Calibrating weak rates for the big bang

Kenneth Nollett
University of South Carolina
and
San Diego State University

Measuring the Neutron Lifetime
Amherst Center for Fundamental Interactions
19 September 2014
Precision in astrophysical weak interactions

Today’s theories (& input data) for most astrophysical environments don’t offer much payoff for high precision weak rates

Rates in many places involve large nuclei, so they’re necessarily either measured directly or estimated with a lot of nuclear theory

Theory with percent-level precision (unless I’m missing something) only enters in the Sun and the big bang – simple environments

In the Sun, the uncertainty on the \(p + p \rightarrow d + e^+ + \nu_e \) rate is 0.9%, dominated by two-body physics (in both strong & weak forces)

The amount of helium made in the big bang can be computed to within \(< 1\%\), and weak coupling constants from \(\tau_n \) are vital to the calculation
Big-bang nucleosynthesis (BBN) as a pillar of cosmology

BBN is the production of the original chemical composition of the universe, during the very hot & dense first ~ 20 minutes.

The composition went from free neutrons & protons to mainly hydrogen & helium, with a little D & Li.

BBN yields depend on the universal mean baryon density ρ_B, so for a long time BBN was the main handle on ρ_B.

BBN took place at ~ 1 second to 20 minutes, so the light-element yields provide a very early window on the universe.

In the end, there are only four observables (& perhaps some non-observables).
Ingredients of BBN

1. General relativity

Friedmann-Robertson-Walker metric

\[ds^2 = dt^2 - [R(t)]^2 \left[\frac{dr^2}{1 - kr^2} + r^2d\Omega^2 \right] \]

describes homogeneous & isotropic universe, sizes scale with \(R(t) \)

Insertion into Einstein equations gives the expansion rate

\[\left(\frac{R'(t)}{R(t)} \right)^2 = \frac{8\pi G}{3} \rho \]

with \(\rho = \rho_B + \rho_\gamma + \rho_\nu + \rho_e + \cdots \)

In minimal model, densities are assumed homogeneous (doesn’t matter much)
Ingredients of BBN

2. Statistical mechanics of Fermi & Bose gases that fill the universe

\[\rho_x = \frac{g_x}{8\pi^3} \int \frac{E}{\exp \left[\frac{(E - \mu_x)}{kT} \right] \pm 1} d^3 p \]

Initial conditions are assumed to be equilibrium at a single very high \(T \)

Each species (baryons, photons, electrons, 3 neutrino flavors) evolves at a well-defined temperature

\(T \) declines during isentropic expansion, since \(\rho_x \propto R^{-4} \) for \(m_x \ll kT (\gamma, \nu) \)
and \(\rho_x \propto R^{-3} \) for \(m_x \gtrsim kT \)
Ingredients of BBN

3. Nuclear cross sections

Abundance evolution proceeds through nuclear collisions

Cross sections are mainly empirical

Only 12 processes matter*, enumerated by Smith, Kawano, Malaney (1993)

Calculations with huge reaction networks and nuclei to CNO region have been done

Weak $p + l \leftrightarrow n + l'$ rates are all normalized to neutron lifetime & computed from weak-interaction physics
BBN in three easy steps

At temperatures above $T \sim 10^{10}$ K, the ratio of neutrons to protons is governed by equilibrium enforced by weak interactions:

$$\nu_e + n \leftrightarrow p + e^-$$

and "crossed" diagrams

Nucleosynthesis starts at $T \sim 10^{10}$ K, when the rates for processes maintaining equilibrium become slower than the universal expansion: $\Gamma_{n\leftrightarrow p} < R'/R$

The neutron/proton ratio freezes out at

$$\frac{n_n}{n_p} = \exp\left[-(m_n - m_p)/kT\right] \sim \frac{1}{7}$$

This is Weak Freezeout

Some destruction of neutrons by $e^+ + n \rightarrow p + \bar{\nu}_e$ and $\nu_e + n \rightarrow p + e^-$ and free decay follows, but it doesn’t have much time
BBN in three easy steps

At the time of weak freezeout, relative amounts of light nuclei are in **Nuclear Statistical Equilibrium (NSE)**

Almost all nucleons are free, small amounts of D, 3He, 3H, and 4He

Dropping T gradually favors $A = 3$ and 4

At ~ 5 minutes, almost all neutrons are in 4He (large per-particle binding energy)

Low ρ and T, Coulomb barriers, disappearance of neutrons, fragility to proton reactions, and lack of stable $A = 5, 8$ nuclei all cause **Final Freezeout**
BBN in a nutshell

1. Weak Freezeout
 (~ 1 second)

2. Statistical equilibrium & quasi-equilibrium
 (~ 1 second to 5 minutes)

3. Final Freezeout
 (> 5 minutes)
The “Schramm plot”

Yields depend on one variable, n_B / n_γ

Conventional units are $\Omega_B \equiv \rho_B / \rho_{\text{crit}}$

$$\Omega_B h^2 = \frac{8\pi G \rho_B}{(3 \times 10^4 \text{ km}^2 \text{ s}^{-2} \text{ Mpc}^{-2})}$$

$h \sim 0.7$ is Hubble’s constant in customary units, so $h^2 \sim 1/2$

Widths of curves reflect nuclear inputs (More on this in a few minutes...)

Need to find matter that has not been processed post-BBN & compare
BBN today

The Big Question is now

Are the primordial abundances consistent with the standard cosmology?

The only ΛCDM parameter that BBN depends on is $\Omega_B h^2 \propto n_B/n_\gamma$

With 1.3% precise $\Omega_B h^2$ from CMB, BBN gives very precise predictions

If the answer is “no,” there are interesting things to be learned about:

- neutrinos
- model atmospheres
- gravity
- stellar evolution
- all of the above
- none of the above

...but we can’t tell a priori which one(s)
Standard BBN as a precise theory

Deuterium nuclear inputs have improved considerably in the last decade, now dominated by $d + p \rightarrow ^3\text{He} + \gamma$

$$\frac{D}{\text{H}} = (2.51 \pm 0.08) \times 10^{-5} \text{ (2.5\% nuclear, 2\% } \Omega_B h^2)$$

Primordial ^3He is not yet observable; it depends on much of the same nuclear data & is kind of flat in $\Omega_B h^2$

$$\frac{^3\text{He}}{\text{H}} = (1.07 \pm 0.04) \times 10^{-5}, \text{ mostly nuclear}$$

A major logjam in $^3\text{He} + \alpha \rightarrow ^7\text{Be} + \gamma$ precision broke in the ’00s

$$\frac{\text{Li}}{\text{H}} = (5.5 \pm 0.4) \times 10^{-10}, \lesssim 2\% \text{ from } \Omega_B h^2$$

(Li probably could be handled better – long story)
BBN post-WMAP: Precise 4He predictions

Convention is to consider Primordial He mass fraction Y_P

This is not my fault – observation & theory give n_{He}/n_H more naturally

At the end of BBN, all but $\sim 10^{-5}$ of neutrons are in 4He
 (Y_P specifies the isospin density of the universe)

Y_P thus probes weak-interaction freezeout at ~ 1 second, insensitive to Ω_B

The ratio of weak rates to the expansion rate at ~ 1 s determines the freezeout temperature & therefore Y_P
Neutron “decay” in BBN

Weak rates are all $\propto G^2_V + 3G^2_A$, matched to τ_n at the start of a BBN calculation

Supposedly G_V & G_A/G_V are now known to a precision equivalent to $\Delta \tau_n \sim 2$ s – there’s not much history of using them instead

The (shallow) dependence of Y_P on $\Omega_B h^2$ is mainly through neutron destruction after freezeout

But even that includes interactions with the lepton gases

Blue: free decay

Red: $n + \nu_e \rightarrow p + e^-$

Green: $n + e^+ \rightarrow p + \bar{\nu}_e$

Others: n production
BBN post-WMAP: Precise \(^4\text{He} \) predictions

\(Y_P \) cares a lot about fine details of weak rates and early thermal conditions

<table>
<thead>
<tr>
<th></th>
<th>Cumulative</th>
<th></th>
<th>Effect</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Y_P)</td>
<td>(\delta Y_P (\times 10^{-4}))</td>
<td>(\delta Y_P / Y_P (%))</td>
<td>(\delta Y_P (\times 10^{-4}))</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.2414</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coulomb and (T=0) radiative</td>
<td>0.2445</td>
<td>+31</td>
<td>+1.28</td>
<td>+31</td>
</tr>
<tr>
<td>finite mass</td>
<td>0.2457</td>
<td>+43</td>
<td>+1.78</td>
<td>+12</td>
</tr>
<tr>
<td>finite (T) radiative</td>
<td>0.2460</td>
<td>+46</td>
<td>+1.90</td>
<td>+3</td>
</tr>
<tr>
<td>QED plasma</td>
<td>0.2461</td>
<td>+47</td>
<td>+1.94</td>
<td>+1</td>
</tr>
<tr>
<td>residual (\nu)-heating</td>
<td>0.2462</td>
<td>+49</td>
<td>+2.00</td>
<td>+1.5</td>
</tr>
</tbody>
</table>

Lopez & Turner 1999

Lopez & Turner (1999) computed \(Y_P \) with an error budget of \(\Delta Y_P = 0.0002 \)

Olive, Steigman, & Walker (2000) agree to \(\Delta Y_P = 0.0001 \)

Mangano & collaborators (more independent) agree to \(\Delta Y_P = 0.0004 \)

The Mangano code is coming into wide use & the issue is in danger of being lost (Lopez now does high-frequency trading)
BBN post-WMAP: Precise 4He predictions

The neutron lifetime is a big part of the (small) error budget

<table>
<thead>
<tr>
<th>Source</th>
<th>τ_n</th>
<th>ΔY_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDG 2004-10</td>
<td>885.7 ± 0.8 sec</td>
<td>0.00016</td>
</tr>
<tr>
<td>Serebrov 2005</td>
<td>878.5 ± 1.0</td>
<td>0.00020</td>
</tr>
<tr>
<td>Pichlmaier 2010</td>
<td>880.7 ± 2.5</td>
<td>0.00050</td>
</tr>
<tr>
<td>PDG 2012</td>
<td>880.1 ± 1.1</td>
<td>0.00022</td>
</tr>
<tr>
<td>PDG 2014</td>
<td>880.3 ± 1.1</td>
<td>0.00022</td>
</tr>
</tbody>
</table>

Total spread across the table is $\Delta Y_P = 0.0015$

Planck gives $\Omega_B h^2 = 0.02214 ± 0.00024$, robust against varying assumptions

$$dY_P/d(\Omega_B h^2) = 0.43$$ so $\Delta Y_P = 0.00010$ from $\Omega_B h^2$

In sum, $Y_P = 0.2471 ± 0.0002(\text{theory}) ± 0.0002(\tau_n) ± 0.0001(\text{CMB})$ (using 2014 PDG)

So Y_P is an astronomical quantity predicted to < 0.5% – unique outside orbital mechanics?
Helium: Percent compositions from 70 Mpc away?

He/H is inferred from nebular emission in blue compact dwarf galaxies (BCD)

Peimbert et al. 2007 study 5 objects in some detail, 0.2477 ± 0.0029

Izotov & Thuan (2013) study 111 objects, 0.254 ± 0.003 (August 2014 paper I haven’t digested has 0.2551 ± 0.0022)

Aver, Olive, Skillman have explored error estimation for subsets of Izotov, currently 0.2535 ± 0.0036

Errors as small as 0.0015 have been claimed in the past; underlying atomic data may have problems amounting to $\Delta Y_P \sim 0.005$

Changes in atomic data shifted everyone up $\Delta Y_P \sim 0.010$ a few years ago

$Y_{BBN} = 0.2471 \pm 0.0005$
A timely example: BBN from a neutrino’s point of view

BBN has a long history of constraining neutrino-like species using the sensitivity at 1 second.

Each (doublet) ν species carries $\sim 15\%$ of energy density during BBN \rightarrow the sum sets expansion timescales.

More neutrinos \rightarrow faster expansion \rightarrow weak freezeout at higher T \rightarrow more neutrons \rightarrow higher Y_P

Since Y_P also depends (weakly) on $\Omega_B h^2$, another input is needed.
Counting neutrinos using helium

We can use $\Omega_B h^2$ from CMB + assumption of unchanging n_B/n_γ after BBN

Or we can fit Y_P jointly with D/H (assumes less)

This program has received new interest now that the CMB probes the expansion rate at the time of CMB formation

Cosmologists tend to measure the expansion rate as an equivalent number of thermally-populated neutrino species

$N_{\text{eff}} = 3.046$ in the standard model (after small corrections)
Neutrino counting with BBN & the CMB

A couple of years ago, there were hints from the CMB that $N_{\text{eff}} \sim 3.8 \pm 0.4$

Now we have:

The data agree, but together they like neither $N_{\nu} = 3$ nor $N_{\nu} = 4$

Salmon: CMB only
Blue: BBN only
Green: combined update of Nollett & Steigman, arXiv:1312.5725

$N_{\text{eff}} = 3.30 \pm 0.27$ (CMB), $N_{\text{eff}} = 3.56 \pm 0.23$ (BBN), $N_{\text{eff}} = 3.40 \pm 0.16$ (joint)

Yes, noninteger N_{eff} is meaningful – e.g. light scalar particles
Comparison of τ_n with what we’re trying to do

At fixed $\Omega_B h^2$, one additional neutrino species produces $\Delta Y_P \simeq 0.013$

An additional second of neutron lifetime produces $\Delta Y_P \simeq 0.00021$

The full difference between the “old” PDG lifetime & the Serebrov lifetime is $\Delta Y_P = 0.0015$ (from $\Delta \tau_n = 6.8$ s)

So the τ_n spread gives $\Delta N_{\text{eff}} \sim 0.0015/0.013 \sim 0.12$

By comparison, the CMB is unlikely to measure N_{eff} to within much better than $\Delta N_{\text{eff}} \sim 0.20$

This all compares with reasonable observational errors today of $\Delta Y_P \sim 0.005$
Here are abundances as functions of N_{eff} ($\Omega_B h^2$ slightly outdated)

Pink band in Y_P shows errors around 2011
PDG recommended τ_n

Black lines on either side are 2004-2010
PDG & Serebrov

(Black lines in lower panels reflect other
nuclear uncertainties)
What I would like to see

The best thing for me would be an agreed τ_n with an error of ~ 1 s (again)

BBN has intrinsic interest as a source of very precise predictions arising from the standard cosmology, probing very early times

Even if astronomers can’t match the theory’s precision now, it’s good to have the target out there (0.2% prediction!)

Any problem with τ_n sits below my predictions & skews my conclusions by $\sim \sigma/2$

Y_P also feeds into modeling of CMB anisotropies (which currently constrain Y_P by ± 0.06!)

I’m not sure they’ll ever be sensitive at the percent level, though