^{2} \sum_{k} \beta_{N}^{(k)} \,\mathrm{Im} \,C_{k},$$
$$\bar{g}_{\pi}^{(i)} = \lambda_{(i)} \,\bar{\theta} + \left(\frac{v}{\Lambda}\right)^{2} \sum_{k} \gamma_{(i)}^{(k)} \,\mathrm{Im} \,C_{k},$$
$$\bar{C}_{i} = \kappa_{i} \,\bar{\theta} + \left(\frac{v}{\Lambda}\right)^{2} \sum_{k} \delta_{i}^{(k)} \,\mathrm{Im} \,C_{k},$$

$$\left(\frac{v}{\Lambda}\right)^2 \left[\beta_N^{qG} \operatorname{Im} C_{qG} + \beta_N^{q\gamma} \operatorname{Im} C_{q\gamma}\right] = e \,\tilde{\rho}_N^q \,\tilde{d}_q + \rho_N^q \,d_q = \left(\frac{v}{\Lambda}\right)^2 \left[e \,\tilde{\zeta}_N^q \,\tilde{\delta}_q + e \,\zeta_N^q \,\delta_q\right],$$

$$\left(\frac{v}{\Lambda}\right)^2 \left[\gamma_{(i)}^{qG} \operatorname{Im} C_{qG} + \gamma_{(i)}^{q\gamma} \operatorname{Im} C_{q\gamma}\right] = \tilde{\omega}_{(i)}^q \,\tilde{d}_q + \omega_{(i)}^q \,d_q = \left(\frac{v}{\Lambda}\right)^2 \left[\tilde{\eta}_{(i)}^q \,\tilde{\delta}_q + \eta_{(i)}^q \,\delta_q\right].$$

Engel, R-M, van Kolck [']13

Hadronic Matrix Elements

Param	Coeff	Best value ^a	Range
ē	$lpha_n \ lpha_p$	0.002 0.002	(0.0005-0.004) (0.0005-0.004)
Im C _{qG}	$egin{array}{c} eta_n^{uG} \ eta_n^{dG} \ eta_n^{dG} \end{array}$	$\begin{array}{c} 4\times10^{-4}\\ 8\times10^{-4}\end{array}$	$(1 - 10) \times 10^{-4}$ $(2 - 18) \times 10^{-4}$
<i>d</i> _q	$e ilde{ ho}_n^u \ e ilde{ ho}_n^d$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)
$\tilde{\delta}_q$	$e \tilde{\zeta}_n^u \\ e \tilde{\zeta}_n^d$	8.2×10^{-9} 16.3×10^{-9}	$(2 - 20) \times 10^{-9}$ $(4 - 40) \times 10^{-9}$
Im C _{qy}	$egin{array}{l} eta_n^{u\gamma} \ eta_n^{d\gamma} \end{array} \ eta_n^{d\gamma} \end{array}$	$\begin{array}{c} 0.4 \times 10^{-3} \\ -1.6 \times 10^{-3} \end{array}$	$(0.2 - 0.6) \times 10^{-3}$ -(0.8 - 2.4) × 10^{-3}
dq	$ ho_n^u ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1
δ_q	ζ_n^u ζ_n^d	$\begin{array}{c} 8.2 \times 10^{-9} \\ -33 \times 10^{-9} \end{array}$	$(4 - 12) \times 10^{-9}$ -(16 - 50) × 10 ⁻⁹
C _Ĝ	$\beta_n^{\tilde{G}}$	2×10^{-7}	$(0.2 - 40) imes 10^{-7}$
Im C _{\u03c6ud}	$\beta_n^{\varphi u d}$	$3 imes 10^{-8}$	$(1 - 10) \times 10^{-8}$
$\operatorname{Im} C_{quqd}^{(1,8)}$	β_n^{quqd}	40×10^{-7}	$(10 - 80) \times 10^{-7}$
Im C _{eq} ⁽⁻⁾	g _S ⁽⁰⁾	12.7	11-14.5
Im C _{eq} ⁽⁺⁾	g _S ⁽¹⁾	0.9	0.6–1.2

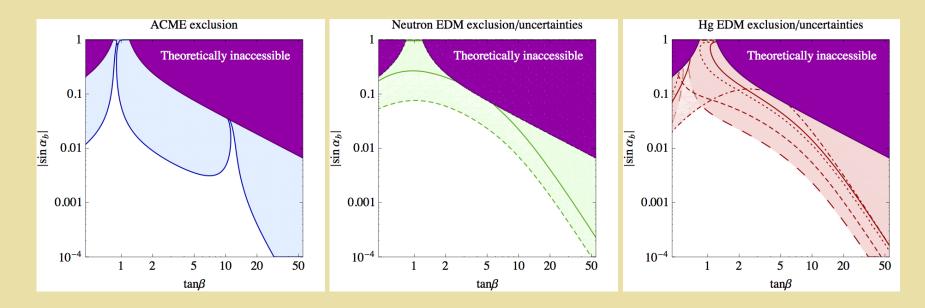
Engel, R-M, van Kolck [']13

Hadronic Matrix Elements

Param	Coeff	Best value ^a	Range
ē	$lpha_n \ lpha_p$	0.002 0.002	(0.0005-0.004) (0.0005-0.004)
Im C _{qG}	$egin{smallmatrix} eta_n^{uG} \ eta_n^{dG} \ eta_n^{dG} \end{split}$	4×10^{-4} 8×10^{-4}	$(1 - 10) \times 10^{-4}$ $(2 - 18) \times 10^{-4}$
<i>d</i> _q	$e ilde{ ho}_n^u \\ e ilde{ ho}_n^d$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)
$\tilde{\delta}_q$ (CEDM)	$e \tilde{\zeta}_n^u \\ e \tilde{\zeta}_n^d$	$\begin{array}{c} 8.2 \times 10^{-9} \\ 16.3 \times 10^{-9} \end{array}$	$\begin{array}{c} (2-20)\times 10^{-9} \\ (4-40)\times 10^{-9} \end{array}$
Im C _{qy}	$\beta_n^{u\gamma} \\ \beta_n^{d\gamma}$	$0.4 imes 10^{-3}$ -1.6 $ imes 10^{-3}$	$(0.2 - 0.6) \times 10^{-3}$ -(0.8 - 2.4) × 10^{-3}
d _q	$ ho_n^u ho_n^d ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1
δ_q	ζ_n^u ζ_n^d	$8.2 imes 10^{-9} \ -33 imes 10^{-9}$	$(4 - 12) \times 10^{-9}$ -(16 - 50) × 10 ⁻⁹
C _Ĝ	$\beta_n^{\tilde{G}}$	2×10^{-7}	$(0.2 - 40) \times 10^{-7}$
Im $C_{\varphi ud}$	$\beta_n^{\varphi u d}$	3×10^{-8}	$(1 - 10) \times 10^{-8}$
$\operatorname{Im} C_{quqd}^{(1,8)}$	β_n^{quqd}	$40 imes 10^{-7}$	$(10 - 80) \times 10^{-7}$
$\operatorname{Im} C_{eq}^{(-)}$	g _S ⁽⁰⁾	12.7	11–14.5
$\lim_{eq} C_{eq}^{(+)}$	g _S ⁽¹⁾	0.9	0.6–1.2

Engel, R-M, van Kolck [']13

Nuclear Matrix Elements


$$S = a_0 g \,\bar{g}_{\pi}^{(0)} + a_1 g \,\bar{g}_{\pi}^{(1)} + a_2 g \,\bar{g}_{\pi}^{(2)}$$

Nucl.	Best value			
	<i>a</i> ₀	<i>a</i> ₁	<i>a</i> ₂	
¹⁹⁹ Hg ¹²⁹ Xe ²²⁵ Ra	0.01 0.008 1.5	± 0.02 -0.006 6.0	0.02 -0.009 -4.0	
Range				
<i>a</i> 0	<i>a</i> ₁		<i>a</i> ₂	
0.005-0.05 -0.005-(-0.05) -1-(-6)	-0	0.03-(+0.09) 0.003-(-0.05) 1-24	0.01-0.06 -0.005-(-0.1) -3-(-15)	

Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

$\lambda_{6.7} = 0$ for simplicity

Present

 $sin \alpha_b$: CPV scalar mixing

IV. Outlook

- Searches for permanent EDMs of atoms, molecules, hadrons and nuclei provide powerful probes of BSM physics at the TeV scale and above and constitute important tests of weak scale baryogenesis
- Studies on complementary systems is essential for first finding and then disentangling new CPV
- The interpretation of diamagnetic system EDMs (including the nucleon) is plagued by substantial hadronic and nuclear many-body uncertainties
- The advancing experimental sensitivity challenges hadronic structure theory to aim for an unprecedented level of reliability