Electric Dipole Moments: Phenomenology & Implications

M.J. Ramsey-Musolf *U Mass Amherst*

University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

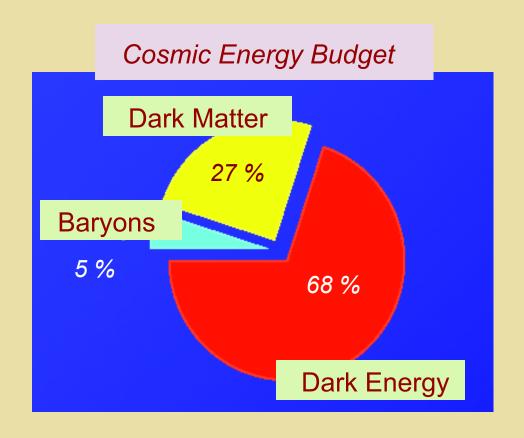
ACFI Workshop, Amherst January 2015

Goals for this talk

- Set the context for the workshop: What are key scientific questions & how do they fit in the broader context?
- Illustrate the broader implications of present & prospective EDM searches
- Introduce terminology & notation
- Pose questions for hadronic structure theory

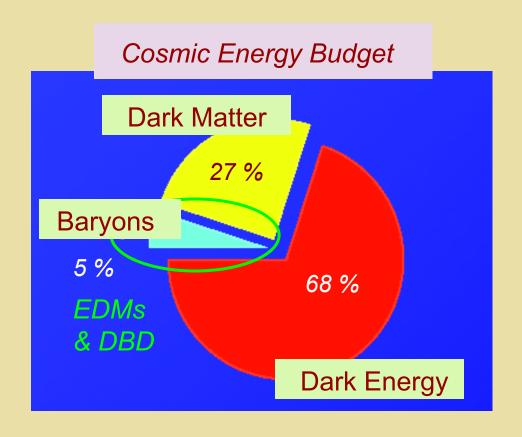
Outline

- I. The BSM & NP context
- II. Electric dipole moments
- III. Questions for hadronic structure theory
- IV. Outlook


I. The BSM & NP Context

Scientific Questions

2007 NSAC LRP:


- What are the masses of neutrinos and how have they shaped the evolution of the universe?
- Why is there more matter than antimatter in the present universe?
- What are the unseen forces that disappeared from view as the universe cooled?

The Origin of Matter

Explaining the origin, identity, and relative fractions of the cosmic energy budget is one of the most compelling motivations for physics beyond the Standard Model

The Origin of Matter

Explaining the origin, identity, and relative fractions of the cosmic energy budget is one of the most compelling motivations for physics beyond the Standard Model

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

Standa	rd Mo	idel

BSM

• B violation (sphalerons)

/

C & CP violation

×

/

 Out-of-equilibrium or CPT violation

×

1

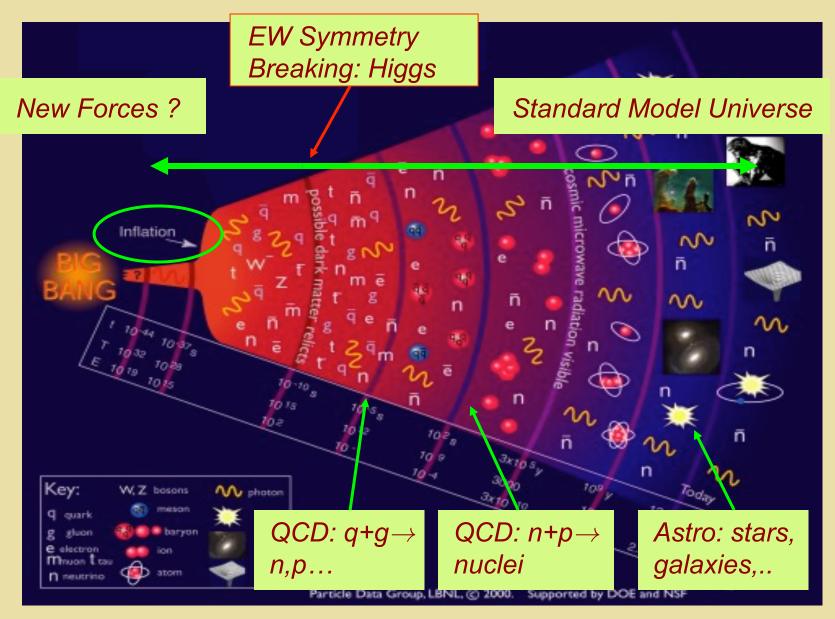
Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

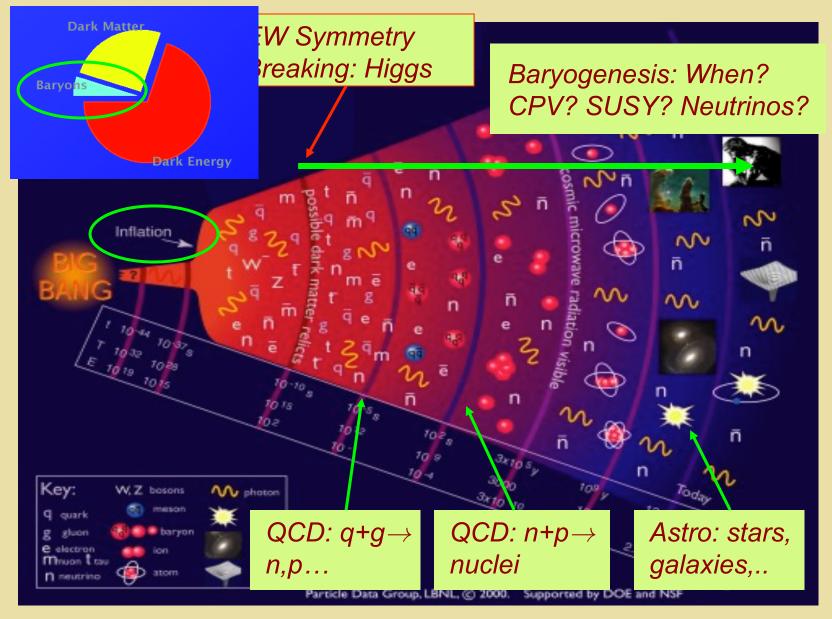
BSM

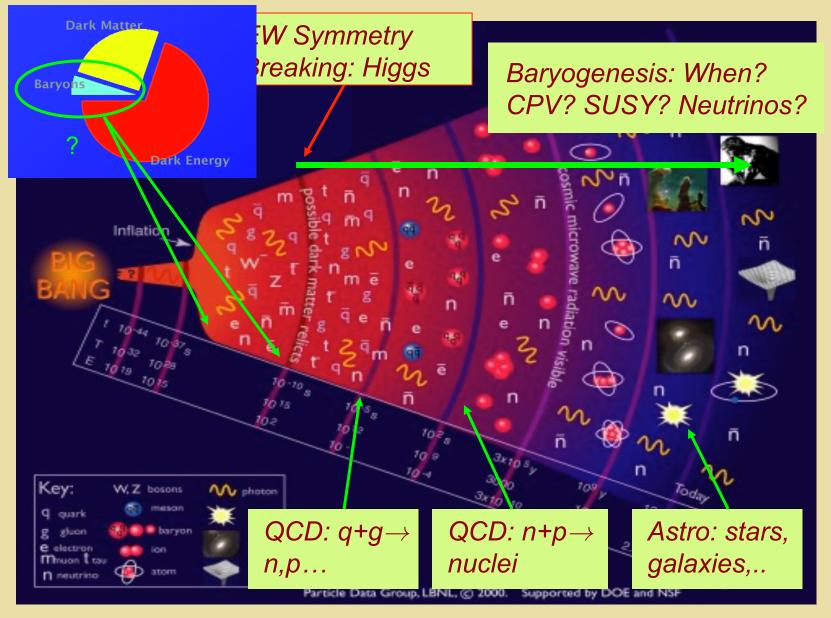
Standard Model

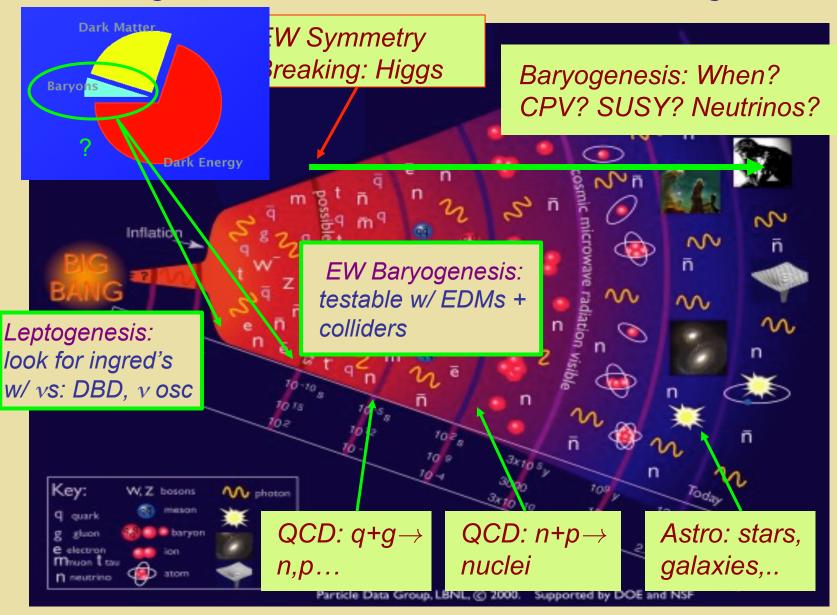
B violation (sphalerons)	✓	✓
C & CP violation	*	✓
 Out-of-equilibrium or CPT violation 	*	~

Scenarios: leptogenesis, EW baryogenesis. Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...


Testable
Standard Model BSM


V ...


×



- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

Recent Results

• Discovery of BEH-like scalar at the LHC

Non-observation (so far) of sub-TeV particles at LHC

New stringent limits on EDMs

Recent Results

- Discovery of BEH-like scalar at the LHC
 - Idea of φ-driven spontaneous EW symmetry breaking is likely correct
- Non-observation (so far) of sub-TeV particles at LHC
 - Sub-TeV BSM spectrum is compressed
 - Sub-TeV BSM is purely EW or Higgs portal
 - BSM physics lies at very different mass scale
- New stringent limits on EDMs
 - BSM CPV lies at high mass scale
 - BSM CPV doesn't talk directly to SM fermions
 - BSM CPV is flavor non-diagonal

II. Electric Dipole Moments

- Discovery potential & interpretation: need for searches in multiple systems
- Benchmark sensitivities: three examples
- Challenges & opportunities for hadronic & manybody theory

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 -31	10 ⁻²⁶

^{* 95%} CL ** e-equivalent

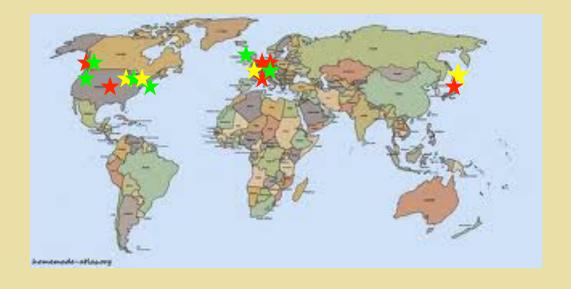
EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 - ³¹	10 ⁻²⁶

^{* 95%} CL ** e-equivalent

Mass Scale Sensitivity

$$\psi$$
 φ $\sin\phi_{\rm CP} \sim 1 \to M > 5000~{
m GeV}$ ψ φ $M < 500~{
m GeV} \to \sin\phi_{\rm CP} < 10^{-2}$


$$\sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$$

$$M < 500 \text{ GeV} \rightarrow \sin\phi_{CP} < 10^{-3}$$

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10-28
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e- equivalent

- * neutron
- proton& nuclei
- * atoms

~ 100 x better sensitivity

Not shown: muon

Why Multiple Systems?

Why Multiple Systems?

Multiple sources & multiple scales

EDM Interpretation & Multiple Scales Collider Searches Baryon Asymmetry Particle spectrum; also **BSM CPV Early universe CPV** scalars for baryon asym SUSY, GUTs, Extra Dim... Energy Scale **QCD Matrix Elements Nuclear & atomic MEs** Schiff moment, other P- & d_n , $g_{\pi NN}$, ... T-odd moments, e-nucleus **Expt CPV** 24

Effective Operators: The Bridge

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{ar{ heta}} + \mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}$$

$$\mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}} = \frac{1}{\Lambda^2} \sum_{i} \alpha_i^{(n)} O_i^{(6)} + \dots$$

EDM Interpretation & Multiple Scales **Collider Searches Baryon Asymmetry BSM CPV** Particle spectrum; also **Early universe CPV** scalars for baryon asym SUSY, GUTs, Extra Dim... Energy Scale d= 6 Effective Operators: "CPV Sources" fermion EDM, quark chromo EDM, 3 gluon, 4 fermion **QCD Matrix Elements Nuclear & atomic MEs** Schiff moment, other P- & d_n , $g_{\pi NN}$, ... T-odd moments, e-nucleus **Expt CPV** 26

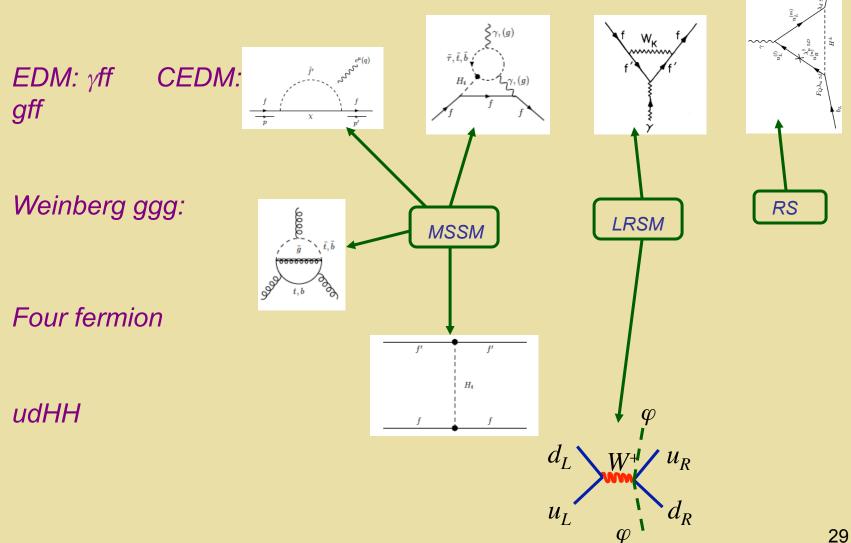
Wilson Coefficients: Summary

$\delta_{\!f}$	fermion EDM	(3)
$oldsymbol{\widetilde{\delta}}_q$	quark CEDM	(2)
C̃ _G	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$oldsymbol{C}_{arphi}$ ud	induced 4f	(1)

12 total +
$$\overline{\theta}$$

light flavors only (e,u,d)

Wilson Coefficients: Summary


$\delta_{\!f}$	fermion EDM	(3)
$oldsymbol{\widetilde{\delta}}_q$	quark CEDM	(2)
C̃ _G	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$oldsymbol{C}_{arphi}$ ud	induced 4f	(1)

12 total +
$$\overline{\theta}$$

light flavors only (e,u,d)

Complementary searches needed

BSM Origins

Complementarity: Three Illustrations

- CPV in an extended scalar sector (2HDM): "Higgs portal CPV"
- Weak scale baryogenesis (MSSM)
- Model-independent

Higgs Portal CPV

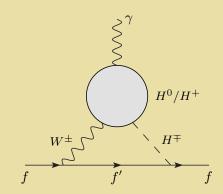
Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6.7} = 0$ for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right]$$
$$- \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

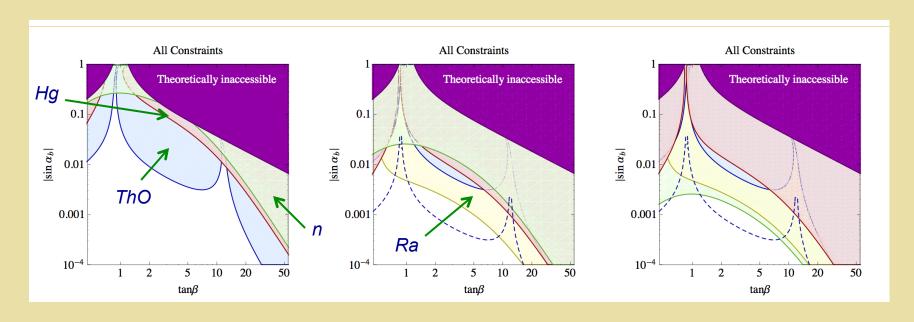
$$\delta_1 = \text{Arg} \left[\lambda_5^* (m_{12}^2)^2 \right] ,$$


$$\delta_2 = \text{Arg} \left[\lambda_5^* (m_{12}^2) v_1 v_2^* \right]$$

EWSB

$$\delta_2 \approx \frac{1 - \left| \frac{\lambda_5 v_1 v_2}{m_{12}^2} \right|}{1 - 2 \left| \frac{\lambda_5 v_1 v_2}{m_{12}^2} \right|} \delta_1$$

Viable EWB & CPV:


- EDMs are 2-loop
- CPV is flavor non-diag

Future Reach: Higgs Portal CPV

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

Present

 $\sin \, \alpha_{\rm b}$: CPV scalar mixing

Future:

 $d_n \times 0.1$

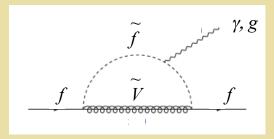
 $d_A(Hg) \times 0.1$

 $d_{ThO} \times 0.1$

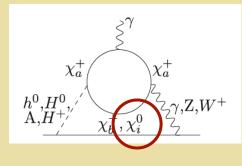
 $d_A(Ra)$

Future:

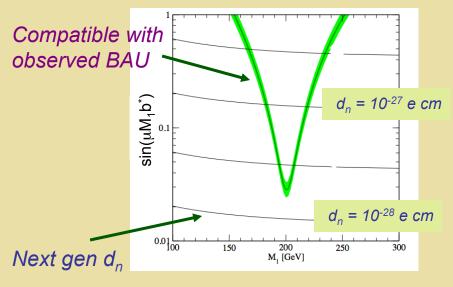
 $d_n \times 0.01$


 $d_A(Hg) \times 0.1$

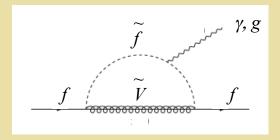
 $d_{ThO} \times 0.1$

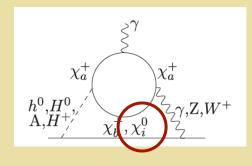

 $d_{A}(Ra)$

Inoue, R-M, Zhang: 1403.4257

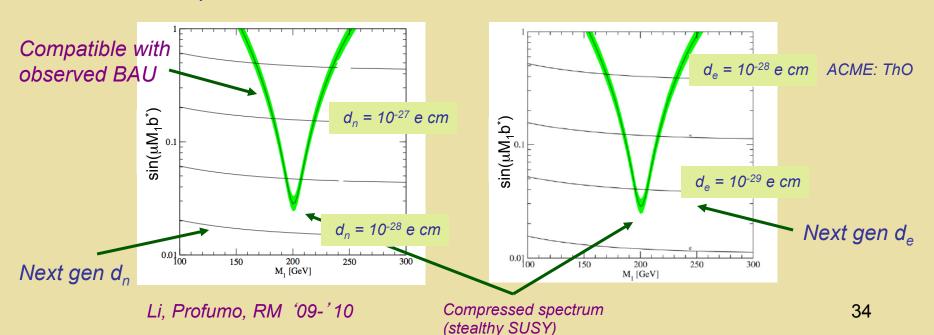

EDMs & EW Baryogenesis: MSSM

Heavy sfermions: LHC consistent & suppress 1-loop EDMs


Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases


 $d_e = 10^{-28} e cm$ ACME: ThO $d_e = 10^{-29} e cm$ Next gen d_e

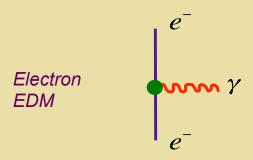
Li, Profumo, RM '09-'10


EDMs & EW Baryogenesis: MSSM

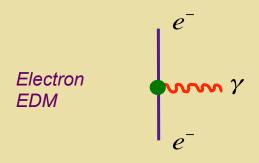
Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

Wilson Coefficients: Model Independent


$\delta_{\!f}$	fermion EDM	(3)
$oldsymbol{\widetilde{\delta}}_q$	quark CEDM	(2)
C̃ _G	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$C_{arphi ud}$	induced 4f	(1)

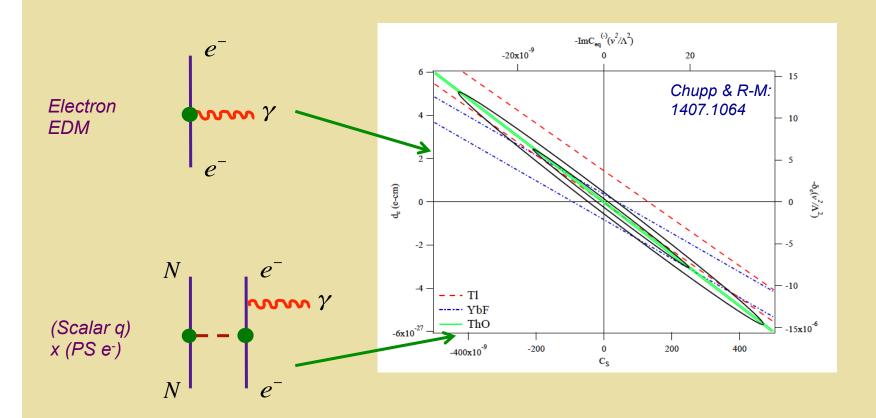
12 total +
$$\overline{\theta}$$

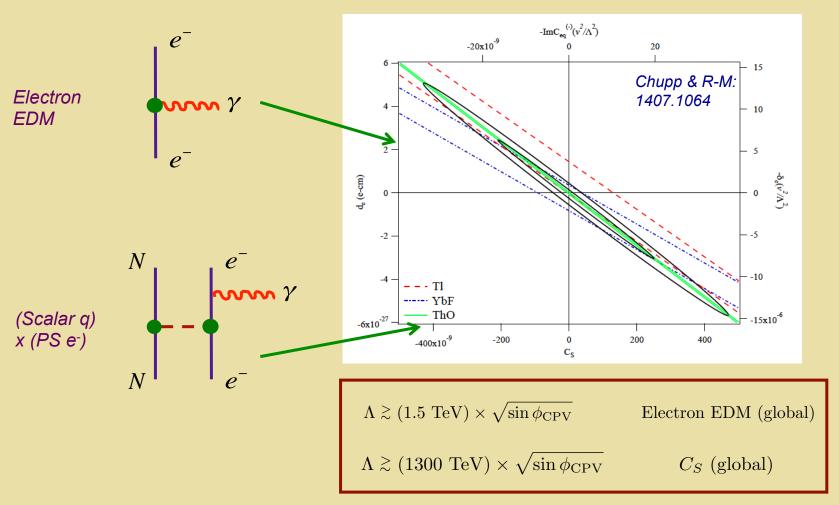

light flavors only (e,u,d)

Global Analysis: Input

System	Year/ref	Result	
	Par	ramagnetic systemss	
Cs	1989 [37]	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	e cm
		$d_e = (-1.5 \pm 5.6) \times 10^{-26}$	$e\mathrm{cm}$
Tl	2002 [9]	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	$e\mathrm{cm}$
		$d_e = (6.9 \pm 7.4) \times 10^{-28}$	$e\mathrm{cm}$
YbF	2011 [8]	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	e cm
		_	
ThO	2014 [7]	$\omega^{NE} = 2.6 \pm 5.8$	mrad/s
		$d_e = (-2.1 \pm 4.5) \times 10^{-29}$	$e\mathrm{cm}$
		$C_S = (-1.3 \pm 3.0) \times 10^{-9}$	
Diamagnetic systems			
¹⁹⁹ Hg	2009 [5]	$d_A = (0.49 \pm 1.5) \times 10^{-29}$	e cm
$^{129}\mathrm{Xe}$	2001 [38]	$d_A = (0.7 \pm 3) \times 10^{-27}$	e cm
TlF	2000 [39]	,	e cm
neutron	2006 [4]	$d_n = (0.2 \pm 1.7) \times 10^{-26}$	e cm

$$N$$
 e^{-}
 $(Scalar\ q)$
 $x\ (PS\ e^{-})$
 N
 e^{-}

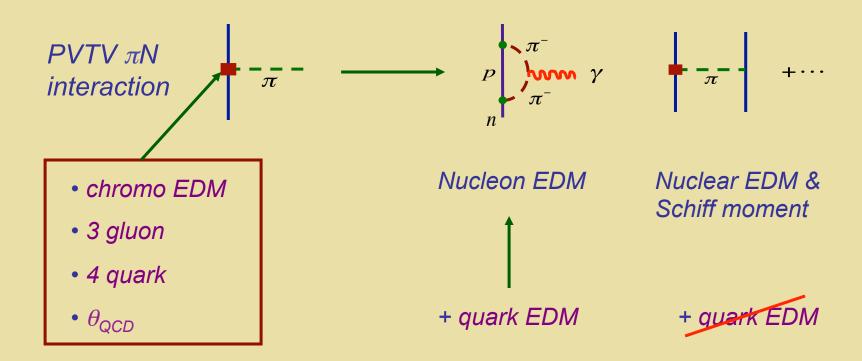

$$d_f = -(1.13 \times 10^{-3} e \, \text{fm}) \left(\frac{v}{\Lambda}\right)^2 \, Y_f \delta_f$$


(Scalar q)
$$x \text{ (PS e-)}$$

$$N \qquad e^{-}$$

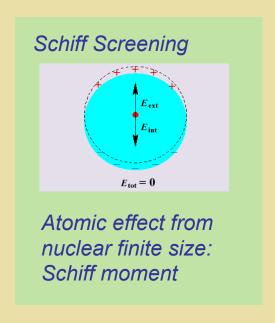
$$C_S^{(0)} = -g_S^{(0)} \left(\frac{v}{\Lambda}\right)^2 \left(\operatorname{Im} C_{eq}^{(-)}\right)$$

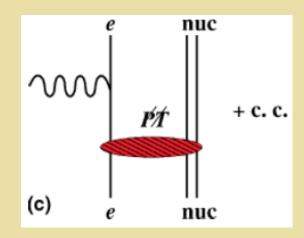
$$C_S^{(0)} = -g_S^{(0)} \left(\frac{v}{\Lambda}\right)^2 \left(\text{Im } C_{eq}^{(-)}\right)$$



TI, YbF, ThO...

Global Analysis: Diamagnetic Systems


System	Year/ref	Result				
Paramagnetic systemss						
Cs		$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	e cm			
		$d_e = (-1.5 \pm 5.6) \times 10^{-26}$	$e\mathrm{cm}$			
Tl	2002 [9]	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	e cm			
		$d_e = (6.9 \pm 7.4) \times 10^{-28}$	$e\mathrm{cm}$			
YbF	2011 [8]	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	e cm			
ThO	2014 [7]	$\omega^{NE} = 2.6 \pm 5.8$	mrad/s			
		$d_e = (-2.1 \pm 4.5) \times 10^{-29}$	e cm			
		$C_S = (-1.3 \pm 3.0) \times 10^{-9}$				
Diamagnetic systems						
¹⁹⁹ Hg	2009 [5]	$d_A = (0.49 \pm 1.5) \times 10^{-29}$	e cm			
$^{129}\mathrm{Xe}$	2001 [38]	$d_A = (0.7 \pm 3) \times 10^{-27}$	e cm			
TlF		$d = (-1.7 \pm 2.9) \times 10^{-23}$	e cm			
neutron	2006 [4]	$d_n = (0.2 \pm 1.7) \times 10^{-26}$	e cm			


Hadronic CPV: Nucleons, Nuclei, Atoms

Neutron, proton & light nuclei (future), diamagnetic atoms

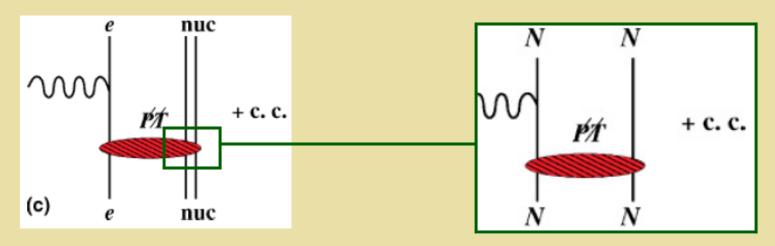
Diamagnetic Systems: P- & T-Odd Moments

Schiff moment, MQM,...

EDMs of diamagnetic atoms (199Hg)

Diamagnetic Systems

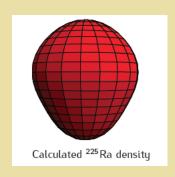
Nuclear Moments


Diamagnetic Systems

Nuclear Moments

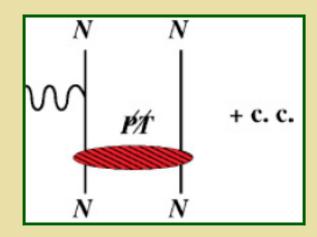
Nuclear Schiff Moment

Nuclear Enhancements


Schiff moment, MQM,...

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

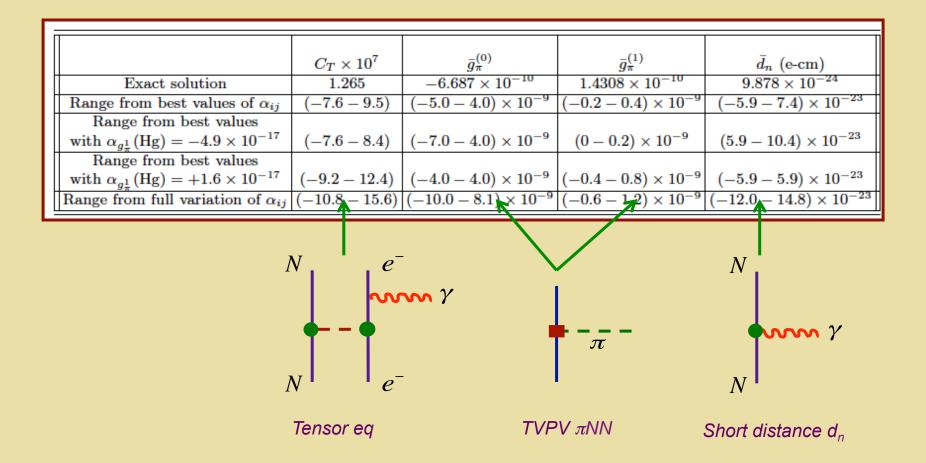
EDMs of diamagnetic atoms (199Hg)


Nuclear Schiff Moment

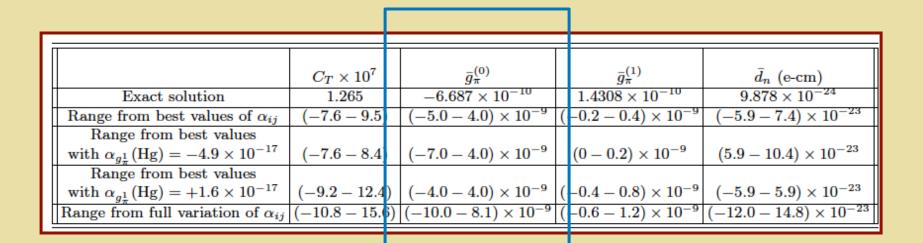
Nuclear Enhancements: Octupole Deformation

$$|\pm\rangle = \frac{1}{\sqrt{2}} (| \bigcirc \rangle \pm | \bigcirc \rangle)$$

Opposite parity states mixed by H^{TVPV}


Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

"Nuclear amplifier"


EDMs of diamagnetic atoms (²²⁵Ra)

Thanks: J. Engel

Diamagnetic Global Fit

Diamagnetic Global Fit

Isoscalar CEDM

$$\tilde{\delta}_q^{(+)} \left(\frac{v}{\Lambda}\right)^2 \lesssim 0.01 \qquad \Lambda \gtrsim (2 \text{ TeV}) \times \sqrt{\sin \phi_{\text{CPV}}}$$

Caveat: Large hadronic uncertainty

Chupp & R-M: 1407.1064

Hadronic Matrix Elements

$$d_{N} = \alpha_{N} \,\bar{\theta} + \left(\frac{v}{\Lambda}\right)^{2} \sum_{k} \beta_{N}^{(k)} \operatorname{Im} C_{k},$$

$$\bar{g}_{\pi}^{(i)} = \lambda_{(i)} \,\bar{\theta} + \left(\frac{v}{\Lambda}\right)^{2} \sum_{k} \gamma_{(i)}^{(k)} \operatorname{Im} C_{k},$$

$$\bar{C}_{i} = \kappa_{i} \,\bar{\theta} + \left(\frac{v}{\Lambda}\right)^{2} \sum_{k} \delta_{i}^{(k)} \operatorname{Im} C_{k},$$

$$\left(\frac{v}{\Lambda}\right)^2 \left[\beta_N^{qG} \operatorname{Im} C_{qG} + \beta_N^{q\gamma} \operatorname{Im} C_{q\gamma}\right] = e \,\tilde{\rho}_N^q \,\tilde{d}_q + \rho_N^q \,d_q = \left(\frac{v}{\Lambda}\right)^2 \left[e \,\tilde{\zeta}_N^q \,\tilde{\delta}_q + e \,\zeta_N^q \,\delta_q\right],$$

$$\left(\frac{v}{\Lambda}\right)^2 \left[\gamma_{(i)}^{qG} \operatorname{Im} C_{qG} + \gamma_{(i)}^{q\gamma} \operatorname{Im} C_{q\gamma}\right] = \tilde{\omega}_{(i)}^q \,\tilde{d}_q + \omega_{(i)}^q \,d_q = \left(\frac{v}{\Lambda}\right)^2 \left[\tilde{\eta}_{(i)}^q \,\tilde{\delta}_q + \eta_{(i)}^q \,\delta_q\right].$$

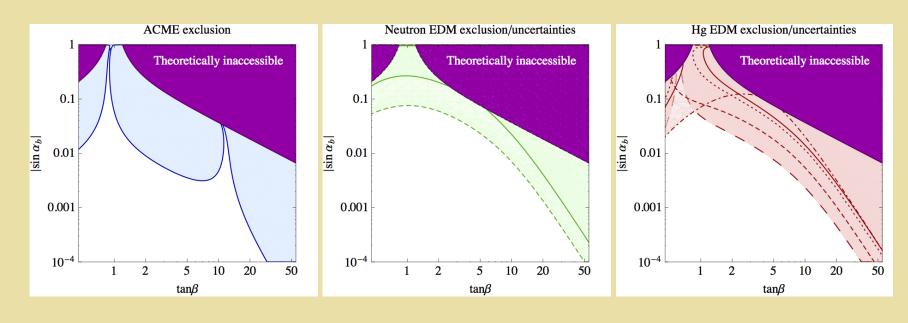
Hadronic Matrix Elements

Param	Coeff	Best value ^a	Range
$ar{ heta}$	$lpha_n \ lpha_p$	0.002 0.002	(0.0005-0.004) (0.0005-0.004)
Im C _{qG}	$eta_n^{uG} eta_n^{dG}$	4×10^{-4} 8×10^{-4}	$(1-10) \times 10^{-4}$ $(2-18) \times 10^{-4}$
$ ilde{d}_q$	$e ilde{ ho}^u_n \ e ilde{ ho}^d_n$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)
$ ilde{\delta}_q$	$e\tilde{\zeta}_n^u$ $e\tilde{\zeta}_n^d$	8.2×10^{-9} 16.3×10^{-9}	$(2-20) \times 10^{-9}$ $(4-40) \times 10^{-9}$
Im C _{q\gamma}	$eta_n^{u\gamma} eta_n^{d\gamma} eta_n^{d\gamma}$	0.4×10^{-3} -1.6×10^{-3}	$(0.2 - 0.6) \times 10^{-3}$ - $(0.8 - 2.4) \times 10^{-3}$
d_q	$ ho_n^u ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1
δ_q	ζ ^u ζ ^d ζ ^d	8.2×10^{-9} -33×10^{-9}	$(4-12) \times 10^{-9}$ - $(16-50) \times 10^{-9}$
$C_{ ilde{G}}$	$oldsymbol{eta}_n^{ ilde{G}}$	2×10^{-7}	$(0.2-40) \times 10^{-7}$
$\operatorname{Im} C_{\varphi ud}$	$oldsymbol{eta}_{n}^{arphi ud}$	3×10^{-8}	$(1-10) \times 10^{-8}$
$\operatorname{Im} C_{quqd}^{(1,8)}$	$oldsymbol{eta}_{n}^{quqd}$	40×10^{-7}	$(10-80) \times 10^{-7}$
$\operatorname{Im} C_{eq}^{(-)}$	$g_{\rm S}^{(0)}$	12.7	11-14.5
Im C _{eq} ⁽⁺⁾	g _S ⁽¹⁾	0.9	0.6-1.2

Hadronic Matrix Elements

Param	Coeff	Best value ^a	Range
$ar{ heta}$	$lpha_n \ lpha_p$	0.002 0.002	(0.0005-0.004) (0.0005-0.004)
Im C _{qG}	$eta_n^{uG} eta_n^{dG}$	4×10^{-4} 8×10^{-4}	$(1-10) \times 10^{-4}$ $(2-18) \times 10^{-4}$
$ ilde{d}_q$	$e ilde{ ho}^u_n \ e ilde{ ho}^d_n$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)
$ ilde{\delta}_q$ (CEDM)	$e\tilde{\zeta}_{n}^{u}$ $e\tilde{\zeta}_{n}^{d}$	8.2×10^{-9} 16.3×10^{-9}	$(2-20) \times 10^{-9}$ $(4-40) \times 10^{-9}$
Im C _{qy}	$eta_n^{u\gamma} eta_n^{d\gamma}$	0.4×10^{-3} -1.6×10^{-3}	$(0.2 - 0.6) \times 10^{-3}$ - $(0.8 - 2.4) \times 10^{-3}$
d_q	$ ho_n^u ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1
δ_q	ζ ^u ζ ^d ζ ⁿ	8.2×10^{-9} -33×10^{-9}	$(4-12) \times 10^{-9}$ - $(16-50) \times 10^{-9}$
$C_{ ilde{G}}$	$oldsymbol{eta}_{n}^{ ilde{G}}$	2×10^{-7}	$(0.2-40) \times 10^{-7}$
$\operatorname{Im} C_{\varphi ud}$	$oldsymbol{eta}_n^{arphi ud}$	3×10^{-8}	$(1-10) \times 10^{-8}$
$\operatorname{Im} C_{quqd}^{(1,8)}$	$oldsymbol{eta}_{n}^{quqd}$	40×10^{-7}	$(10-80) \times 10^{-7}$
$\operatorname{Im} C_{eq}^{(-)}$	$g_{S}^{(0)}$	12.7	11-14.5
Im C _{eq}	g _S ⁽¹⁾	0.9	0.6-1.2

Nuclear Matrix Elements


$$S = a_0 g \, \bar{g}_{\pi}^{(0)} + a_1 g \, \bar{g}_{\pi}^{(1)} + a_2 g \, \bar{g}_{\pi}^{(2)}$$

Nucl.	Best value			
	<i>a</i> ₀	<i>a</i> ₁	a_2	
¹⁹⁹ Hg ¹²⁹ Xe ²²⁵ Ra	0.01 -0.008 -1.5	± 0.02 -0.006 6.0	0.02 -0.009 -4.0	
Range				
a_0	<i>a</i> ₁		a_2	
0.005-0.05 -0.005-(-0.05) -1-(-6)	-0.03-(+0.09) -0.003-(-0.05) 4-24		0.01-0.06 -0.005-(-0.1) -3-(-15)	

Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

Present

 $\sin \alpha_{\rm b}$: CPV scalar mixing

III. Questions

- What is the roadmap for reducing hadronic theory uncertainties for EDMs?
- What progress can be achieved through different approaches (lattice, DSE, EFT...)? Are they complementary? If so, how?
- What are the key conceptual and/or technical challenges that must be addressed make progress?
- Are there emerging new directions that call for further theoretical progress (e.g., few-body nuclear EDMs) ?

IV. Outlook

- Searches for permanent EDMs of atoms, molecules, hadrons and nuclei provide powerful probes of BSM physics at the TeV scale and above and constitute important tests of weak scale baryogenesis
- Studies on complementary systems is essential for first finding and then disentangling new CPV
- The interpretation of diamagnetic system EDMs (including the nucleon) is plagued by substantial hadronic and nuclear many-body uncertainties
- The advancing experimental sensitivity challenges hadronic structure theory to aim for an unprecedented level of reliability