ACFI Workshop "Beta decay as a probe of new physics"

My hope for the workshop:

Convey to theorists that there is discovery potential, but we can't do it without their help.

Outlook for precision beta-decay measurements

Talk at ACFI Workshop "Beta decay as a probe of new physics"

Beta decay

...

Amazing history: first steps beyond E&M

Transmutations in decays Parity violation Gauge theories Unification

Is there a future for exploring?

Precision frontier may hold surprises

Chirality-flipping as means of detection of new physics.

ENPA

Experimental Nuclear Physics and Astrophysics

Example:

Decay rate for non polarized axial (GT) decay

$$dw \approx dw_0 \left[1 + a \frac{\vec{p}_e}{E_e} \cdot \frac{\vec{p}_v}{E_v} + b \frac{m_e}{E_e} \right] \xrightarrow{a \approx -\frac{1}{3} \left(1 - \frac{C_T^2 + C_T^2}{2 C_A^2} \right)}_{\beta \text{-v correlation}}$$

$$b \approx \pm (C_T + C_T')/C_A$$

Fierz interference

$$\#\beta - v \text{ correlation experiments''}$$

measure ratio:
$$\frac{a \frac{\vec{p}_e}{E_e} \cdot \frac{\vec{p}_v}{E_v}}{1 + b \frac{m_e}{E_e}} \xrightarrow{\beta \text{-v correlation experiments}}_{interference}$$

All correlation experiments show some sensitivity to the interference

Polarized parent: more observables.

$$\beta\text{-asymmetry} \quad \nu\text{-asymmetry}$$

$$dw \approx dw_0 \left[1 + a \frac{\vec{p}_e}{E_e} \cdot \frac{\vec{p}_v}{E_v} + b \frac{m_e}{E_e} + \frac{\langle \vec{J} \rangle}{J} \cdot \left[A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_v}{E_v} \right] \right]$$

... and the "letter soup" extends with observation of the electron polarization...

Nuclear beta decay phenomenology: beyond V-A?

$$H_{V,A} = \sum_{i=V,A} \overline{\Psi}_f O_i^{\mu} \Psi_0 \begin{bmatrix} (C_i + C_i') \overline{e}^L \\ O_{i,\mu} v_e^L + (C_i - C_i') \overline{e}^R \\ O_{i,\mu} v_e^R \end{bmatrix}$$

$$D_i^{\mu} = \begin{cases} \gamma^{\mu} & i = V \\ \gamma^{\mu} \gamma_5 & i = A \end{cases}$$

$$H_{S,T} = \sum_{i=S,T} \overline{\Psi}_f O_i \Psi_0 [(C_i + C_i') \overline{e}^R \\ O_i v_e^L + (C_i - C_i') \overline{e}^L \\ O_i v_e^R \end{bmatrix}$$
Scalar, Tensor
$$O_i = \begin{cases} 1 & i = S \\ \sigma^{\mu\nu} & i = T \end{cases}$$
Helicity overlap interference: $\frac{m_e}{E_e}$

Comparison with the LHC: the EFT "blow"

Vincenzo et al. brought us in comparison with the LHC.

Before: hard to compare, we thought model dependency implied nuclear sensitivity could be higher than hep experiments.

• The effective couplings ϵ_{α} contribute to the process $p p \rightarrow e V + X$

Cirigliano et al. PPNP **71**, 93 (2013)

Comparison with the LHC: the EFT "blow"

V. Cirigliano et al. have established a connection between hep and beta-decay observables via EFT.

Assuming only left-handed ν 's:

(0)

From Bhattacharya et al. Phys. Rev. D **94**, 054508 (2016)

$$\begin{split} \mathcal{L}_{\rm CC} &= -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} (1 + \epsilon_L + \epsilon_R) \\ &\times [\bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} [\gamma^\mu - (1 - 2\epsilon_R) \gamma^\mu \gamma_5] d \\ &+ \bar{\ell} (1 - \gamma_5) \nu_\ell \cdot \bar{u} [\epsilon_S - \epsilon_P \gamma_5] d \\ &+ \epsilon_T \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d] + \text{H.c.}, \end{split}$$

(6d)

(6e)

$$C_i = \frac{G_F}{\sqrt{2}} V_{ud} \bar{C}_i \tag{6a}$$

$$\bar{C}_V = g_V (1 + \epsilon_L + \epsilon_R) \tag{6b}$$

$$\bar{C}_A = -g_A(1 + \epsilon_L - \epsilon_R) \tag{6c}$$

$$\bar{C}_S = g_S \epsilon_S$$

$$\bar{C}_T = 4g_T \epsilon_T,$$

Rough result of analysis of LHC limits:

$$\epsilon' s \leq \vartheta (10^{-3})$$

Beta decay sensitivity could reach beyond LHC.

Beta decay with nuclei:

Confining radioactivity helps measuring kinematics Trapping can also allow polarization

Amazing atom and ion traps have come a long way!

Initial developments: Berkeley, Stony Brook, TRIUMF (atoms) CERN, Argonne, CAEN, TRIUMF (ions)

What follows are vignettes showing aim of some groups (not complete...)

Thanks: Guy Ron

Timing detector for shake off electrons

Position sensitive detector for recoil ions

CENPA

Center for Experimental Nuclear Physics and Astrophysics

Thanks: Guy Ron

CENPA

Center for Experimental Nuclear Physics and Astrophysics

Current status

- Both EIBT and MOT systems up and running and installed at SARAF, including trapping, detectors, and DAQ.
- High power Liquid-Li target (for n-production) produced and being installed (beam on target -Nov 2018).
- ⁶He and ²³Ne production (using solid LiF target lower flux) demonstrated at SARAF and will scale up with the new neutron targets.
- He experiment to start by Jan 2019.
- Ne experiments to start by Mar 2019.

TRIUMF atomic trap

CENPA

Center for Experimental Nuclear Physics and Astrophysics

j.a. behr, 췒

T in ${}^{38\mathrm{m}}\mathrm{K} o {}^{38}\mathrm{Ar}{}_+eta
u\gamma$ Unique for 1st generation

Thanks: John Behr, Dan Melconian

CERN ion trap

ANL trap: A=8 experiments

- Gas target geometry better matched to reactions
- New gas catcher optimized to handle lighter masses and space-charge issues

Upgrades resulted in 10× increase in ion delivery to BPT → measure ⁸B to study decay correlations + recoil-order terms

 \rightarrow revisit ⁸Li with 10× higher statistics

CENPA

Center for Experimental Nuclear Physics and Astrophysics

Thanks: Guy Savard

Ion trap to hold the A=8 nuclei. α 's and β 's are measured with streep Si detectors.

Hit locations allow tracking back to the emission point.

Center for Experimental Nuclear Physics and Astrophysics

Spectrum from events with β and α particles detected on the top and bottom detector. (a) Energy difference along with the fit to the simulated spectrum and the normalized residual. The gray curve shows the expected spectra for a pure T interaction.

Thanks: Guy Savard

- Precision measurements on <u>superallowed</u> mixed β-decay transition between mirror nuclides using the <u>TwinSol</u> RIBs at Notre Dame. 10⁵
- Precision half-life measurements: measured t_{1/2} of ¹⁷F, ¹¹C, ²⁵Al, more under analysis and planned.

¹⁷F: M. Brodeur *et al.*, PRC **93** 025503 (2016)
²⁵Al: J. Long *et al.*, PRC **96** 015502 (2017)
¹¹C: A. Valverde *et al.*, PRC **97** 035503 (2018)

- <u>Superallowed</u> Transition Beta-Neutrino Decay Ion Coincidence Trap (St. Benedict) ion trapping system to measure the β-v angular correlation parameter.
- Gas catcher has been donated by ANL, RF funnel under design, cooler-buncher has been assembled, and Paul trap being simulated.

Center for Experimental Nuclear Physics and Astrophysics

Outlook for precision beta-decay experiments

Thanks: Maxime Brodeur

Superallowed $T = 2 \beta$ -delayed proton transitions: Theory needs

Goal is ≾ 0.1% precision in correlation parameters to search for BSM physics, both in experiment *and* theory predictions

- Corrections for the $\mathcal{F}t$ value (δ_C , δ_{NS} , δ'_R ; Δ^V_R); *T*-dependence to discern?
- Matrix elements for recoil-order corrections
 - $M_{r^2}, M_{\sigma r^2}, M_Q, M_{\{r,p\}}, M_{r \cdot p}, M_L, M_{\sigma L}, \dots$
- More complete and detailed radiative corrections; 4-body decay (e.g. Gluck Comp Phys Comm 101 (1997))
- Suggest ancillary measurements to help benchmark shell models?

TAMUTRAP is especially suited for β -delayed proton decays

Thanks: Dan Melconian

Seattle-ANL atomic trap

Phys. Rev. A 96, 053411 (2017)

Beta spectra

From above: most sensitive measurement could be β spectra.

(Look for Fierz interference distortion $\frac{m_e}{E_e}$)

Warning: $\boldsymbol{\beta}$ spectra are known to be difficult to measure.

Typical setup: magnetic spectrometer... Difficult to overcome systematic uncertainties.

Beta spectra \rightarrow implantations into scintillators

Measurements of energy spectra at NSCL

Uses a calorimetric technique which eliminates electron backscattering from detectors.

Beta spectra \rightarrow implantations into scintillators

Status and Plans

• Current level of statistical sensitivity for Fierz term:

- 3×10⁻³ for ²⁰F
- 1.5×10⁻³ for ⁶He (with CsI and NaI detectors)

• New beam time requests in preparation to push systematic errors below the level of current statistical sensitivity.

O. Naviliat-Cuncic (naviliat@nscl.msu.edu)

2

Thanks: Oscar Naviliat-Cuncic

Beta spectra \rightarrow CRES technique

PRL 114, 162501 (2015)PHYSICAL REVIEW LETTERSweek ending
24 APRIL 2015

G

Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation

D. M. Asner,¹ R. F. Bradley,² L. de Viveiros,³ P. J. Doe,⁴ J. L. Fernandes,¹ M. Fertl,⁴ E. C. Finn,¹ J. A. Formaggio,⁵
D. Furse,⁵ A. M. Jones,¹ J. N. Kofron,⁴ B. H. LaRoque,³ M. Leber,³ E. L. McBride,⁴ M. L. Miller,⁴ P. Mohanmurthy,⁵
B. Monreal,³ N. S. Oblath,⁵ R. G. H. Robertson,⁴ L. J Rosenberg,⁴ G. Rybka,⁴ D. Rysewyk,⁵ M. G. Stemberg,⁴
J. R. Tedeschi,¹ T. Thümmler,⁶ B. A. VanDevender,¹ and N. L. Woods⁴

(Project 8 Collaboration)

In principle: allows determination of the beta energy at creation.

Seattle-ANL-PNNL-NCSU-Tulane → He6-CRES collaboration. Measure ⁶He, ¹⁹Ne, ¹⁴O.

Neutron beta decay.

After many years of developments, many recent important results...

Vignettes follow.

Neutron lifetime

Neutron lifetime

BL3

Beam Lifetime 3

A next generation beam neutron lifetime experiment

Goals:

1) Cross check, explore, verify all systematic effects in the beam method to the 0.1 s level 2) Reduce the beam neutron lifetime uncertainty to < 0.3 s.

Moving forward

Effect	Upper bound (s) Direction		rection	Method of evaluation	
Depolarization	0.07		+	Varied external holding field	
Microphonic heating	-0.24	0.05	+	Detector for heated neutrons	
Insufficient cleaning	0.07	0.02	+	Detector for uncleaned neutrons	
Dead time/pileup	0.04		±	Known hardware dead time	
Phase space evolution	0.10	0.02	±	Measured neutron arrival time	
Residual gas interactions	0.03	0.01	±	Measured gas cross sections and pressure	
				Measured background as function of detector	
Background shifts	<0.01		±	position	
Total	0.28	0.10		(uncorrelated sum)	

Last beam cycle (2017-2018):

Projected statistical uncertainty: 0.15 s systematic uncertainty: 0.10 s → total uncertainty: 0.18 s Achievable over the next 2-3 years.

Neutron beta decay

UCNA and UCNA+

50 E

Neutron beta decay

Opportunities for Progress: UCNA+

LANSCE Area B Source Upgrade!

R&D program underway:

Statistical Precision of 0.12%/year !

- · Redesign experiment reduce scattering corrections by eliminating foils
- Improve scinitillator design (synergistic with UCNProbe) to reduce size and dependence on environmental vairables, and produce real-time background monitoring
- Implement 2D scanning with conversion sources

Total Systematic Uncertainty < 0.1%

Thanks: Albert Young

From UCNA Phys. Rev. C **97**, 035505 (2018)

Neutron beta decay: β -v

aCORN: Measuring the electron-antineutrino correlation (little *a*) in free neutron beta decay

The Nab experiment

Nab @ Fundamental Neutron Physics Beamline (FNPB) @ Spallation Neutron Source (SNS)

$$d\Gamma \propto \varrho(E_e) \left(1 + a \frac{p_e}{E_e} \cos \theta_{e\nu} + b \frac{m_e}{E_e} \right)$$
$$a = a(\lambda) \ b \neq 0 \text{ indicates S,T}$$

Measurement of electron energy spectrum gives *b*.

Goal: $\Delta b \leq 3 \cdot 10^{-3}$

Measurement of *a* from measurement of proton time of flight and electron energy.

Goal: $\Delta a/a \leq 10^{-3}$

Experiment is being installed right now, and is supposed to be running at SNS until end of 2021.

General Idea: J.D. Bowman, Journ. Res. NIST 110, 40 (2005) Original configuration: D. Počanić et al., NIM A 611, 211 (2009) Asymmetric configuration: S. Baeßler et al., J. Phys. G 41, 114003 (2014)

Followup: Nab polarized (abBA / PANDA)

Not yet funded or scheduled.

$$d\Gamma \propto \varrho(E_e) \left(1 + A \frac{p_e}{E_e} \cos(\vec{\sigma}_n, \vec{p}_e) + B \cos(\vec{\sigma}_n, \vec{p}_\nu) \right)$$
$$A = A(\lambda) \qquad B \neq B(\lambda) \text{ may indicate S,T,V+A}$$

Only major modification: Addition of a neutron beam polarizer

Main uncertainties in previous best experiments: statistics, detector, background, polarization

- Statistics @ SNS or NIST is sufficient for a competitive measurement of
- A, but could be better
- Superior detector energy resolution, good enough time resolution
- Keep coincidence detection (electrons and protons) to improve background
- Polarization measurement seems manageable (Crossed supermirrors or He-3)

Thanks: Stefan Baessler

Summary of present limits

Gonzalez-Alonso, Naviliat-Cuncic, Severijns hep-ph 1803.08732

Summary of experimental aims

Several experiments reaching 10^{-3} uncertainties.

Coefficient	Precision goal	Experiment (Laboratory)	Comments
τ_n	1.0 s; 0.1 s 209	BL2, BL3 (NIST) 209	In preparation; two phases
	1.0 s; 0.3 s 213	LiNA (J-PARC) 210, 213	In preparation; two phases
	$0.2 \mathrm{s}$ 214	Gravitrap (ILL) 202, 214	Apparatus being upgraded
	$0.3 \mathrm{s}$ 200	Ezhov (ILL) 200	Under construction
	$0.1 \mathrm{s}$ 221	PENeLOPE (Munich) [221]	Being developed
	$\lesssim 0.1 \mathrm{s}$ 222	UCNτ (LANL) [187], [188], [222], [223]	Ongoing
	$0.5 \mathrm{s}$ 224	HOPE (ILL) 187, 224, 225	Proof of principle Ref. 225
	$1.0 \mathrm{s}; \ 0.2 \mathrm{s} \ 187$	τ SPECT (Mainz) [187, 226]	Taking data
β -spectrum	O(0.01) 260	Supercond. spectr. (Madison) [260]	C_1 in Eq. (51). Ongoing
β -spectrum	O(0.01) 257	Si-det. spectr. (Saclay) [257, 258]	C_1 in Eq. (51). Ongoing
b_{GT}	0.001	Scintill. detectors (NSCL) [115, 264]	Analysis ongoing (⁶ He, ²⁰ F)
	O(0.001) 274	miniBETA (Krakow-Leuven) [267–269, 274]	Being commissioned
	O(0.001) 280	UCNA-Nab-Leuven (LANL) [275], 276], 280]	Analysis ongoing (⁴⁵ Ca)
b_n	0.003 285	Nab (LANL) [187], 285], 350], 351]	In preparation
	0.003 289	PERKEO III (ILL) [289]	Possible with A_n data
	0.001 [287]	PERC (Munich) [287, 288]	Planned
a_F	0.1% 299	TRINAT (TRIUMF) [299, 303]	Planned (³⁸ K)
	0.1% 336	TAMUTRAP (TA&M) <u>[336]</u>	Superallowed βp emitters
	0.1% [78]	WISArD (ISOLDE) [78, 176]	In preparation (³² Ar βp decay)
a	not stated	Ne-MOT (SARAF) [304, 305]	In preparation (¹⁸ Ne, ¹⁹ Ne, ²³ Ne)
a_{GT}	$\mathcal{O}(0.1)\%$ 308	^o He-MOT (Seattle) [<u>306</u> , <u>308</u>]	Ongoing with ^o He
	not stated	EIBT (Weizmann Inst.) $[309+311]$	In preparation (°He)
	0.5% 181	LPCTrap (GANIL) [181, 314, 316, 317]	Analysis ongoing (⁶ He, ³⁵ Ar)
a_{mirror}	0.5% 277	NSL-Trap (Notre Dame) [277, 337, 338]	Planned $({}^{11}C, {}^{13}N, {}^{15}O, {}^{17}F)$
\tilde{a}_n	1.0% 343	aCORN (NIST) <u>[343]</u> , <u>345</u> [347]	Data taking ongoing
a_n	1.0 - 1.5% 344	aSPECT (ILL) [227], [228], [344]	Analysis being finalized
	0.15% [187, 351]	Nab (LANL) [187], 285], 350], 351]	In preparation
A_n	0.2% 384	UCNA (LANL) [<u>384]</u>	Data taking planned
~	0.18% 289	PERKEO III (ILL) [289]	Analysis ongoing
A _{mirror}	$\mathcal{O}(0.1)\%$ [77]	TRINAT (TRIUMF) [77]	Planned
B_n	0.01% <mark>[390</mark>	UCNB (LANL) [390]	Planned
$A_n(a_n, B_n, C_n)$	0.05% 287	PERC (Munich) [287, 288]	In preparation
$A_n(a_n, B_n)$	$< \mathcal{O}(0.1)\%$ [392]	BRAND (ILL) [392, 393]	Proposal
D	$O(10^{-4})$ 411	MORA (GANIL / JYFL) [411]	In preparation (^{23}Mg)
R	$O(10^{-3})$ 420	MTV (TRIUMF) [420-422]	Data taking (⁸ Li) ongoing
D, R	$\mathcal{O}(0.1)\%$ [392]	BRAND (ILL) [392, 393]	Proposal

Table 3 of Gonzalez-Alonso, Naviliat-Cuncic, Severijns hep-ph 1803.08732

≁

Invited review article for Prog. Part. Nucl. Phys.

CENPA Center for Experimental Nuclear Physics and Astrophysics

Projected sensitivities

Coefficient	Precision goal	Experiment (Laboratory)	Comments
$ au_n$	1.0 s; 0.1 s 209	BL2, BL3 (NIST) 209	In preparation; two phases
	1.0 s; 0.3 s 213	LiNA (J-PARC) [210, 213]	In preparation; two phases
	$0.2 \mathrm{s}$ 214	Gravitrap (ILL) <u>202</u> , <u>214</u>	Apparatus being upgraded
	0.3 s 200	Ezhov (ILL) 200	Under construction
	$0.1 \mathrm{s}$ 221	PENeLOPE (Munich) 221	Being developed
	$\lesssim 0.1 \text{ s}$ 222	UCNτ (LANL) 187, 188, 222, 223	Ongoing
	0.5 s 224	HOPE (ILL) 187, 224, 225	Proof of principle Ref. 225
	1.0 s; 0.2 s 187	<i>τ</i> SPECT (Mainz) [187, 226]	Taking data
β -spectrum	O(0.01) [260]	Supercond. spectr. (Madison) [260]	C_1 in Eq. (51). Ongoing
β -spectrum	O(0.01) 257	Si-det. spectr. (Saclay) 257, 258	C_1 in Eq. (51). Ongoing
b_{GT}	0.001	Scintill. detectors (NSCL) 115, 264	Analysis ongoing (⁶ He, ²⁰ F)

Several experiments reaching 10^{-3} uncertainties.

Gonzalez-Alonso, Naviliat-Cuncic, Severijns hep-ph 1803.08732

Invited review article for Prog. Part. Nucl. Phys.

For the left-handed fit with real couplings we obtain the following projected uncertainties:

$$\begin{pmatrix} \delta |C_V| \\ \delta (C_A/C_V) \\ \delta (C_S/C_V) \\ \delta (C_T/C_A) \end{pmatrix} = \begin{pmatrix} 1.9 \, G_F/\sqrt{2} \\ 2.2 \\ 7.2 \\ 4.1 \end{pmatrix} \times 10^{-4} .$$
 (97)

To translate these uncertainties to the quark-level parameters, we also assume that the lattice calculation of the axial charge g_A will reach the 0.5% precision, which seems feasible looking at the preliminary result in Ref. [34]. For the remaining theory input (Δ_V^R, g_S, g_T) we use their current values. We obtain

$$\begin{pmatrix} \delta | \tilde{V}_{ud} | \\ \delta \epsilon_R \\ \delta \epsilon_S \\ \delta \epsilon_T \end{pmatrix} = \begin{pmatrix} 2.6 \\ 41 & (90\% \text{ CL}) \\ 12 & (90\% \text{ CL}) \\ 2.2 & (90\% \text{ CL}) \end{pmatrix} \times 10^{-4} .$$
(98)

Nucleon form factors (g_A, g_S, g_T) A=8, ³⁷K, recoil-order matrix elements ⁶He, ¹⁴O, ¹⁹Ne, ²⁰F beta spectra corrections (radiative, recoil) Radiative corrections in correlations (F. Glueck's work extended) Mirror transition ratios of f_A/f_V

To be completed during our workshop...

Nuclear beta decay phenomenology: beyond V-A?

CENPA

Center for Experimental Nuclear Physics and Astrophysics

Standard Model
+ non-SM-LL

$$H_{V,A} = \sum_{i=V,A} \overline{\Psi}_f O_i^{\mu} \Psi_0 \left[(C_i + C_i') \overline{e}^L O_{i,\mu} v_e^L + (C_i - C_i') \overline{e}^R O_{i,\mu} v_e^R \right]$$

$$O_i^{\mu} = \begin{cases} \gamma^{\mu} & i = V \\ \gamma^{\mu} \gamma_5 & i = A \end{cases}$$

$$H_{S,T} = \sum_{i=S,T} \overline{\Psi}_f O_i \Psi_0 \left[(C_i + C_i') \overline{e}^R O_i v_e^L + (C_i - C_i') \overline{e}^L O_i v_e^R \right]$$

$$Scalar, Tensor$$

$$O_i = \begin{cases} 1 & i = S \\ \sigma^{\mu\nu} & i = T \end{cases}$$

$$H_{PS} = \sum \overline{\Psi}_f O_i \Psi_0 \left[(C_i + C_i') \overline{e}^R O_i v_e^L + (C_i - C_i') \overline{e}^L O_i v_e^R \right]$$

$$Beeudoescalar$$

CERN ion trap

CENPA

Center for Experimental Nuclear Physics and Astrophysics

Thanks: Bertram Blank

Production of rare isotopes @ SARAF

Phase		Bea	Noutron Source			
	Proton		Deut	eron	Neutron Source	
(start	E	Ι	E	Ι	E	Rate
year)	(MeV)	(mA)	(MeV)	(mA)	(MeV)	(n/s)
I (2013)	1.5-4	0.04-2	3-5.6	0.04-1.2	0.03-20	1011
I+ (2018)	1.5-4	0.04-2	3-5.0	0.04-2	0.03-20	1013
II (2023)	5-35	0.04-5	5-40	0.04-5	0.03-55	1015

Phase - I experiments: * ⁶He measurement in EIBT. * ²³Ne measurement in MOT.

ENPA

Center for Experimental Nuclear Physics and Astrophysics

Thanks: Guy Ron

UCNtau results

Center for Experimental Nuclear Physics and Astrophysics

46

- 1. 2015 commission data (RSI)
- 2. 2015-2016 data
- 3. 2016-2017 data (Science, 2018)

We have made a measurement of τ_n for the first time with **no extrapolation**: 877.7 ± 0.7 (stat) +0.3/-0.1 (sys) s.

