# *Ονββ* and EDMs: Energy Frontier Connections

#### M.J. Ramsey-Musolf U Mass Amherst



AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

#### http://www.physics.umass.edu/acfi/

DBD Topical Collaboration Meeting, February 2017



#### **Goals For This Talk**

- Provide some context for the heavy particle exchange mechanism for  $0\nu\beta\beta$  decay
- Discuss some recent work on the interplay of 0vββ – decay and EDM searches with energy frontier searches
- Put the need for refined hadronic and nuclear matrix element computations in the broader BSM context

#### *Ονββ-Decay: TeV Scale LNV*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{C}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

#### Benchmark Sensitivity: TeV LNV



T. Peng, MRM, P. Winslow 1508.04444

#### Future Reach: Higgs Portal CPV

#### CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$  for simplicity



| P | re | S | en | nt |
|---|----|---|----|----|
|   | _  | _ |    |    |

 $sin \alpha_b$  : CPV scalar mixing

| Future:                          | Future:                   |  |
|----------------------------------|---------------------------|--|
| d <sub>n</sub> x 0.1             | d <sub>n</sub> x 0.01     |  |
| d <sub>A</sub> (Hg) x 0.1        | d <sub>A</sub> (Hg) x 0.1 |  |
| d <sub>ThO</sub> x 0.1           | d <sub>ThO</sub> x 0.1    |  |
| d <sub>A</sub> (Ra) [10⁻²² e cm] | d <sub>A</sub> (Ra)       |  |

Inoue, R-M, Zhang: 1403.4257

4

#### **Higgs Portal CPV: EDMs & LHC**

#### CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$  for simplicity



Present

 $sin \alpha_b$  : CPV scalar mixing

| Future:                          | Future:                        |
|----------------------------------|--------------------------------|
| d <sub>n</sub> x 0.1             | <i>d<sub>n</sub></i> x 0.01    |
| d <sub>A</sub> (Hg) x 0.1        | <i>d<sub>A</sub>(Hg)</i> x 0.1 |
| d <sub>ThO</sub> x 0.1           | d <sub>ThO</sub> x 0.1         |
| d <sub>A</sub> (Ra) [10⁻²² e cm] | d <sub>A</sub> (Ra)            |

Inoue, R-M, Zhang: 1403.4257

5

#### Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

#### $\lambda_{6,7} = 0$ for simplicity



Present

# Challenge for Theory

 $sin \alpha_b$  : CPV scalar mixing

Inoue, R-M, Zhang: 1403.4257

#### **Outline**

- I. BSM Context
- II. LNV:  $0\nu\beta\beta$  Decay Mechanisms
- III. The "Standard Mechanism" : Lightning Review
- IV. TeV Scale LNV:  $0\nu\beta\beta$  Decay & the LHC
- V. EDMs & the LHC: Higgs Portal CPV
- VI. Summary
- VII. Back Up Slides: Sterile Neutrinos,  $0\nu\beta\beta$  Decay Effective Theory

## I. The BSM Context

- What is the origin of matter (luminous & dark) ?
- Why are neutrino masses so small ?
- Are fundamental interactions "natural"?



- What is the origin of matter (luminous & dark) ?
- Why are neutrino masses so small ?
- Are fundamental interactions "natural"?



- What is the origin of matter (luminous & dark) ?
- Why are neutrino masses so small ?
- Are fundamental interactions "natural"?



- What is the origin of matter (luminous & dark) ?
- Why are neutrino masses so small ?
- Are fundamental interactions "natural" ?

LNV Searches:  $0\nu\beta\beta$  Decay + ...



# How "Natural" is $m_{\nu}$ ?

| Dirac Mass:    | $m_v = y v$                                 |                                 |
|----------------|---------------------------------------------|---------------------------------|
|                | v = 246 GeV $\rightarrow$                   | <b>y ~ 10</b> <sup>-12</sup>    |
| Majorana Mass: | $m_v = y v^2 / \Lambda$                     |                                 |
|                | v = 246  GeV<br>& $y \sim O(1) \rightarrow$ | Λ <b>~ 10</b> <sup>14</sup> GeV |

#### How "Natural" is $m_{v}$ ?

| Dirac Mass:    | $m_{\nu} = y v$                             |                              |
|----------------|---------------------------------------------|------------------------------|
|                | $v$ = 246 GeV $\rightarrow$                 | <b>y ~ 10</b> <sup>-12</sup> |
| Majorana Mass: | $m_v = y v^2 / \Lambda$                     |                              |
|                | v = 246  GeV<br>& $y \sim O(1) \rightarrow$ | Λ ~ 10¹⁴ GeV                 |

#### How reliable a guide is naturalness ?

#### **BSM Physics: Where Does it Live ?**



Coupling

#### **BSM Physics: Where Does it Live ?**



#### **BSM Physics: Where Does it Live ?**



17

- What is the origin of matter (luminous & dark) ?
- Why are neutrino masses so small ?
- Are fundamental interactions "natural" ?

Discovering answers requires studies at three frontiers: energy, intensity, & cosmic.

\*Partial List

## Low-Energy / High-Energy Interplay



## Low-Energy / High-Energy Interplay



# *II. LNV: 0νββ* – *Decay Mechanisms*

# *0vββ-Decay: LNV? Mass Term?*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

## *Ονββ-Decay: LNV? Mass Term?*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana



#### *0vββ-Decay: LNV? Mass Term?*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

#### Impact of observation

- Total lepton number not conserved at classical level
- New mass scale in nature,  $\Lambda$
- Key ingredient for standard baryogenesis via leptogenesis



#### *0vββ-Decay: Mechanisms*



## III. The "Standard Mechanism"

#### *Ονββ-Decay: "Standard" Mechanism*



#### *0vββ-Decay: LNV? Mass Term?*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{C}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

#### "Standard" Mechanism

- Light Majorana mass generated at the conventional see-saw scale: Λ ~ 10<sup>12</sup> – 10<sup>15</sup> GeV
- 3 light Majorana neutrinos mediate decay process



#### *0vββ-Decay: LNV? Mass Term?*



29

#### **Neutrinos and the Origin of Matter**

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation)

 $\Gamma(N \to \ell H) \neq \Gamma(N \to \bar{\ell} H^*)$ 

• Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons

## **Neutrinos and the Origin of Matter**

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation)

 $\Gamma(N \to \ell H) \neq \Gamma(N \to \bar{\ell} H^*)$ 

• Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons

#### *0vββ-Decay: LNV? Mass Term?*



#### *0vββ-Decay* Sensitivity







# Why Might A "Ton-Scale" Exp't See It?

#### Three active light neutrinos



## Interpreting the Result


## IV. TeV-Scale LNV: $0\nu\beta\beta$ – Decay & The LHC

# Why Might A "Ton-Scale" Exp't See It?



*Two parameters: Effective coupling & effective heavy particle mass* 

# *0vββ-Decay: LNV? Mass Term?*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

### **TeV LNV Mechanism**

- Majorana mass generated at the TeV scale
  - Low-scale see-saw
  - Radiative  $m_v$
- *m<sub>MIN</sub>* << 0.01 eV but 0vββ-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange



$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

Mechanism: does light  $v_M$  exchange dominate ?



O(1) for  $\Lambda \sim TeV$ 

How to calc effects reliably ? How to disentangle H & L ? Theory Challenge: matrix elements + mechanism

$$\langle m_{v} \rangle^{EFF} = \sum_{k} \left| U_{ek} \right|^{2} m_{k} e^{2i\delta}$$



$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

#### LNV at the LHC

|            | Model                                                       | ℓ,γ             | Jets                     | Emiss  | ∫£ dt[fb | Mass limit                        |                                                  | Reference             |
|------------|-------------------------------------------------------------|-----------------|--------------------------|--------|----------|-----------------------------------|--------------------------------------------------|-----------------------|
| A          | DD G <sub>RK</sub> + g/g                                    | -               | 1-2]                     | Yes    | 4.7      | 4.37 TeV n-2                      |                                                  | 1210.4491             |
| A          | DD non-resonant (/                                          | 2e, µ           | -                        | -      | 20.3     | 5.2 TeV n - 3                     | HLZ                                              | ATLAS-CONF-2014-0     |
| A          | DD QBH → ℓq                                                 | 1 e, µ          | 1)                       | -      | 20.3     | 5.2 TeV n-6                       |                                                  | 1311.2006             |
| A A        | DD QBH                                                      | -               | 2)                       | -      | 20.3     | 5.82 TeV n-6                      |                                                  | to be submitted to PF |
|            | DD BH high Nork                                             | 2 µ (SS)        | -                        | -      | 20.3     | 5.7 TeV n - 6.                    | M <sub>D</sub> = 1.5 TeV, non-rot BH             | 1308.4075             |
| A A        | DD BH high $\sum PT$                                        | $\geq 1 e, \mu$ | ≥ 2 ]                    | -      | 20.3     | 6.2 TeV n - 6,                    | , M <sub>D</sub> = 1.5 TeV, non-rot BH           | 1405.4254             |
| R          | S1 $G_{KK} \rightarrow \ell \ell$                           | 2 e, µ          | -                        | -      | 20.3     | 2.68 TeV                          | y = 0.1                                          | 1405.4123             |
| R          | S1 $G_{KK} \rightarrow WW \rightarrow \ell \nu \ell \nu$    | 2 e, µ          | -                        | Yes    | 4.7      | 1.23 TeV k/Mp                     | n - 0.1                                          | 1208.2880             |
| B          | ulk RS $G_{KK} \rightarrow ZZ \rightarrow \ell \ell q q$    | 2 c, µ          | 2j/1J                    | -      | 20.3     | s 730 GeV k/Mp                    | n - 1.0                                          | ATLAS-CONF-2014-      |
| B          | ulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ | -               | 4 b                      | -      | 19.5     | is 590-710 GeV 🔜 k/M <sub>P</sub> | m - 1.0                                          | ATLAS-CONF-2014-      |
| B          | ulk RS gKK → tŤ                                             | 1 e, µ          | $\geq 1$ b, $\geq 1 J/2$ | 2) Yes | 14.3     | 6 2.0 TeV BR = 0                  | 0.925                                            | ATLAS-CONF-2013-      |
| 5          | <sup>1</sup> /Z <sub>2</sub> ED                             | 2 e, µ          | -                        | -      | 5.0      | 2-1 4.71 TeV                      |                                                  | 1209.2535             |
| U          | ED                                                          | 2γ              | -                        | Yes    | 4.8      | acale R <sup>-1</sup> 1.41 TeV    |                                                  | ATLAS-CONF-2012-      |
| S          | $SM Z' \rightarrow \ell\ell$                                | 2 e, µ          | -                        | -      | 20.3     | 2.9 TeV                           |                                                  | 1405.4123             |
| S          | SM $Z' \rightarrow \tau \tau$                               | 2 7             | -                        | -      | 19.5     | 1.9 ToV                           |                                                  | ATLAS-CONF-2013       |
| S          | $SM W' \rightarrow \ell r$                                  | 1 e, µ          | -                        | Yes    | 20.3     | 3.28 TeV                          |                                                  | ATLAS-CONF-2014       |
| Ð          | $GM W' \rightarrow WZ \rightarrow \ell_Y \ell' \ell'$       | 3 e, µ          | -                        | Yes    | 20.3     | 1.52 TeV                          |                                                  | 1406.4456             |
| Ð          | $GM W' \rightarrow WZ \rightarrow qq\ell\ell$               | 2 c, µ          | 2j/1J                    | -      | 20.3     | 1.59 TeV                          |                                                  | ATLAS-CONF-2014-      |
| U          | $RSM W'_R \rightarrow t\overline{b}$                        | 1 e, µ          | 2 b, 0-1 j               | Yes    | 14.3     | 1.84 TeV                          |                                                  | ATLAS-CONF-2013-      |
| U          | $RSM W'_R \rightarrow t\overline{b}$                        | 0 e, µ          | ≥ 1 b, 1 J               | -      | 20.3     | 1.77 TeV                          |                                                  | to be submitted to EI |
| C          | l qqqq                                                      | -               | 2)                       | -      | 4.8      | 7.6 TeV 7-+                       | -1                                               | 1210.1718             |
| 5 c        | 1 qqtt                                                      | 2 e, µ          | -                        | -      | 20.3     | 21                                | .6 TeV nu 1                                      | ATLAS-CONF-2014-      |
| c          | uutt                                                        | 2 e, µ (SS      | ) ≥ 1 b, ≥ 1 j           | Yes    | 14.3     | 3.3 TeV                           | 1                                                | ATLAS-CONF-2013-      |
| E          | FT D5 operator (Dirac)                                      | 0 c. u          | 1-21                     | Yes    | 10.5     | 731 GeV # 90%                     | $S_{0} CL \text{ for } m(y) < 80 \text{ GeV}$    | ATLAS-CONF-2012-      |
| E          | FT D9 operator (Dirac)                                      | 0 e. u          | 1.1<11                   | Yes    | 20.3     | 2.4 TeV # 909                     | % CL for m(y) < 100 GeV                          | 1309.4017             |
|            |                                                             |                 |                          |        |          |                                   |                                                  |                       |
| <u>َ</u>   | catar LQ 1- gen                                             | 2.0             | 2 2 1                    | -      | 1.0      | 600 GeV p-1                       |                                                  | 1112.4628             |
| 1 3        | calar LQ 2 <sup></sup> gen                                  | 1               | 16.11                    |        | 1.0      | 600 GeV p=1                       |                                                  | 1203.3172             |
|            | alar culor- gen                                             | 10, 0, 13       | 10,11                    | _      | 4.7      | 034 G6V                           |                                                  | 1303.0520             |
| W          | ector-like quark $TT \rightarrow Ht + X$                    | 1 e, µ          | ≥2b,≥4j                  | Yes    | 14.3     | 790 GeV T in (T                   | (B) doublet                                      | ATLAS-CONF-2013-      |
| 5 M        | sctor-like quark $TT \rightarrow Wb + X$                    | 1 e, µ          | ≥1b,≥3j                  | Yes    | 14.3     | 670 GeV kospi                     | n singlet                                        | ATLAS-CONF-2013       |
| S          | sctor-like quark TT → Zt + A                                | 2/≥3 e, µ       | ≥2/≥10                   | -      | 20.3     | 735 GeV 1 In (I                   | (B) doublet                                      | ATLAS-CONF-2014       |
| <b>G</b> M | ector-like quark $BB \rightarrow ZB + A$                    | 2/≥3 e, µ       | ≥2/≥1 b                  |        | 20.3     | 755 GeV Bin (E                    | B,Y) doublet                                     | ATLAS-CONF-2014       |
| v          | actor-line quark BB -> Wt + X                               | 2 c,µ (88       | ) ≥ 10, ≥ 1]             | 185    | 14.3     | 720 GeV Bin (1                    | I,D) COUCHER                                     | ALLAS-CONF-2013       |
| E E        | cited quark $q^* \rightarrow q \gamma$                      | 1γ              | 1)                       | -      | 20.3     | 3.5 TeV only u                    | r and d+, ∧ - m(q+)                              | 1309.3230             |
| -P E       | scited quark $q^* \rightarrow qg$                           | -               | 2]                       | -      | 20.3     | 4.09 TeV only u                   | i* and d*, Λ — m(q*)                             | to be submitted to P  |
| E          | cited quark $b^* \rightarrow Wt$                            | 1 or 2 e, p     | 1 b, 2 j or 1            | Yes    | 4.7      | 870 GeV kit-ha                    | unded coupling                                   | 1301.1583             |
| e E        | scited lepton $\ell^* \rightarrow \ell \gamma$              | 2 e, µ, 1 🤉     |                          | -      | 13.0     | 2.2 TeV A - 2.                    | 12 TeV                                           | 1308.1364             |
| L          | STC at $\rightarrow W_Y$                                    | 1 c. µ. 1 3     |                          | Yes    | 20.3     | 960 GeV                           |                                                  | to be submitted to P  |
| L          | RSM Majorana v                                              | 2 e, µ          | 2]                       | -      | 2.1      | 1.5 TeV m(WA                      | R) - 2 TeV, no mixing                            | 1203.5420             |
|            |                                                             |                 |                          |        |          |                                   | 0.055,  V_s =0.063,  V_r =0                      | ATLAS-CONF-2013-      |
| н          | iggs triplet $H^{++} \rightarrow \ell \ell$                 | 2 e, µ (SS      | ) –                      | -      | 4.7      | n 409 GeV DY pro                  | oduction, BR( $H^{**} \rightarrow \ell \ell$ )=1 | 1210.5070             |
|            | We observed a settled as                                    |                 |                          |        |          | DY pro                            | oduction,  g  - 4e                               | 1301.5272             |
| M          | agnetic monopoles                                           | -               | -                        | -      | 2.0      | e mass 862 GeV DY pro             | oduction,  g  - 1g <sub>D</sub>                  | 1207.6411             |
|            | -                                                           |                 |                          |        |          |                                   |                                                  |                       |

Theory Challenge: matrix elements + mechanism

$$\langle m_{v} \rangle^{EFF} = \sum_{k} \left| U_{ek} \right|^{2} m_{k} e^{2i\delta}$$







$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana



$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana



$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

### General Classification: Helo et al, PRD 88.011901, 88.073011



45

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana



$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

## **Other Models: Back Up Slides**

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

### What can we learn from the LHC?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

LHC Production



LHC: 
$$pp \rightarrow jj e^-e^-$$



LHC:  $pp \rightarrow jjj e^-e^-$ 

49

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

### LHC Production & $0\nu\beta\beta$ -Decay



Helo et al, PRD 88.011901, 88.073011



 $e^{-}$ 

 $e^{-}$ 

u

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

**Illustrative Simplified** 

 $\mathcal{L}_{\text{eff}} = C_1 \bar{Q}_L^{\alpha} d_{R\alpha} D + C_2 \epsilon^{ij} \bar{L}_L^i F D^{*j}$ 

-1/6 -1/3 1/2

Majorana

LHC:  $pp \rightarrow jj e^-e^-$ 



d

 $\partial \nu \beta \beta$  - decay

 $D^{T} = (S^{+}, S^{0})$ 

Model:

Υ

1/2 0 -1/2

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
Dirac
Majorana
Helo et al claim:
$$\mathcal{L}_{\text{eff}} = C_1 \bar{Q}_L^\alpha d_{R\alpha} D + C_2 \epsilon^{ij} \bar{L}_L^i F D^{*j}}_{Y - 1/6 - 1/3 1/2} \frac{1/2 0 - 1/2}{1/2 0 - 1/2}$$

$$\int_{C_j} \left( \int_{0}^{10} \int$$





$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana



### **TeV Scale LNV**

Can it be discovered with combination of  $0\nu\beta\beta$  & LHC searches ?

Simplified models

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana





### **TeV Scale LNV**

Effective operators:

$$\begin{split} \mathcal{L}_{\mathrm{LNV}}^{\mathrm{eff}} &= \frac{C_1}{\Lambda^5} \mathcal{O}_1 + \mathrm{h.c.} \\ \mathcal{O}_1 &= \bar{Q} \tau^+ d \bar{Q} \tau^+ d \bar{L} L^C \end{split}$$

$$g_{\rm eff} = C_1(\Lambda)^{1/4}$$

56

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

Our reanalysis:

- Include backgrounds
- Incorporate QCD running
- Include long-distance contributions to nuclear matrix elements

T. Peng, MJRM, P. Winslow, 1508.04444

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

Backgrounds:

- Charge flip
- Jet faking electron

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{C}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

Backgrounds:

- Charge flip
- Jet faking electron



e<sup>+</sup> transfers most of  $p_T$  to conversion e<sup>-</sup>; Z /  $\gamma^*$  + jets  $\rightarrow$  apparent e<sup>-</sup> e<sup>-</sup> jj event

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

Backgrounds:

- Charge flip
- Jet faking electron



 $e^+$  transfers most of  $p_T$  to conversion  $e^-$ ; b's not tagged  $\rightarrow$  apparent  $e^- e^-$  jj event 60

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

**Backgrounds:** Bin in  $\eta$  and apply charge flip prob



61



$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

Backgrounds: Cuts

- $H_T$
- MET
- M<sub>//</sub>

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac

Majorana

### Backgrounds: Cuts

| $\sigma(\mathbf{fb})$                              | Signal |             | $\frac{s}{\sqrt{s+B}}$ ( $\sqrt{fb}$ ) |       |                 |                 |                 |                    |          |         |        |
|----------------------------------------------------|--------|-------------|----------------------------------------|-------|-----------------|-----------------|-----------------|--------------------|----------|---------|--------|
|                                                    |        | Diboson     |                                        |       | Charge Flip     |                 | Jet Fake        |                    |          |         |        |
|                                                    |        | $W^-W^-+2j$ | $W^-Z+2j$                              | ZZ+2j | $Z/\gamma^*+2j$ | $t\overline{t}$ | $t\overline{t}$ | $\overline{t}$ +3j | $W^-+3j$ | 4j      |        |
| Before Cuts                                        | 0.142  | 0.541       | 6.682                                  | 0.628 | 903.16          | 68.2            | 6.7             | 0.45               | 15.09    | 362.352 | 0.0038 |
| Signal Selection                                   | 0.091  | 0.358       | 4.66                                   | 0.435 | 721.7           | 28.9            | 2.37            | 0.22               | 11.73    | 72.03   | 0.0031 |
| $H_T(\text{jets}) > 650 \text{ GeV}$               | 0.054  | 0.04        | 0.187                                  | 0.015 | 5.6             | 0.266           | 0.025           | 0.0003             | 0.102    | 0.027   | 0.0213 |
| $m_{\ell_1 \ell_2} > 130 \text{ GeV}$              | 0.039  | 0.029       | 0.105                                  | 0.008 | 0.163           | 0.127           | 0.024           | $3x10^{-4}$        | 0.101    | 0.027   | 0.0493 |
| $E_T < 40 \text{ GeV}$                             | 0.036  | 0.005       | 0.036                                  | 0.007 | 0.126           | 0.014           | 0.005           | $3x10^{-5}$        | 0.03     | 0.017   | 0.0684 |
| $(\eta_{j_{1,2}} - \eta_{\ell_{1,2}})_{max} < 2.2$ | 0.033  | 0.003       | 0.022                                  | 0.005 | 0.093           | 0.009           | 0.004           | $2x10^{-5}$        | 0.019    | 0.011   | 0.0738 |



$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

### Low energy: QCD Running

Dirac

$$\begin{aligned} \mathcal{O}_1 &= (\bar{u}_L d_R)(\bar{u}_L d_R)(\bar{e}_L e_R^c),\\ \mathcal{O}_2 &= (\bar{u}_L \sigma^{\mu\nu} d_R)(\bar{u}_L \sigma_{\mu\nu} d_R)(\bar{e}_L e_R^c),\\ \mathcal{O}_3 &= (\bar{u}_L t^a d_R)(\bar{u}_L t^a d_R)(\bar{e}_L e_R^c),\\ \mathcal{O}_4 &= (\bar{u}_L t^a \sigma^{\mu\nu} d_R)(\bar{u}_L t^a \sigma_{\mu\nu} d_R)(\bar{e}_L e_R^c). \end{aligned}$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

### Low energy: QCD Running

 $\begin{aligned} \mathcal{O}_1 &= (\bar{u}_L d_R) (\bar{u}_L d_R) (\bar{e}_L e_R^c), \\ \mathcal{O}_2 &= (\bar{u}_L \sigma^{\mu\nu} d_R) (\bar{u}_L \sigma_{\mu\nu} d_R) (\bar{e}_L e_R^c), \\ \mathcal{O}_3 &= (\bar{u}_L t^a d_R) (\bar{u}_L t^a d_R) (\bar{e}_L e_R^c), \\ \mathcal{O}_4 &= (\bar{u}_L t^a \sigma^{\mu\nu} d_R) (\bar{u}_L t^a \sigma_{\mu\nu} d_R) (\bar{e}_L e_R^c). \end{aligned}$ 

$$\gamma^{ij} = -\frac{\alpha_s}{2\pi} \begin{pmatrix} 8 & 0 & 0 & 1\\ 0 & -8/3 & 48 & 0\\ 0 & 2/9 & -1 & 5/12\\ 32/3 & 0 & 20 & 19/3 \end{pmatrix}$$

$$\mathcal{L}_{\text{eff}} = \sum_{j} \frac{C_j(\mu)}{\Lambda^5} \mathcal{O}_j(\mu) + h.c.,$$

$$\mu \frac{d}{d\mu} C = \gamma^T C$$

67

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

#### Low energy: QCD Running

 $\begin{aligned} \mathcal{O}_1 &= (\bar{u}_L d_R) (\bar{u}_L d_R) (\bar{e}_L e_R^c), \\ \mathcal{O}_2 &= (\bar{u}_L \sigma^{\mu\nu} d_R) (\bar{u}_L \sigma_{\mu\nu} d_R) (\bar{e}_L e_R^c), \\ \mathcal{O}_3 &= (\bar{u}_L t^a d_R) (\bar{u}_L t^a d_R) (\bar{e}_L e_R^c), \\ \mathcal{O}_4 &= (\bar{u}_L t^a \sigma^{\mu\nu} d_R) (\bar{u}_L t^a \sigma_{\mu\nu} d_R) (\bar{e}_L e_R^c). \end{aligned}$ 

Assuming  $C_k = 1$  at  $\mu = 5$  GeV  $\rightarrow$ Effective DBD amplitude for  $O_1$ substantially weaker for given LHC constraints





Low energy: Nuclear Matrix Elements: Long Range Effects



Exploit Chiral Symmetry & EFT ideas



*Low energy:* Nuclear Matrix Elements: Long Range Effects



Our work

Helo et al

Exploit Chiral Symmetry & EFT ideas

Putting the pieces together

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

### Benchmark Sensitivity: TeV LNV



T. Peng, MRM, P. Winslow 1508.04444
#### *0vββ-Decay: TeV Scale LNV*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$



#### *Ονββ-Decay: TeV Scale LNV*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$



#### *0vββ-Decay: TeV Scale LNV*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$



#### *Ονββ-Decay: TeV Scale LNV*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$



#### $0v\beta\beta$ -Decay: TeV Scale LNV & $m_v$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
Dirac
Majorana

Implications for  $m_{v}$ :





Schecter-Valle: non-vanishing Majorana mass at (multi) loop level Simplified model: possible (larger) one loop Majorana mass 77

#### $0v\beta\beta$ -Decay: TeV Scale LNV & $m_v$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

Implications for  $m_{v}$ :



A hypothetical scenario

# *0vββ / LHC Interplay: Matrix Elements*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$









# V. EDMs & the LHC: Higgs Portal CPV

# $d_n \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$

$$d_n \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$$
  
 $d_n^{CKM} = (1 - 6) \times 10^{-32} \text{ e cm}$   
C. Seng arXiv: 1411 1476

# $d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times y_f F$

$$d \sim (10^{-16} \text{ e cm}) \times (v / \Lambda)^2 \times [\sin \phi] \times y_f F$$
  
CPV Phase: large enough for baryogenesis ?

$$d \sim (10^{-16} \text{ e cm}) x (v / \Lambda)^2 x \sin \phi x y_f F$$
  
BSM mass scale: TeV ? Much higher ?

# $d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times y_f F$

BSM dynamics: perturbative? Strongly coupled?

 $d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times y_f F$ 

BSM dynamics: perturbative? Strongly coupled?

Hadronic & atomic systems: reliable SM calc's?





- Baryon asymmetry
- High energy collisions
- EDMs

Cosmic Frontier Energy Frontier Intensity Frontier EDM/LHC Complementarity

# The Higgs Portal



# **Higgs Portal CPV**

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6,7} = 0$  for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[ \lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] \\ - \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[ m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

 $\ H^{\mp}$ 



 $W^{\pm}$ 

92

### Future Reach: Higgs Portal CPV

#### CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$  for simplicity



| P | re | se | eni | t |
|---|----|----|-----|---|
|   |    |    |     |   |

 $sin \alpha_b$  : CPV scalar mixing

| Future:                                          | Future:                        |
|--------------------------------------------------|--------------------------------|
| <i>d<sub>n</sub></i> x 0.1                       | <i>d<sub>n</sub></i> x 0.01    |
| <i>d<sub>A</sub>(Hg)</i> x 0.1                   | <i>d<sub>A</sub>(Hg)</i> x 0.1 |
| d <sub>ThO</sub> x 0.1                           | d <sub>ThO</sub> x 0.1         |
| <i>d<sub>A</sub>(Ra) [10<sup>-27</sup> e cm]</i> | d <sub>A</sub> (Ra)            |

Inoue, R-M, Zhang: 1403.4257

93

### **Higgs Portal CPV: EDMs & LHC**

#### CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$  for simplicity



Present

 $sin \alpha_b$  : CPV scalar mixing

| Future:                          | Future:                   |
|----------------------------------|---------------------------|
| d <sub>n</sub> x 0.1             | d <sub>n</sub> x 0.01     |
| d <sub>A</sub> (Hg) x 0.1        | d <sub>A</sub> (Hg) x 0.1 |
| d <sub>ThO</sub> x 0.1           | d <sub>ThO</sub> x 0.1    |
| d <sub>A</sub> (Ra) [10⁻²² e cm] | d <sub>A</sub> (Ra)       |

94

### **Higgs Portal CPV: EDMs & LHC**

#### CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$  for simplicity



Present

 $sin \alpha_b$  : CPV scalar mixing

 Future:
 Future:

  $d_n \ge 0.1$   $d_n \ge 0.01$ 
 $d_A(Hg) \ge 0.1$   $d_A(Hg) \ge 0.1$ 
 $d_{ThO} \ge 0.1$   $d_{ThO} \ge 0.1$ 
 $d_A(Ra) [10^{-27} e cm]$   $d_A(Ra)$ 

Inoue, R-M, Zhang: 1403.4257

95

### **Higgs Portal CPV: EDMs & LHC**

#### CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$  for simplicity



Present

 $sin \alpha_b$  : CPV scalar mixing

| Future:                   |
|---------------------------|
| d <sub>n</sub> x 0.01     |
| d <sub>A</sub> (Hg) x 0.1 |
| d <sub>ThO</sub> x 0.1    |
| d <sub>A</sub> (Ra)       |
|                           |

Inoue, R-M, Zhang: 1403.4257

96

### Low-Energy / High-Energy Interplay

#### **Higgs Portal CPV**



### Hadronic & Nuclear Matrix Elements

# Hadronic Matrix Elements

| Param                                | Coeff                                                                            | Best value <sup>a</sup>                                       | Range                                                      |
|--------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|
| θ                                    | $lpha_n lpha_p$                                                                  | 0.002<br>0.002                                                | (0.0005-0.004)<br>(0.0005-0.004)                           |
| Im C <sub>qG</sub>                   | $egin{smallmatrix} eta_n^{uG} \ eta_n^{dG} \ eta_n^{dG} \end{split}$             | $\begin{array}{l} 4\times10^{-4}\\ 8\times10^{-4}\end{array}$ | $(1 - 10) \times 10^{-4}$<br>$(2 - 18) \times 10^{-4}$     |
| $\tilde{d}_q$                        | $e	ilde{ ho}_n^u \\ e	ilde{ ho}_n^d$                                             | -0.35<br>-0.7                                                 | -(0.09 - 0.9)<br>-(0.2 - 1.8)                              |
| $\overline{	ilde{\delta}_q}$         | $e \tilde{\zeta}_n^u \\ e \tilde{\zeta}_n^d$                                     | $8.2 \times 10^{-9}$<br>$16.3 \times 10^{-9}$                 | $(2-20) \times 10^{-9}$<br>$(4-40) \times 10^{-9}$         |
| $\operatorname{Im} C_{q\gamma}$      | $egin{array}{l} eta_n^{u\gamma} \ eta_n^{d\gamma} \ eta_n^{d\gamma} \end{array}$ | $0.4 	imes 10^{-3}$<br>-1.6 $	imes 10^{-3}$                   | $(0.2 - 0.6) \times 10^{-3}$<br>-(0.8 - 2.4) × 10^{-3}     |
| d <sub>q</sub>                       | $ ho_n^u  ho_n^d  ho_n^d$                                                        | -0.35<br>1.4                                                  | (-0.17)-0.52<br>0.7-2.1                                    |
| $\delta_q$                           | $\zeta_n^u$<br>$\zeta_n^d$                                                       | $8.2 	imes 10^{-9} \ -33 	imes 10^{-9}$                       | $(4 - 12) \times 10^{-9}$<br>-(16 - 50) × 10 <sup>-9</sup> |
| C <sub>Ĝ</sub>                       | $\beta_n^{\tilde{G}}$                                                            | $2 \times 10^{-7}$                                            | $(0.2-40) 	imes 10^{-7}$                                   |
| Im C <sub>øud</sub>                  | $\beta_n^{\varphi u d}$                                                          | $3 	imes 10^{-8}$                                             | $(1 - 10) \times 10^{-8}$                                  |
| $\operatorname{Im} C^{(1,8)}_{quqd}$ | $\beta_n^{quqd}$                                                                 | $40 \times 10^{-7}$                                           | $(10 - 80) \times 10^{-7}$                                 |
| $\operatorname{Im} C_{eq}^{(-)}$     | <b>g</b> <sup>(0)</sup>                                                          | 12.7                                                          | 11-14.5                                                    |
| Im C <sub>eq</sub> <sup>(+)</sup>    | g <sub>S</sub> <sup>(1)</sup>                                                    | 0.9                                                           | 0.6–1.2                                                    |

Engel, R-M, van Kolck '13

# Hadronic Matrix Elements

| Param                                | Coeff                                                             | Best value <sup>a</sup>                          | Range                                                                       |
|--------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------|
| $\bar{	heta}$                        | $lpha_n lpha_p$                                                   | 0.002<br>0.002                                   | (0.0005-0.004)<br>(0.0005-0.004)                                            |
| Im C <sub>qG</sub>                   | $egin{array}{l} eta_n^{uG} \ eta_n^{dG} \ eta_n^{dG} \end{array}$ | $4 \times 10^{-4}$<br>$8 \times 10^{-4}$         | $(1 - 10) \times 10^{-4}$<br>$(2 - 18) \times 10^{-4}$                      |
| $\tilde{d}_q$                        | $e	ilde{ ho}_n^u \\ e	ilde{ ho}_n^d$                              | -0.35<br>-0.7                                    | -(0.09 - 0.9)<br>-(0.2 - 1.8)                                               |
| $\tilde{\delta}_q$ (CEDM)            | $e\tilde{\zeta}_n^u$<br>$e\tilde{\zeta}_n^d$                      | $\frac{8.2 \times 10^{-9}}{16.3 \times 10^{-9}}$ | $\begin{array}{c} (2-20)\times 10^{-9} \\ (4-40)\times 10^{-9} \end{array}$ |
| $\operatorname{Im} C_{q\gamma}$      | $\beta_n^{\mu\gamma} \\ \beta_n^{d\gamma}$                        | $0.4 	imes 10^{-3}$<br>-1.6 $	imes 10^{-3}$      | $(0.2 - 0.6) \times 10^{-3}$<br>-(0.8 - 2.4) × 10^{-3}                      |
| d <sub>q</sub>                       | ${ ho}_n^u  ho_n^d$                                               | -0.35<br>1.4                                     | (-0.17)-0.52<br>0.7-2.1                                                     |
| $\delta_q$                           | $\zeta_n^u$<br>$\zeta_n^d$                                        | $8.2 	imes 10^{-9} \ -33 	imes 10^{-9}$          | $(4 - 12) \times 10^{-9}$<br>-(16 - 50) × 10 <sup>-9</sup>                  |
| C <sub>Ĝ</sub>                       | $\beta_n^{\tilde{G}}$                                             | $2 \times 10^{-7}$                               | $(0.2 - 40) \times 10^{-7}$                                                 |
| Im C <sub>øud</sub>                  | $\beta_n^{\varphi u d}$                                           | $3 	imes 10^{-8}$                                | $(1 - 10) \times 10^{-8}$                                                   |
| $\operatorname{Im} C^{(1,8)}_{quqd}$ | $\beta_n^{quqd}$                                                  | $40 	imes 10^{-7}$                               | $(10 - 80) \times 10^{-7}$                                                  |
| $\operatorname{Im} C_{eq}^{(-)}$     | g <sub>S</sub> <sup>(0)</sup>                                     | 12.7                                             | 11-14.5                                                                     |
| $\operatorname{Im} C_{eq}^{(+)}$     | g <sub>S</sub> <sup>(1)</sup>                                     | 0.9                                              | 0.6–1.2                                                                     |

Engel, R-M, van Kolck '13

# Hadronic Matrix Elements

| Param                                | Coeff                                                                                        | Best value <sup>a</sup>                                                 | Range                                                                         |
|--------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| $\bar{	heta}$                        | $lpha_n \ lpha_p$                                                                            | 0.002<br>0.002                                                          | (0.0005-0.004)<br>(0.0005-0.004)                                              |
| Im C <sub>qG</sub>                   | $eta_n^{uG}\ eta_n^{dG}$                                                                     | $\begin{array}{l} 4\times10^{-4}\\ 8\times10^{-4}\end{array}$           | $(1 - 10) \times 10^{-4}$<br>$(2 - 18) \times 10^{-4}$                        |
| $\tilde{d}_q$                        | $e	ilde{ ho}_n^u \\ e	ilde{ ho}_n^d$                                                         | -0.35<br>-0.7                                                           | -(0.09 - 0.9)<br>-(0.2 - 1.8)                                                 |
| $	ilde{\delta}_q$                    | $e \tilde{\zeta}_n^u \\ e \tilde{\zeta}_n^d$                                                 | $8.2 \times 10^{-9}$<br>16.3 × 10 <sup>-9</sup>                         | $(2 - 20) \times 10^{-9}$<br>$(4 - 40) \times 10^{-9}$                        |
| $\operatorname{Im} C_{q\gamma}$      | $egin{array}{l} eta_n^{u\gamma} \ eta_n^{d\gamma} \end{array} \ eta_n^{d\gamma} \end{array}$ | $0.4 	imes 10^{-3}$<br>-1.6 $	imes 10^{-3}$                             | $(0.2 - 0.6) \times 10^{-3}$<br>-(0.8 - 2.4) × 10^{-3}                        |
| $d_q$                                | $ ho_n^u  ho_n^d  ho_n^d$                                                                    | -0.35<br>1.4                                                            | (-0.17)-0.52<br>0.7-2.1                                                       |
| $\delta_q$ (EDM)                     | $\zeta_n^u$<br>$\zeta_n^d$                                                                   | $\begin{array}{c} 8.2 \times 10^{-9} \\ -33 \times 10^{-9} \end{array}$ | $\begin{array}{c} (4-12)\times 10^{-9} \\ -(16-50)\times 10^{-9} \end{array}$ |
| C <sub>Ĝ</sub>                       | $eta_n^{	ilde{G}}$                                                                           | $2 \times 10^{-7}$                                                      | $(0.2 - 40) \times 10^{-7}$                                                   |
| Im C <sub>øud</sub>                  | $\beta_n^{\varphi u d}$                                                                      | $3 	imes 10^{-8}$                                                       | $(1 - 10) \times 10^{-8}$                                                     |
| $\operatorname{Im} C_{quqd}^{(1,8)}$ | $\beta_n^{quqd}$                                                                             | $40 \times 10^{-7}$                                                     | $(10 - 80) \times 10^{-7}$                                                    |
| $\operatorname{Im} C_{eq}^{(-)}$     | <b>g</b> <sup>(0)</sup>                                                                      | 12.7                                                                    | 11–14.5                                                                       |
| Im C <sup>(+)</sup>                  | g <sub>S</sub> <sup>(1)</sup>                                                                | 0.9                                                                     | 0.6–1.2                                                                       |

Update: Battacharya et al 2015

Engel, R-M, van Kolck '13

### **Nuclear Matrix Elements**

$$S = a_0 g \,\bar{g}_{\pi}^{(0)} + a_1 g \,\bar{g}_{\pi}^{(1)} + a_2 g \,\bar{g}_{\pi}^{(2)}$$

| Nucl.                                                       | Best value                              |                         |                                        |
|-------------------------------------------------------------|-----------------------------------------|-------------------------|----------------------------------------|
|                                                             | <i>a</i> <sub>0</sub>                   | <i>a</i> <sub>1</sub>   | <i>a</i> <sub>2</sub>                  |
| <sup>199</sup> Hg<br><sup>129</sup> Xe<br><sup>225</sup> Ra | 0.01<br>0.008<br>1.5                    | ± 0.02<br>-0.006<br>6.0 | 0.02<br>-0.009<br>-4.0                 |
| Range                                                       |                                         |                         |                                        |
| a <sub>0</sub>                                              | <b>a</b> <sub>1</sub>                   | 1                       | <i>a</i> <sub>2</sub>                  |
| 0.005-0.05<br>-0.005-(-0.05)<br>-1-(-6)                     | -0.03-(+0.09)<br>-0.003-(-0.05)<br>4-24 |                         | 0.01-0.06<br>-0.005-(-0.1)<br>-3-(-15) |

### Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

#### $\lambda_{6.7} = 0$ for simplicity



Present

 $sin \alpha_b$  : CPV scalar mixing

### Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

#### $\lambda_{6,7} = 0$ for simplicity



Present

 $sin \alpha_b$  : CPV scalar mixing

### Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

#### $\lambda_{6,7} = 0$ for simplicity



Present

# Challenge for Theory

 $sin \alpha_b$  : CPV scalar mixing

# VI. Summary & Outlook

- There exist a variety of well-motivated neutrino mass mechanisms associated with LNV interactions ranging from low- to high-scales
- *0vββ*-decay and LHC searches provide complementary probes of TeV scale LNV
- EDM and LHC searches can provide complementary probes of BSM CPV
- LHC results may provide a powerful diagnostic for interpreting a non-zero  $0\nu\beta\beta$ -decay and/or EDM observation
- Refined hadronic & nuclear ME computations are essential to this inter-frontier complementarity

# VII. Back Up Slides

# Why Might A "Ton-Scale" Exp't See It?



Three active light neutrinos

108
### *Ονββ-Decay: TeV Scale LNV*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

General Classification: Helo et al, PRD 88.011901, 88.073011



### LRSM: Type I See-Saw

Mass: standard see-saw but TeV scale

### *Ονββ-Decay: TeV Scale LNV*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

General Classification: Helo et al, PRD 88.011901, 88.073011

LRSM: Type II See-Saw

$$\mathcal{L} = \frac{g}{2} h_{ij} \left[ \bar{L}^{C_i} \varepsilon \Delta_L L^j \right] + (L \leftrightarrow R) + \text{h.c.}$$



### *Ονββ-Decay: TeV Scale LNV*

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
  
Dirac Majorana

General Classification: Helo et al, PRD 88.011901, 88.073011



Scalar Leptoquarks

Mass: like RPV SUSY (loop)

NLDBD: need Majorana fermion

$$\mathcal{L}_{F=0} = h_{1/2}^{L} \overline{u}_{R} \ell_{L} S_{1/2}^{L} + h_{1/2}^{R} \overline{q}_{L} \epsilon e_{R} S_{1/2}^{R} + \tilde{h}_{1/2}^{L} \overline{d}_{R} \ell_{L} \tilde{S}_{1/2}^{L}$$

111

## Why Might A "Ton-Scale" Exp't See It?



# Interpreting a Positive Result



## Interpreting a Positive Result



Lightest neutrino mass (eV) ightarrow

Positive result would be consistent with 3+1 light active v's & NH, IH, or quasi-deg regime, but not definitive as to mechanism

114

# Sterile Neutrinos & 0v\beta\beta-Decay

#### 3 active light neutrinos

Effective DBD neutrino mass (eV)



Lightest neutrino mass (eV) ightarrow

$$|m_{\beta\beta}| = |\mu_1 + \mu_2 e^{i\alpha_2} + \mu_3 e^{i\alpha_3}|$$

#### 3+1 active light neutrinos



Lightest neutrino mass (eV) ightarrow

$$|m_{\beta\beta}| = \left|\mu_1 + \mu_2 e^{i\alpha_2} + \mu_3 e^{i\alpha_3} + \mu_4 e^{i\alpha_4}\right|$$

# Sterile Neutrinos & 0v\beta\beta-Decay





Lightest neutrino mass (eV) ightarrow

$$|m_{\beta\beta}| = |\mu_1 + \mu_2 e^{i\alpha_2} + \mu_3 e^{i\alpha_3}|$$

#### 3+1 active light neutrinos



Lightest neutrino mass (eV) ightarrow

$$|m_{\beta\beta}| = \left|\mu_1 + \mu_2 e^{i\alpha_2} + \mu_3 e^{i\alpha_3} + \mu_4 e^{i\alpha_4}\right|$$



Tractable nuclear operators

Systematic operator classification



Prezeau, MJRM, Vogel PRD 68 (2003) 034016

**Operator classification** 

$$\mu = M_{WEAK}$$

$$\mathcal{L}(\boldsymbol{q},\boldsymbol{e}) = \frac{G_F^2}{\Lambda_{\beta\beta}} \sum_{j=1}^{14} C_j(\mu) \, \hat{O}_j^{++} \, \overline{e} \Gamma_j e^c + h c \, .$$

e.g.

$$\hat{O}_{1+}^{ab} = \overline{q}_L \gamma^{\mu} \tau^a q_L \ \overline{q}_R \gamma_{\mu} \tau^b q_R$$

 $0v \beta\beta$  - decay: a = b = +

**Operator classification** 

$$\mu = M_{WEAK}$$

$$\hat{O}_{1+}^{ab} = \overline{q}_L \gamma^{\mu} \tau^a q_L \ \overline{q}_R \gamma_{\mu} \tau^b q_R$$

Chiral transformations: SU(2)<sub>L</sub> x SU(2)<sub>R</sub>

$$\begin{array}{ll} q_L \rightarrow L q_L & L \\ q_R \rightarrow R q_R & R \end{array} = \exp \left( i \vec{\theta}_L \cdot \frac{\vec{\tau}}{2} P_L \\ R & R \end{array} \right) \qquad \hat{O}_{1+}^{ab} \in (3_L, 3_R) \end{array}$$

Parity transformations:  $q_L \leftrightarrow q_R$ 

0ν ββ - decay: a = b = +

$$\hat{O}_{1+}^{++} \leftrightarrow \hat{O}_{1+}^{++}$$
 119

