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Current status of Vud and CKM unitarity
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CKM unitarity: Vud the main contributor  
to the sum and to the uncertainty
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|Vud|2 = 0.94906± 0.00041

|Vub|2 = 0.00002

|Vus|2 = 0.05031± 0.00022

0+-0+ nuclear decays

K decays

B decays

|Vud|2 + |Vus|2 + |Vub|2 = 0.9994± 0.0005



Why are superallowed decays special?
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Superallowed 0+-0+ nuclear decays:  
- only conserved vector current (unlike the neutron decay and other mirror decays) 
- many decays (unlike pion decay) 
- all decay rates should be the same modulo phase space

Experiment: f - phase space (Q value) and t - partial half-life (t1/2, branching ratio)
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ft values: same within ~2% but not exactly! 
Reason: SU(2) slightly broken 
a. RC (e.m. interaction does not conserve isospin) 
b. Nuclear WF are not SU(2) symmetric  
      (proton and neutron distribution not the same)



Why are superallowed decays special?
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Modified ft-values to include these effects

Ft = ft(1 + �0R)[1� (�C � �NS)]

Ft = 3072.1± 0.7

Average
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δ’R - “outer” correction (depends on e-energy) - QED

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
establishment of SM) was to separate RC into two pieces:

1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM

5
Diagrams taken from Ando et al, PLB 595 (2004) 250
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5
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δC - SU(2) breaking in the nuclear matrix elements 
- mismatch of radial WF in parent-daughter 
- mixing of different isospin states
δNS - RC depending on the nuclear structure 
δC,δNS - energy independent

Hardy, Towner 1973 - 2018



Corrections to superallowed decays
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Hardy, Towner 2015

12

TABLE X: Corrections δ′R, δNS and δC that are applied to experimental ft values to obtain Ft values.

Parent δ′R δNS δC1 δC2 δC
nucleus (%) (%) (%) (%) (%)

Tz = −1 :
10C 1.679 −0.345(35) 0.010(10) 0.165(15) 0.175(18)
14O 1.543 −0.245(50) 0.055(20) 0.275(15) 0.330(25)

18Ne 1.506 −0.290(35) 0.155(30) 0.405(25) 0.560(39)
22Mg 1.466 −0.225(20) 0.010(10) 0.370(20) 0.380(22)
26Si 1.439 −0.215(20) 0.030(10) 0.405(25) 0.435(27)
30S 1.423 −0.185(15) 0.155(20) 0.700(20) 0.855(28)

34Ar 1.412 −0.180(15) 0.030(10) 0.665(55) 0.695(56)
38Ca 1.414 −0.175(15) 0.020(10) 0.745(70) 0.765(71)
42Ti 1.427 −0.235(20) 0.105(20) 0.835(75) 0.940(78)

Tz = 0 :
26mAl 1.478 0.005(20) 0.030(10) 0.280(15) 0.310(18)

34Cl 1.443 −0.085(15) 0.100(10) 0.550(45) 0.650(46)
38mK 1.440 −0.100(15) 0.105(20) 0.565(50) 0.670(54)
42Sc 1.453 0.035(20) 0.020(10) 0.645(55) 0.665(56)
46V 1.445 −0.035(10) 0.075(30) 0.545(55) 0.620(63)

50Mn 1.444 −0.040(10) 0.035(20) 0.610(50) 0.645(54)
54Co 1.443 −0.035(10) 0.050(30) 0.720(60) 0.770(67)
62Ga 1.459 −0.045(20) 0.275(55) 1.20(20) 1.48(21)
66As 1.468 −0.060(20) 0.195(45) 1.35(40) 1.55(40)
70Br 1.486 −0.085(25) 0.445(40) 1.25(25) 1.70(25)
74Rb 1.499 −0.075(30) 0.115(60) 1.50(26) 1.62(27)

to explain some details of the δC2 calculation: As al-
ready mentioned, the radial functions used to calculate
the radial overlap are taken to be eigenfunctions of a
phenomenological Woods-Saxon potential. The radius
parameter of this potential is determined by our requir-
ing that the charge density constructed from the proton
eigenfunctions of the potential yields a root-mean-charge
radius in agreement with the experimental value mea-
sured by electron scattering [195]. However, in most cases
the experimental charge radius is known only for the sta-
ble isotope of the element of interest, whereas our need
is for the radius of the unstable beta-decaying isotope.
Thus, we add an estimated isotope shift to the nearby
measured rms radius and apply a generous uncertainty.
This uncertainty is only one of three contributions to the
final uncertainty quoted for each δC2 value. The other
two account for: a) the scatter in the results from three
different methodologies, and b) the scatter in the results
from different shell-model interactions used to compute
the required spectroscopic amplitudes [196].

The issue of the appropriate experimental charge ra-
dius has not been revisited since our 2002 work [196].
Since then, a new compilation of charge radii has been
published [197], including not only results from electron
scattering, but also values obtained from muonic-atom
X-rays, Kα isotope shifts and optical shifts. In this com-
pilation, radii are given for three of the beta-decaying iso-
topes of relevance to our superallowed beta-decay stud-
ies: 18Ne, 34Ar and 38mK. In addition, more recently,

collinear-laser spectroscopy on the neutron-deficient Rb
isotopes enabled the charge radius of 74Rb to be deter-
mined from its hyperfine splitting [198]. For these four
cases, therefore, we have recomputed the δC2 correction.

For the lightest three cases, 18Ne, 34Ar and 38mK, the
change in the rms charge radius was sufficient to pro-
duce a noticeable shift in the δC2 value, though not out-
side our previously quoted uncertainty. Unfortunately,
though, the reduction in the error on the rms charge ra-
dius did not significantly lower the overall uncertainty
assigned to δC2 because in all three cases the uncertainty
is dominated by the spread in the results obtained from
the three different methodologies. For the heaviest case,
74Rb, the revision in the rms radius was small, so it made
no change in the value of δC2 but did reduce its uncer-
tainty. However, even though the uncertainty in the ra-
dius was reduced by a factor of ten, it only led to a 20%
reduction in the uncertainty for δC2. For all four cases
the revised results appear in Table X.

The sum of δC1 and δC2 is shown in the last column
of Table X. As with δNS , uncertainties have been as-
signed to δC which are nucleus-specific. They represent
the spread of results obtained with different shell-model
interactions and different methodologies, as well as un-
certainties in rms radii and IMME coefficients: all for the
specific nuclei involved in each transition. We therefore
treat them subsequently as statistical uncertainties.



General Structure of RC to Beta Decay
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Reduced hadronic uncertainty in the determination of Vud
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We analyze the universal radiative correction �V
R to neutron and superallowed nuclear � decay

by expressing the hadronic �W -box contribution in terms of a dispersion relation, which we identify
as an integral over the first Nachtmann moment of the �W interference structure function F (0)

3 . By
connecting the needed input to existing data on neutrino and antineutrino scattering, we obtain
an updated value of �V

R = 0.02467(22), wherein the hadronic uncertainty is reduced. Assuming
other Standard Model theoretical calculations and experimental measurements remain unchanged,
we obtain an updated value of |Vud| = 0.97366(15), raising tension with the first row CKM unitarity
constraint. We comment on ways current and future experiments can provide input to our dispersive
analysis.

The unitarity test of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix serves as one of the most important pre-
cision tests of the Standard Model. In particular, tests of
first-row CKM unitarity |Vud|

2 + |Vus|
2 + |Vub|

2 = 1 re-
ceive the most attention since these matrix elements are
known with highest precision, all with comparable uncer-
tainties. The good agreement with unitarity [1] serves as
a powerful tool to constrain New Physics scenarios.

Currently, the most precise determination of |Vud|

comes from measurements of half-lives of superallowed
0+ ! 0+ nuclear � decays with a precision of 10�4 [2]. At
tree-level, these decays are mediated by the vector part of
the weak charged current only, which is protected against
renormalization by strong interactions due to conserved
vector current (CVC), making the extraction of |Vud| rel-
atively clean. Beyond tree-level, however, electroweak ra-
diative corrections (EWRC) involving the axial current
are not protected, and lead to a hadronic uncertainty
that dominates the error in the determination of |Vud|.

The master formula relating the CKM matrix element
|Vud| to the superallowed nuclear � decay half-life is [2]:

|Vud|
2 =

2984.432(3) s

Ft(1 +�V
R)

, (1)

where the nucleus-independent Ft-value is obtained from
the experimentally measured ft-value by absorbing all
nuclear-dependent corrections, and where �V

R represents
the nucleus-independent EWRC. Currently, an average
of the 14 best measured half-lives yields an extraordinar-
ily precise value of Ft = 3072.27(72) s. A similar mas-
ter formula exists for free neutron � decay [3] depend-
ing additionally on the axial-to-vector nucleon coupling
ratio � = gA/gV , and is free of nuclear-structure uncer-
tainties. But the much larger experimental errors in the
measurement of its lifetime and the ratio � [4] makes it

less competitive in the extraction of |Vud|. Regardless, if
first-row CKM unitarity is to be tested at a higher level
of precision, improvement in the theoretical estimate of
�V

R by reducing hadronic uncertainties is essential.
The best determination of �V

R = 0.02361(38) was ob-
tained in 2006 by Marciano and Sirlin [5] (in the fol-
lowing, we refer to their work as [MS]). They were able
to reduce the hadronic uncertainty by a factor of 2 over
their earlier calculation [6] by using high order pertur-
bative QCD corrections originally derived for the polar-
ized Bjorken sum rule to precisely estimate the short dis-
tance contribution. At intermediate distances, an inter-
polating function motivated by vector meson dominance
(VMD) was used to connect the long and short distances
and was identified as the dominant source of theoreti-
cal uncertainty. This result leads to the current value of
|Vud| = 0.97420(21) [1].
In this Letter, we introduce a new approach for eval-

uating �V
R based on dispersion relations which relate

it to directly measurable inclusive lepton-hadron and
neutrino-hadron structure functions. Dispersion rela-
tions have proved crucial for evaluating the �Z-box cor-
rection to parity violating electron-hadron interaction in
atoms and in scattering processes [7–19]. It led to a sig-
nificant shift in the 1-loop SM prediction for the hadronic
weak charges, and ensured a correct extraction of the
weak mixing angle at low energy [20]. Using existing
data on neutrino and anti-neutrino scattering, we obtain
a more precise value of the nucleus-independent EWRC,

�V
R = 0.02467(22) , (2)

and therefore a new determination of |Vud|,

|Vud| = 0.97366(15). (3)

Ft = ft(1 + �0R)[1� (�C � �NS)]

Three caveats:  
1. Calculation of the universal free-neutron RC ΔRV  — Talk by Chien Yeah 
2. Splitting the full nuclear RC into free-neutron ΔRV and nuclear modification δNS 
3. Splitting the full RC into “outer” (energy-dependent but pure QED: no hadron structure)  

and “inner” (hadron&nuclear structure-dependent but energy-independent)  
- nucleon and nuclear case

Will address points 2. and 3.



2.Radiative corrections to nuclear decays: 
Nuclear structure modification of the free-n RC
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General structure of nuclear and radiative corrections for nuclear decay
ft(1 +RC) = Ft(1 + �0R)(1� �C + �NS)(1 +�V

R)

Caveats in the Ft values

δ’R  - coulomb distortions: QED + Z of daughter + nuclear size 

δC - Isospin breaking: correction to the tree-level matrix element of the Fermi op. 
implicitly a radiative correction: Coulomb interaction between the protons in a nucleus 
shell-model calculation w. Woods-Saxon potential (SM WS) 
beyond the scope of this work - but an independent check in nuclear models welcome 

δNS - modification of the universal RC due to nuclear environment 
Convention: extract the free-nucleon RC explicitly, then correct for each nucleus. 
Universal RC calculated by loop techniques or w. DR; 
Nuclear modification calculated in SM WS

!8

12

Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,

|Vud|
2 =

2984.43s

Ft(1 +�V
R)

, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
,(52)

the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
B ! C Nucl.

B = C free n
B + [q(0)S qA � 1]C free n

B . (53)

The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion

ΔV
R

δNS

If two pieces of one well-defined object are computed in two different frameworks, 
the subtraction might be model-dependent! 
Desirable to use the same method to compute both - DR is a valid candidate!



Universal vs. Nuclear Corrections

!9

12

Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,

|Vud|
2 =

2984.43s

Ft(1 +�V
R)

, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
,(52)

the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
B ! C Nucl.

B = C free n
B + [q(0)S qA � 1]C free n

B . (53)

The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion
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Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,

|Vud|
2 =

2984.43s

Ft(1 +�V
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, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
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the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
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The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion

Define the nuclear γW-box  
per active nucleon

Need the nuclear structure function F3(0) 
Where is it different from the free-nucleon F3(0)? - Everywhere! 

Long distances: LE nuclear structure - excited nuclear states; quasielastic knockout; … 
Intermediate distances: widening of N*,Δ-resonances (energy can be shared w. neighbors) 
Short distances: shadowing, EMC effect (N of active quarks may depend on kinematics) 

Quite complicated… in the future all these effects must be addressed! But: 
The integral has more weight at low energies - HE modifications may be less important; 
N*,Δ-resonances have no impact on the γW-box 

To start: consider the long-range part

Resonances

DIS

Input to DR for free-n RC Input to DR for nuclear RC
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Coupling to the same nucleon: 
Low energy - quasielastic vs. free nucleon Born

Coupling to two different nucleons: 
Lowest energies - nuclear excited states, 
QE region - 2+ nucleon knockout 
SM WS calculations: δNS ~ -0.3% - 0 Hardy, Towner ’15, ‘18

ΔV
R =

α
π [Short and Intermediate Distance + CB]

Long-distance content of ΔRV - mostly Born contribution

How is it modified in a nucleus? 
Due to binding the nucleon is slightly off-shell and  
has an initial momentum distribution -  
a broad QE peak instead of a δ-function
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Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,
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Ft(1 +�V
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, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,
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the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
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B = C free n
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The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion

Born uniquely defined: a δ-function in the SF

Operating with nucleon d.o.f. — nuclear SF has two contributions:
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□VA, QE
γW =

α
πM ∫

2 GeV 2

0
dQ2 ∫

νπ

νthr

dν(ν + 2q)
ν(ν + q)2

F(0) QE
3 (ν, Q2) =

α
2π

CQE

Exploratory calculation: disregard fine details, account for main effects 
Main features: Fermi momentum and break-up threshold 

Problem: mismatch of the initial and final state  
Break-up thresholds differ by the Q-value of the decay! 
Solution: define an average threshold 

✏1 = MA�p +Mn �MA ✏2 = MA0�n +Mn �MA

Effective removal energies - all in a small range

Fermi momenta also not too different for all A
kF (A = 10) = 228MeV, kF (A = 74) = 245MeV

ϵ̄ = 7.5 ± 1.5MeV
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Decay ✏1 (MeV) ✏2 (MeV) ✏ (MeV)
10
C !10

B 6.70 4.79 5.67
14
O !14

N 8.24 5.41 6.68
18
Ne !18

F 8.11 4.71 6.18
22
Mg !22

Na 10.41 6.28 8.09
26
Si !26

Al 11.14 6.30 8.38
30
S !30

P 10.64 5.18 7.42
34
Ar !34

Cl 11.51 5.44 7.91
38
Ca !38

K 11.94 5.33 7.98
42
T i !42

Sc 11.57 4.55 7.25
26m

Al !26
Mg 11.09 6.86 8.72

34
Cl !34

S 11.42 5.92 8.22
38m

K !38
Ar 11.84 5.79 8.28

42
Sc !42

Ca 11.48 5.05 7.61
46
V !46

T i 13.19 6.14 9.00
50
Mn !50

Cr 13.00 5.37 8.35
54
Co !54

Fe 13.38 5.13 8.28
62
Ga !62

Zn 12.90 3.72 6.94
66
As !66

Ge 12.74 3.16 6.34
70
Br !70

Se 13.17 3.20 6.49
74
Rb !74

Kr 13.85 3.44 6.90

TABLE I: E↵ective removal energy ✏ as calculated from the
mother and daughter removal energies ✏2,1 for all superallowed
� decays listed in Ref. [4].

with ✏ = MA�1 +M �MA the nucleon removal energy.
This nucleon removal energy is another scale that is rel-
evant for QE scattering. Because of a non-zero Q-value
for each decay, in every pair parent-daughter there is not
one, but two removal energies. Specifically, for �+ decay
these are given by

✏1 = MA00 +Mn �MA0 ,

✏2 = MA00 +Mn �MA < ✏1, (59)

with A00 = A � p = A0
� n the spectator nucleus. For

�� decay the proton and neutron masses should be ex-
changed in this definition. We only account for bulk
properties of nuclear structure at this step, and define
an average removal energy for each pair,

✏ =
p
✏1✏2 (60)

We consider 20 decay modes collected in the 2015 re-
view by Hardy and Towner [4], use the known Q-values
of the decays and calculate relevant nucleon removal en-
ergies and summarize the results in Table I. We no-
tice that while individual breakup thresholds vary signif-
icantly from isotope to isotope, the average removal en-
ergies all fall in a narrow range, ✏ = 7.5±1.5 MeV. Fermi
momentum also varies in a small range, from 228 MeV to
245 MeV, from lightest to heaviest nucleus. We use the
model with the average vaues of Fermi momentum and
breakup threshold for calculating the bulk quasielastic
contribution ⇤V A, QE

�W universal for all nuclei, and do not

attempt to address the nuclear-specific corrections at this
time. The numerical evaluation of the QE contribution
in Fermi gas model gives

CQE = 0.44± 0.04, (61)

corresponding to a new estimate of the “quenching of
the Born contribution” (using CB = 0.89 for consistency
with [29, 31])

CQE � CB = �0.45± 0.04. (62)

We observe that the nuclear environment reduces the size
of the elastic box correction by about a half. This ef-
fect can be qualitatively understood by noticing the 1/⌫2

weighting under the integral. As compared to the free
nucleon case where the threshold is at ⌫ = Q2/(2M),
binding e↵ects in nuclei shift that threshold to ⌫ =
Q2/(2MA) + ✏, and Pauli blocking is another source of
reduction (Ref. [32] observed the e↵ect of Pauli block-
ing upon the �Z-box contribution to parity violation in
heavy atoms). We checked that in the limit ✏, kF ! 0
we recover the Born contribution on a free nucleon.
For a meaningful comparison with Refs. [29, 31], we

extract the average of their estimates for 20 decays,

[q(0)S qA � 1]CB = �0.25(6) and notice a significantly
larger nuclear modification in our approach. This means
that retaining all other nuclear corrections in Ref. [4],
the universal Ft value should be corrected by

↵

⇡
(CQE � q(0)S qACB) = �(4.6± 0.9)⇥ 10�4,

(63)

leading to a new estimate

Ft = 3072.07(63)s ! [Ft]new = 3070.65(63)(28)s, (64)

with the second uncertainty stemming from that of the
QE contribution. This shift in the Ft value partially
cancels the large shift in the value of Vud that followed
from the new dispersion evaluation of �V

R in the previous
Section,

V new
ud = 0.97370(14) ! V new, QE

ud = 0.97392(14)(04)

(65)

and that in the first-row CKM unitarity,

|Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9984± 0.0004 (66)

! |Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9988± 0.0004,

three standard deviation from exact unitarity, and within
1.25 standard deviations from the current PDG value,
|Vud|

2 + |Vus|
2 + |Vub|

2 = 0.9994± 0.0005.
As mentioned above, we consider this new dispersion

relation-based estimate of the quasielastic nuclear correc-
tion as exploratory. Unlike our new evaluation of the free
nucleon correction �V

R that is very solid, the quasielastic
calculation can be considered as less reliable since it is



A simple calculation of a QE cross section:  
nucleon momentum distribution ϕAp ≃ϕA’n

Modification of CB in a nucleus - QE

|A⟩ = 2EA ∑
p∈A

∫
d3 ⃗k ϕp

A(k) |p( ⃗k ), A − p(− ⃗k )⟩

(2π)3 2EA−1 2En

|A′�⟩ = 2EA′� ∑
n∈A′�

∫
d3 ⃗k ϕn

A′ �(k) |n( ⃗k ), A′�− n(− ⃗k )⟩
(2π)3 2EA−1 2En

Free Fermi gas model
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When ⇤2
� M2, the first Nachtmann moment reduces

e↵ectively to the first Mellin’s moment:

M (0)
3 (1, Q2) !

Z 1

0
dxF (0)

3 (x,Q2) (F2)

where x = Q2/(2M⌫) is the Bjorken variable. In the

parton model the structure function F (0)
3 depends on a

combination of PDF’s

F (0)
3 (x) =

eu + ed
8

(dn(x)� ūn(x)). (F3)

Assuming further a symmetric sea in the neutron, ūn =
d̄n, the integral over x simply gives the number of valence
d-quarks inside the neutron (or equivalently, the num-

ber of valence u-quark inside the proton),
R 1
0 dx(dn(x)�

d̄n(x)) =
R 1
0 dxdV (x) = 2, and we obtain the large loga-

rithm term already obtained by MS:

⇤V A,DIS
�W ⇡

3↵

2⇡

eu + ed
4

ln
M2

W

⇤2
=

↵

4⇡
ln

MW

⇤
, (F4)

An important result from Ref. [3] was to realize that
all pQCD corrections to this leading logarithm term are
identical to those entering Bjorken sum rule for polarized
electroproduction. These corrections modify the leading
log (LL) result for the MS function F (Q2),

FLL(Q2) =
1

Q2
(F5)

F pQCD =
1

Q2

2

41� ↵MS
s

⇡
� C2

 
↵MS
s

⇡

!2

� C3

 
↵MS
s

⇡

!3
3

5 ,

with C2 = 4.583 � 0.333NF and C3 = 41.440 �

7.607NF + 0.177N2
F , NF standing for the number of ef-

fective quark flavors, and ↵MS
s (Q2) denotes the running

strong coupling constant in the modified minimal sub-
traction scheme. Numerically, the pQCD corrections re-
duce the large logarithm ln(MW /⇤) ⇡ 3.98 by roughly 8
%.

Appendix G: Quasielastic contribution to the �
+

decay of heavy nucleus

In this appendix we demonstrate that the Born contri-
bution to F3 calculated on a free nucleon is modified in
a nucleus by binding e↵ects and Fermi motion.

First, realizing that all the superallowed �-decay in
heavy nucleus considered in the determination of Vud are
actually �+ decay, it is instructive to first study the am-
plitude of the “free” proton decay p ! ne+⌫e despite
that it is in fact kinematically prohibited. In analogy
to Eq. (16), the tree-level and the V ⇥ A contribution
from the �W box-diagram to the Fermi amplitude of the
proton �+ decay can be written as:

T p
W + TV A,p

�W = �
p
2GFVud

h
1 +⇤V A,p

�W

i
ū⌫p/(1� �5)ve,

(G1)

and one may straightforwardly demonstrate that

⇤V A,p
�W = 4⇡↵Re

Z
d4q

(2⇡)4
M2

W

M2
W +Q2

Q2 + ⌫2

Q4

T (0),p
3 (⌫, Q2)

M⌫
,

(G2)
with the form identical to Eq. (17). The function

T (0),p
3 (⌫, Q2) is the parity-odd spin-independent invariant

amplitude involving J (0)µ
em , namely the isosinglet compo-

nent of the electromagnetic current, in the following for-
ward Compton tensor:

Tµ⌫
�W,p =

Z
dxeiqxhn|T [Jµ

em(x) (J⌫
W (0))†]|pi. (G3)

Next, by isospin symmetry one can show that:

hp| J (0)µ
em J⌫

W |ni = hn| J (0)µ
em (J⌫

W )† |pi . (G4)

From the result above one immediately deduces that

T (0),p
3 = T (0)

3 , i.e. ⇤V A,p
�W = ⇤V A

�W . So what we studied
here for the neutron beta decay can be directly applied
to case of the �+ decay of proton.
The binding e↵ects of nucleons in a nucleus in a �+ de-

cay can be taken into account in the PWIA where there’s
one active nucleon per interaction. We write for the ini-
tial state |Ai and final state |A0

i wave functions

|Ai =
p

2EA

X

p2A

Z
d3~k�p

A(k)|p(
~k), A� p(�~k)i

(2⇡)3
p
2EA�1 2En

(G5)

|A0
i =

p
2EA0

X

n2A0

Z
d3~k�n

A0(k)|n(~k), A0
� n(�~k)i

(2⇡)3
p
2EA�1 2En

,

with the on-shell condition for the intermediate nuclear
state A�p = A0

�n but in general o↵-shell active nucleon.
The momentum distribution function is normalized as

Z
d3~k

(2⇡)3
|�(k)|2 = 1 (G6)

while the nuclear state normalization is

hA(~k)|A(~k0)i = (2⇡)32EA�
3(~k � ~k0). (G7)

The �W interference Compton tensor in the �+ decay
of a heavy nucleus A can be defined as

Tµ⌫
�W,A =

Z
dxeiqxhA0

|T [Jµ
em(x) (J⌫

W (0))†]|Ai. (G8)

Using the above definitions we arrive to the following
expression in PWIA:

Tµ⌫
�W,A =

X

p2A

Z
d3~k

(2⇡)3
(�n

A0(k))⇤�p
A(k)T

µ⌫
�W,p. (G9)

We aim at a universal correction that only takes into
account the bulk nuclear properties, not the fine details
of each mother and daughter nucleus. To this precision
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we assume that the momentum distribution of protons
in the mother and neutrons in the daughter nucleus are
the same, �p

A0(k) = �n
A(k) = �(k). This assumption is

natural, e.g. in the Fermi gas model of nucleus that we
shall describe later. We then obtain a master formula in
PWIA:

Tµ⌫
�W,A(P, q) =

X

p2A

Z
d3~k

(2⇡)3
|�(k)|2Tµ⌫

�W,p(k, q), (G10)

with the nuclear momentum taken at rest, Pµ = (MA,~0).
The Compton tensor Tµ⌫

�W,A can be decomposed in terms
of invariant functions as in Eq. (18), and we are inter-

ested in the P-odd invariant function T (0)
3,A.

It is informative to consider the limit of non-interacting
nucleons (nucleon tensor independent of k) where we ob-
tain

Tµ⌫
�W,A =

X

p2A

Tµ⌫
�W,p. (G11)

The relation DisTi = 4⇡Fi holds for each target with the
respective mass. The nucleus is considered at rest, and
neglecting nucleon recoil corrections ⇠ ~k2/M2 we obtain
for the structure function of interest,

F (0)
3,A =

X

p2A

F (0)
3,p . (G12)

In the limit of non-interacting nucleons, the nuclear
structure function scales as the number of protons, just
as the vector tree-level coupling of the W boson to the
nucleus does. This confirms the result of Marciano and
Sirlin for CB obtained in the free nucleon limit.

We now want to go beyond this limit by using Eq.
(G10) to obtain:

F (0)
3,A(P · q,Q2) =

X

p2A

Z
d3~k

(2⇡)3
|�(k)|2F (0)

3,p (k · q,Q2).

Here we are interested in the quasielastic contribution

to F (0)
3,A which results from the smearing of the elastic

term of the free proton. The latter can be inferred from
Eq. (B3) by remembering that the result for proton and
neutron are the same as we discussed above:

F (0),B
3,p (k · q,Q2) = F (0),B

3 (k · q,Q2) (G13)

= �
Q2

4
GA(Q

2)GS
M (Q2)�((k + q)2 �M2).

To perform the integral over d3~k = k2dkd cos ✓d� we
choose the z-axis along the direction of the virtual pho-
ton, qµ = (⌫, 0, 0, q) with ⌫ = (P · q)/MA and q =p

⌫2 +Q2. The � integration is trivial while the �-
function removes that over d cos ✓ via

�((k + q)2 �M2) =
1

2kq
�(cos ✓ � cos ✓k), (G14)

with

cos ✓k =
(MA + ⌫)2 � 2(MA + ⌫)pA�1 +M2

A�1 �M2
� ~q2

2kq
,

(G15)

with pA�1 =
q

M2
A�1 +

~k2 the spectator recoil. One is

left with an integral over k = |~k| to obtain the quasielastic

contribution to F (0)
3,A:

F (0),QE
3,A (⌫, Q2) = �

X

p2A

GAG
S
M

Q2

32⇡2q

k+Z

k�

kdk|�(k)|2.

(G16)

Requiring that �1  cos ✓k  1 yields the upper and
lower limits of k as shown in Eq. (57) upon neglecting
terms of order ✏/MA. Thus, for the parent nucleus with
Z protons we obtain:

F (0),QE
3,A (⌫, Q2) = �ZGAG

S
M

Q2

16q
h
1

k
i(⌫, Q2), (G17)

with the average inverse nucleon momentum defined as

h
1

k
i(⌫, Q2) =

k+(⌫,Q2)Z

k�(⌫,Q2)

k2dk

2⇡2
|�(k)|2

1

k
. (G18)

As a toy model we consider the Fermi gas model that
corresponds to a uniform momentum distribution inside
the sphere of radius equal to the Fermi momentum kF

1

(2⇡)3
|�(k)|2 =

3

4⇡k3F
✓(kF � |~k|), (G19)

resulting in

h
1

k
i(⌫, Q2) =

3
⇣
(k̃+)2 � (k̃�)2

⌘

2k3F
, (G20)

where k̃± = min(k±, kF ) as mentioned in the main text.
Finally, we account for Pauli blocking by means of the
function

FP (|~q|, kF ) =
3|~q|

4kF


1�

~q2

12k2F

�
for |~q|  2kF ,(G21)

and FP = 1 otherwise. With these we obtain F (0),QE
3,A per

proton for �+ decay of a heavy nucleus as:

1

Z
F (0),QE
3,A (⌫, Q2) = �GAG

S
M

3Q2

32q
FP

⇣
(k̃+)2 � (k̃�)2

⌘

k3F
.

(G22)

Pauli blocking
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and FP = 1 otherwise. With these we obtain F (0),QE
3,A per

proton for �+ decay of a heavy nucleus as:

1

Z
F (0),QE
3,A (⌫, Q2) = �GAG

S
M

3Q2

32q
FP

⇣
(k̃+)2 � (k̃�)2

⌘

k3F
.

(G22)

𝜈 = Q2/2M 𝜈 ≥ Q2/2M + ϵ

kF

Result of the calculation: Born suppressed by ~ factor 2

!12

Reason for suppression:  

integrand ~  

QE: finite threshold; 
Bulk of QE shifted by kF

FγW (0)
3

ν2

CQE − CB = − 0 . 45 ± 0 . 04



Universal vs. Nuclear Corrections

!13

Compare to existing estimate! 
Towner 1994 and ever since:

12

Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,

|Vud|
2 =

2984.43s

Ft(1 +�V
R)

, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
,(52)

the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
B ! C Nucl.

B = C free n
B + [q(0)S qA � 1]C free n

B . (53)

The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion

universal

nuclear δNS
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with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion

Idea: calculate Gamow-Teller and magnetic nuclear transitions in the shell model; 
Insert the single nucleon spin operators —> predict the strength of nuclear transitions 
“Quenching of spin operators in nuclei”: shell model overestimates those strengths! 

Each vertex is suppressed by 10-15% 
Hardy, Towner: just rescale the Born contribution to the γW-box by that quenching,  
assume the integral to be the same (nucleon form factors)

But from dispersion relation perspective it corresponds  
to a contribution of an excited nuclear state,  
not to the  modified box on a free nucleon! 
The correct estimate should base on quasielastic knockout 
with an on-shell N + spectator in the intermediate state
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Decay ✏1 (MeV) ✏2 (MeV) ✏ (MeV)
10
C !10

B 6.70 4.79 5.67
14
O !14

N 8.24 5.41 6.68
18
Ne !18

F 8.11 4.71 6.18
22
Mg !22

Na 10.41 6.28 8.09
26
Si !26

Al 11.14 6.30 8.38
30
S !30

P 10.64 5.18 7.42
34
Ar !34

Cl 11.51 5.44 7.91
38
Ca !38

K 11.94 5.33 7.98
42
T i !42

Sc 11.57 4.55 7.25
26m

Al !26
Mg 11.09 6.86 8.72

34
Cl !34

S 11.42 5.92 8.22
38m

K !38
Ar 11.84 5.79 8.28

42
Sc !42

Ca 11.48 5.05 7.61
46
V !46

T i 13.19 6.14 9.00
50
Mn !50

Cr 13.00 5.37 8.35
54
Co !54

Fe 13.38 5.13 8.28
62
Ga !62

Zn 12.90 3.72 6.94
66
As !66

Ge 12.74 3.16 6.34
70
Br !70

Se 13.17 3.20 6.49
74
Rb !74

Kr 13.85 3.44 6.90

TABLE I: E↵ective removal energy ✏ as calculated from the
mother and daughter removal energies ✏2,1 for all superallowed
� decays listed in Ref. [4].

[q(0)S qA � 1]CB = �0.25 and notice a significantly larger
nuclear modification in our approach. This means that
retaining all other nuclear corrections in Ref. [4], the
universal Ft value should be corrected by

↵

⇡
(CQE � CB � [q(0)S qA � 1]CB) = �(4.6± 0.9)⇥ 10�4,

(64)

leading to a new estimate

Ft = 3072.07(63)s ! [Ft]new = 3070.65(63)(28)s, (65)

with the second uncertainty stemming from that of the
QE contribution. This shift in the Ft value partially
cancels the large shift in the value of Vud that followed
from the new dispersion evaluation of �V

R in the previous
Section,

V new
ud = 0.97370(14) ! V new, QE

ud = 0.97392(14)(04)

(66)

and that in the first-row CKM unitarity,

|Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9984± 0.0004 (67)

! |Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9988± 0.0004,

three standard deviation from exact unitarity, and within
1.25 standard deviations from the current PDG value,
|Vud|

2 + |Vus|
2 + |Vub|

2 = 0.9994± 0.0005.

As mentioned above, we consider this new dispersion
relation-based estimate of the quasielastic nuclear correc-
tion as exploratory. Unlike our new evaluation of the free
nucleon correction �V

R that is very solid, the quasielastic
calculation can be considered as less reliable since it is
based on a simple free Fermi gas model, and is not yet
directly validated by experimental data. Nevertheless,
we emphasize that our new evaluation of the “quenched
Born contribution” is much better justified, as compared
to the old approach of Ref. [30] that enters �NS which de-
termines the universal Ft value. The dispersion approach
also provides the basis for a unification of the universal
correction �V

R and the nuclear structure-dependent cor-
rections �NS , �C within the same framework. To further
advance the evaluation of these corrections, the following
steps will be necessary: i) more advanced calculations of
the QE single-nucleon knock-out contribution using up-
to-date nuclear theory and validated by experimental QE
data; ii) advanced calculations of the QE two-nucleon
knock-out that is the main contribution to �NS , which
should also be confronted with the experimental data;
iii) include nuclear shadowing e↵ects which may a↵ect
the evaluation of �V

R on a nucleus, and have not been
considered in the literature. To set up this research pro-
gram, a close cooperation between particle and nuclear
theorists, and experimentalists will be crucial.

VIII. RELATION TO eN-SCATTERING DATA

Besides making use of the neutrino scattering data, one
other possibility to probe the �W interference matrix
element in experiment is to relate it to the �Z matrix
element which can be measured in parity-violating eN -
scattering through isospin symmetry. To illustrate this
point, we first define a set of rank-one spherical tensors in
the isospin space using the axial current Aµ

i = q̄�µ�5⌧iq:

A±1,µ
1 = ⌥

1
p
2
(Aµ

1 ± iAµ
2 )

A0,µ
1 = Aµ

3 (68)

such that the axial components of the charged and neu-
tral weak currents are given by (Jµ

W )A = (1/
p
2)A1,µ

1 and

(Jµ
Z)A = �(1/2)A0,µ

1 . With this, one can easily show us-
ing the Wigner-Eckart theorem in the isospin space that

hp| J (0)µ
em (J⌫

W )A |ni (69)

= hp| J (0)µ
em (J⌫

Z)A |pi � hn| J (0)µ
em (J⌫

Z)A |ni ,

where J (0)µ
em is the isosinglet component of the electro-

magnetic current (and a superscript “3” will denote its

isotriplet component). Next, we can write J (0)µ
em =

Jµ
em � J (3)µ

em at the right hand side of the equation above

and argue that the terms with J (3)µ
em sum up to zero. The

reason is simple: both J (3)µ
em and (J⌫

Z)A are (I = 1, I3 = 0)
objects, so their product can only be (I = 0, I3 = 0) or

Numerically: on average
δqBNS ~ - 0.055(5)% used in all reviews since 1998
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Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,

|Vud|
2 =

2984.43s

Ft(1 +�V
R)

, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
,(52)

the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
B ! C Nucl.

B = C free n
B + [q(0)S qA � 1]C free n

B . (53)

The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion
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representation,

CQE = 2

1Z

0

dQ2

⌫⇡Z

0

d⌫(⌫ + 2q)

M⌫(⌫ + q)2
F (0), QE
3, �W (⌫, Q2). (56)

In an exploratory calculation, we describe the
quasielastic peak in the �W box contribution to a super-
allowed �+ decay process A ! A0e+⌫e in the plane-wave
impulse approximation (PWIA). In this picture, a nu-
cleus first splits into an on-shell spectator nucleus A00 and
an active o↵-shell nucleon, and the latter interacts with
the gauge bosons. The e↵ective forward Compton scat-
tering process between the gauge bosons and the nucleus
is AW�

! nA00
! A0�. The active nucleon carries an

o↵-shell momentum k before interacting with the gauge
boson, and to describe its distribution in the nucleus we
adopt the Fermi gas model which assumes a uniform dis-
tribution of nucleon momenta within the Fermi sphere
with the Fermi momentum kF .

We compute the quasielastic contribution to the struc-

ture function F (0)
3 per proton in a nucleus. Details of

the calculation are reported in Appendix G, and here we
simply show the final result,

1

N
F (0),QE
3, �W (⌫, Q2) = �GAG

S
M

3Q2

32q
FP

⇣
(k̃+)2 � (k̃�)2

⌘

k3F
,

(57)

where the 1/Z normalization is specific for �+ process,
which should be replaced by 1/N for �� decay. Above,
FP (|~q|, kF ) is a function describing the Pauli blocking
e↵ect during the interaction between the active nucleon
and the gauge bosons, while k̃± = min(kF , k±) where
k± denote the upper and lower limits of the active nu-
cleon three-momentum k. These arise due to the on-shell
condition for the intermediate nucleon and are given by

k± =

�����
q

2

MA�1 + ⌫ � ⌫min
MA
2 + ⌫ � ⌫min

±
MA + ⌫

2

p
(⌫ � ⌫min)(2MMA�1/MA + ⌫ � ⌫min)

MA
2 + ⌫ � ⌫min

����� , (58)

where we introduced the threshold energy for the
quasielastic breakup,

⌫min = Q2/(2MA) + ✏, (59)

with ✏ = MA�1 +M �MA the nucleon removal energy.
This nucleon removal energy is another scale that is rel-
evant for QE scattering. Because of a non-zero Q-value
for each decay, in every pair parent-daughter there is not
one, but two removal energies. Specifically, for �+ decay
these are given by

✏1 = MA00 +Mn �MA0 ,

✏2 = MA00 +Mn �MA < ✏1, (60)

with A00 = A � p = A0
� n the spectator nucleus. For

�� decay the proton and neutron masses should be ex-
changed in this definition. We only account for bulk
properties of nuclear structure at this step, and define
an average removal energy for each pair,

✏ =
p
✏1✏2 (61)

We consider 20 decay modes collected in the 2015 re-
view by Hardy and Towner [4], use the known Q-values
of the decays and calculate relevant nucleon removal en-
ergies and summarize the results in Table I. We no-
tice that while individual breakup thresholds vary signif-
icantly from isotope to isotope, the average removal en-
ergies all fall in a narrow range, ✏ = 7.5±1.5 MeV. Fermi

momentum also varies in a small range, from 228 MeV to
245 MeV, from lightest to heaviest nucleus. We use the
model with the average vaues of Fermi momentum and
breakup threshold for calculating the bulk quasielastic
contribution ⇤V A, QE

�W universal for all nuclei, and do not
attempt to address the nuclear-specific corrections at this
time. The numerical evaluation of the QE contribution
in Fermi gas model gives

CQE = 0.44± 0.04, (62)

corresponding to a new estimate of the “quenching of
the Born contribution” (using CB = 0.89 for consistency
with [30, 32])

CQE � CB = �0.45± 0.04. (63)

We observe that the nuclear environment reduces the size
of the elastic box correction by about a half. This ef-
fect can be qualitatively understood by noticing the 1/⌫2

weighting under the integral. As compared to the free
nucleon case where the threshold is at ⌫ = Q2/(2M),
binding e↵ects in nuclei shift that threshold to ⌫ =
Q2/(2MA) + ✏, and Pauli blocking is another source of
reduction (Ref. [35] observed the e↵ect of Pauli block-
ing upon the �Z-box contribution to parity violation in
heavy atoms). We checked that in the limit ✏, kF ! 0
we recover the Born contribution on a free nucleon.
For a meaningful comparison with Refs. [30, 32], we

extract the average of their estimates for 20 decays,
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Decay ✏1 (MeV) ✏2 (MeV) ✏ (MeV)
10
C !10

B 6.70 4.79 5.67
14
O !14

N 8.24 5.41 6.68
18
Ne !18

F 8.11 4.71 6.18
22
Mg !22

Na 10.41 6.28 8.09
26
Si !26

Al 11.14 6.30 8.38
30
S !30

P 10.64 5.18 7.42
34
Ar !34

Cl 11.51 5.44 7.91
38
Ca !38

K 11.94 5.33 7.98
42
T i !42

Sc 11.57 4.55 7.25
26m

Al !26
Mg 11.09 6.86 8.72

34
Cl !34

S 11.42 5.92 8.22
38m

K !38
Ar 11.84 5.79 8.28

42
Sc !42

Ca 11.48 5.05 7.61
46
V !46

T i 13.19 6.14 9.00
50
Mn !50

Cr 13.00 5.37 8.35
54
Co !54

Fe 13.38 5.13 8.28
62
Ga !62

Zn 12.90 3.72 6.94
66
As !66

Ge 12.74 3.16 6.34
70
Br !70

Se 13.17 3.20 6.49
74
Rb !74

Kr 13.85 3.44 6.90

TABLE I: E↵ective removal energy ✏ as calculated from the
mother and daughter removal energies ✏2,1 for all superallowed
� decays listed in Ref. [4].

[q(0)S qA � 1]CB = �0.25 and notice a significantly larger
nuclear modification in our approach. This means that
retaining all other nuclear corrections in Ref. [4], the
universal Ft value should be corrected by

↵

⇡
(CQE � CB � [q(0)S qA � 1]CB) = �(4.6± 0.9)⇥ 10�4,

(64)

leading to a new estimate

Ft = 3072.07(63)s ! [Ft]new = 3070.65(63)(28)s, (65)

with the second uncertainty stemming from that of the
QE contribution. This shift in the Ft value partially
cancels the large shift in the value of Vud that followed
from the new dispersion evaluation of �V

R in the previous
Section,

V new
ud = 0.97370(14) ! V new, QE

ud = 0.97392(14)(04)

(66)

and that in the first-row CKM unitarity,

|Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9984± 0.0004 (67)

! |Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9988± 0.0004,

three standard deviation from exact unitarity, and within
1.25 standard deviations from the current PDG value,
|Vud|

2 + |Vus|
2 + |Vub|

2 = 0.9994± 0.0005.

As mentioned above, we consider this new dispersion
relation-based estimate of the quasielastic nuclear correc-
tion as exploratory. Unlike our new evaluation of the free
nucleon correction �V

R that is very solid, the quasielastic
calculation can be considered as less reliable since it is
based on a simple free Fermi gas model, and is not yet
directly validated by experimental data. Nevertheless,
we emphasize that our new evaluation of the “quenched
Born contribution” is much better justified, as compared
to the old approach of Ref. [30] that enters �NS which de-
termines the universal Ft value. The dispersion approach
also provides the basis for a unification of the universal
correction �V

R and the nuclear structure-dependent cor-
rections �NS , �C within the same framework. To further
advance the evaluation of these corrections, the following
steps will be necessary: i) more advanced calculations of
the QE single-nucleon knock-out contribution using up-
to-date nuclear theory and validated by experimental QE
data; ii) advanced calculations of the QE two-nucleon
knock-out that is the main contribution to �NS , which
should also be confronted with the experimental data;
iii) include nuclear shadowing e↵ects which may a↵ect
the evaluation of �V

R on a nucleus, and have not been
considered in the literature. To set up this research pro-
gram, a close cooperation between particle and nuclear
theorists, and experimentalists will be crucial.

VIII. RELATION TO eN-SCATTERING DATA

Besides making use of the neutrino scattering data, one
other possibility to probe the �W interference matrix
element in experiment is to relate it to the �Z matrix
element which can be measured in parity-violating eN -
scattering through isospin symmetry. To illustrate this
point, we first define a set of rank-one spherical tensors in
the isospin space using the axial current Aµ

i = q̄�µ�5⌧iq:

A±1,µ
1 = ⌥

1
p
2
(Aµ

1 ± iAµ
2 )

A0,µ
1 = Aµ

3 (68)

such that the axial components of the charged and neu-
tral weak currents are given by (Jµ

W )A = (1/
p
2)A1,µ

1 and

(Jµ
Z)A = �(1/2)A0,µ

1 . With this, one can easily show us-
ing the Wigner-Eckart theorem in the isospin space that

hp| J (0)µ
em (J⌫

W )A |ni (69)

= hp| J (0)µ
em (J⌫

Z)A |pi � hn| J (0)µ
em (J⌫

Z)A |ni ,

where J (0)µ
em is the isosinglet component of the electro-

magnetic current (and a superscript “3” will denote its

isotriplet component). Next, we can write J (0)µ
em =

Jµ
em � J (3)µ

em at the right hand side of the equation above

and argue that the terms with J (3)µ
em sum up to zero. The

reason is simple: both J (3)µ
em and (J⌫

Z)A are (I = 1, I3 = 0)
objects, so their product can only be (I = 0, I3 = 0) or

compare to the H&T estimate

New δQENS ~ - 0.10(1)% instead of the previous estimate δqNS ~-0.055(5)%
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Decay ✏1 (MeV) ✏2 (MeV) ✏ (MeV)
10
C !10

B 6.70 4.79 5.67
14
O !14

N 8.24 5.41 6.68
18
Ne !18

F 8.11 4.71 6.18
22
Mg !22

Na 10.41 6.28 8.09
26
Si !26

Al 11.14 6.30 8.38
30
S !30

P 10.64 5.18 7.42
34
Ar !34

Cl 11.51 5.44 7.91
38
Ca !38

K 11.94 5.33 7.98
42
T i !42

Sc 11.57 4.55 7.25
26m

Al !26
Mg 11.09 6.86 8.72

34
Cl !34

S 11.42 5.92 8.22
38m

K !38
Ar 11.84 5.79 8.28

42
Sc !42

Ca 11.48 5.05 7.61
46
V !46

T i 13.19 6.14 9.00
50
Mn !50

Cr 13.00 5.37 8.35
54
Co !54

Fe 13.38 5.13 8.28
62
Ga !62

Zn 12.90 3.72 6.94
66
As !66

Ge 12.74 3.16 6.34
70
Br !70

Se 13.17 3.20 6.49
74
Rb !74

Kr 13.85 3.44 6.90

TABLE I: E↵ective removal energy ✏ as calculated from the
mother and daughter removal energies ✏2,1 for all superallowed
� decays listed in Ref. [4].

[q(0)S qA � 1]CB = �0.25 and notice a significantly larger
nuclear modification in our approach. This means that
retaining all other nuclear corrections in Ref. [4], the
universal Ft value should be corrected by

↵

⇡
(CQE � CB � [q(0)S qA � 1]CB) = �(4.6± 0.9)⇥ 10�4,

(64)

leading to a new estimate

Ft = 3072.07(63)s ! [Ft]new = 3070.65(63)(28)s, (65)

with the second uncertainty stemming from that of the
QE contribution. This shift in the Ft value partially
cancels the large shift in the value of Vud that followed
from the new dispersion evaluation of �V

R in the previous
Section,

V new
ud = 0.97370(14) ! V new, QE

ud = 0.97392(14)(04)

(66)

and that in the first-row CKM unitarity,

|Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9984± 0.0004 (67)

! |Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9988± 0.0004,

three standard deviation from exact unitarity, and within
1.25 standard deviations from the current PDG value,
|Vud|

2 + |Vus|
2 + |Vub|

2 = 0.9994± 0.0005.

As mentioned above, we consider this new dispersion
relation-based estimate of the quasielastic nuclear correc-
tion as exploratory. Unlike our new evaluation of the free
nucleon correction �V

R that is very solid, the quasielastic
calculation can be considered as less reliable since it is
based on a simple free Fermi gas model, and is not yet
directly validated by experimental data. Nevertheless,
we emphasize that our new evaluation of the “quenched
Born contribution” is much better justified, as compared
to the old approach of Ref. [30] that enters �NS which de-
termines the universal Ft value. The dispersion approach
also provides the basis for a unification of the universal
correction �V

R and the nuclear structure-dependent cor-
rections �NS , �C within the same framework. To further
advance the evaluation of these corrections, the following
steps will be necessary: i) more advanced calculations of
the QE single-nucleon knock-out contribution using up-
to-date nuclear theory and validated by experimental QE
data; ii) advanced calculations of the QE two-nucleon
knock-out that is the main contribution to �NS , which
should also be confronted with the experimental data;
iii) include nuclear shadowing e↵ects which may a↵ect
the evaluation of �V

R on a nucleus, and have not been
considered in the literature. To set up this research pro-
gram, a close cooperation between particle and nuclear
theorists, and experimentalists will be crucial.

VIII. RELATION TO eN-SCATTERING DATA

Besides making use of the neutrino scattering data, one
other possibility to probe the �W interference matrix
element in experiment is to relate it to the �Z matrix
element which can be measured in parity-violating eN -
scattering through isospin symmetry. To illustrate this
point, we first define a set of rank-one spherical tensors in
the isospin space using the axial current Aµ

i = q̄�µ�5⌧iq:

A±1,µ
1 = ⌥

1
p
2
(Aµ

1 ± iAµ
2 )

A0,µ
1 = Aµ

3 (68)

such that the axial components of the charged and neu-
tral weak currents are given by (Jµ

W )A = (1/
p
2)A1,µ

1 and

(Jµ
Z)A = �(1/2)A0,µ

1 . With this, one can easily show us-
ing the Wigner-Eckart theorem in the isospin space that

hp| J (0)µ
em (J⌫

W )A |ni (69)

= hp| J (0)µ
em (J⌫

Z)A |pi � hn| J (0)µ
em (J⌫

Z)A |ni ,

where J (0)µ
em is the isosinglet component of the electro-

magnetic current (and a superscript “3” will denote its

isotriplet component). Next, we can write J (0)µ
em =

Jµ
em � J (3)µ

em at the right hand side of the equation above

and argue that the terms with J (3)µ
em sum up to zero. The

reason is simple: both J (3)µ
em and (J⌫

Z)A are (I = 1, I3 = 0)
objects, so their product can only be (I = 0, I3 = 0) or

Ft ! Ft(1 + �newNS � �oldNS)Shifts the Ft value according to

Numerically:
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We analyze the universal radiative correction �V
R to neutron and superallowed nuclear � decay

by expressing the hadronic �W -box contribution in terms of a dispersion relation, which we identify
as an integral over the first Nachtmann moment of the �W interference structure function F (0)

3 . By
connecting the needed input to existing data on neutrino and antineutrino scattering, we obtain
an updated value of �V

R = 0.02467(22), wherein the hadronic uncertainty is reduced. Assuming
other Standard Model theoretical calculations and experimental measurements remain unchanged,
we obtain an updated value of |Vud| = 0.97366(15), raising tension with the first row CKM unitarity
constraint. We comment on ways current and future experiments can provide input to our dispersive
analysis.

The unitarity test of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix serves as one of the most important pre-
cision tests of the Standard Model. In particular, tests of
first-row CKM unitarity |Vud|

2 + |Vus|
2 + |Vub|

2 = 1 re-
ceive the most attention since these matrix elements are
known with highest precision, all with comparable uncer-
tainties. The good agreement with unitarity [1] serves as
a powerful tool to constrain New Physics scenarios.

Currently, the most precise determination of |Vud|

comes from measurements of half-lives of superallowed
0+ ! 0+ nuclear � decays with a precision of 10�4 [2]. At
tree-level, these decays are mediated by the vector part of
the weak charged current only, which is protected against
renormalization by strong interactions due to conserved
vector current (CVC), making the extraction of |Vud| rel-
atively clean. Beyond tree-level, however, electroweak ra-
diative corrections (EWRC) involving the axial current
are not protected, and lead to a hadronic uncertainty
that dominates the error in the determination of |Vud|.

The master formula relating the CKM matrix element
|Vud| to the superallowed nuclear � decay half-life is [2]:

|Vud|
2 =

2984.432(3) s

Ft(1 +�V
R)

, (1)

where the nucleus-independent Ft-value is obtained from
the experimentally measured ft-value by absorbing all
nuclear-dependent corrections, and where �V

R represents
the nucleus-independent EWRC. Currently, an average
of the 14 best measured half-lives yields an extraordinar-
ily precise value of Ft = 3072.27(72) s. A similar mas-
ter formula exists for free neutron � decay [3] depend-
ing additionally on the axial-to-vector nucleon coupling
ratio � = gA/gV , and is free of nuclear-structure uncer-
tainties. But the much larger experimental errors in the
measurement of its lifetime and the ratio � [4] makes it

less competitive in the extraction of |Vud|. Regardless, if
first-row CKM unitarity is to be tested at a higher level
of precision, improvement in the theoretical estimate of
�V

R by reducing hadronic uncertainties is essential.
The best determination of �V

R = 0.02361(38) was ob-
tained in 2006 by Marciano and Sirlin [5] (in the fol-
lowing, we refer to their work as [MS]). They were able
to reduce the hadronic uncertainty by a factor of 2 over
their earlier calculation [6] by using high order pertur-
bative QCD corrections originally derived for the polar-
ized Bjorken sum rule to precisely estimate the short dis-
tance contribution. At intermediate distances, an inter-
polating function motivated by vector meson dominance
(VMD) was used to connect the long and short distances
and was identified as the dominant source of theoreti-
cal uncertainty. This result leads to the current value of
|Vud| = 0.97420(21) [1].
In this Letter, we introduce a new approach for eval-

uating �V
R based on dispersion relations which relate

it to directly measurable inclusive lepton-hadron and
neutrino-hadron structure functions. Dispersion rela-
tions have proved crucial for evaluating the �Z-box cor-
rection to parity violating electron-hadron interaction in
atoms and in scattering processes [7–19]. It led to a sig-
nificant shift in the 1-loop SM prediction for the hadronic
weak charges, and ensured a correct extraction of the
weak mixing angle at low energy [20]. Using existing
data on neutrino and anti-neutrino scattering, we obtain
a more precise value of the nucleus-independent EWRC,

�V
R = 0.02467(22) , (2)

and therefore a new determination of |Vud|,

|Vud| = 0.97366(15). (3)

Will affect the extracted Vud
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Decay ✏1 (MeV) ✏2 (MeV) ✏ (MeV)
10
C !10

B 6.70 4.79 5.67
14
O !14

N 8.24 5.41 6.68
18
Ne !18

F 8.11 4.71 6.18
22
Mg !22

Na 10.41 6.28 8.09
26
Si !26

Al 11.14 6.30 8.38
30
S !30

P 10.64 5.18 7.42
34
Ar !34

Cl 11.51 5.44 7.91
38
Ca !38

K 11.94 5.33 7.98
42
T i !42

Sc 11.57 4.55 7.25
26m

Al !26
Mg 11.09 6.86 8.72

34
Cl !34

S 11.42 5.92 8.22
38m

K !38
Ar 11.84 5.79 8.28

42
Sc !42

Ca 11.48 5.05 7.61
46
V !46

T i 13.19 6.14 9.00
50
Mn !50

Cr 13.00 5.37 8.35
54
Co !54

Fe 13.38 5.13 8.28
62
Ga !62

Zn 12.90 3.72 6.94
66
As !66

Ge 12.74 3.16 6.34
70
Br !70

Se 13.17 3.20 6.49
74
Rb !74

Kr 13.85 3.44 6.90

TABLE I: E↵ective removal energy ✏ as calculated from the
mother and daughter removal energies ✏2,1 for all superallowed
� decays listed in Ref. [4].

[q(0)S qA � 1]CB = �0.25 and notice a significantly larger
nuclear modification in our approach. This means that
retaining all other nuclear corrections in Ref. [4], the
universal Ft value should be corrected by

↵

⇡
(CQE � CB � [q(0)S qA � 1]CB) = �(4.6± 0.9)⇥ 10�4,

(64)

leading to a new estimate

Ft = 3072.07(63)s ! [Ft]new = 3070.65(63)(28)s, (65)

with the second uncertainty stemming from that of the
QE contribution. This shift in the Ft value partially
cancels the large shift in the value of Vud that followed
from the new dispersion evaluation of �V

R in the previous
Section,

V new
ud = 0.97370(14) ! V new, QE

ud = 0.97392(14)(04)

(66)

and that in the first-row CKM unitarity,

|Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9984± 0.0004 (67)

! |Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9988± 0.0004,

three standard deviation from exact unitarity, and within
1.25 standard deviations from the current PDG value,
|Vud|

2 + |Vus|
2 + |Vub|

2 = 0.9994± 0.0005.

As mentioned above, we consider this new dispersion
relation-based estimate of the quasielastic nuclear correc-
tion as exploratory. Unlike our new evaluation of the free
nucleon correction �V

R that is very solid, the quasielastic
calculation can be considered as less reliable since it is
based on a simple free Fermi gas model, and is not yet
directly validated by experimental data. Nevertheless,
we emphasize that our new evaluation of the “quenched
Born contribution” is much better justified, as compared
to the old approach of Ref. [30] that enters �NS which de-
termines the universal Ft value. The dispersion approach
also provides the basis for a unification of the universal
correction �V

R and the nuclear structure-dependent cor-
rections �NS , �C within the same framework. To further
advance the evaluation of these corrections, the following
steps will be necessary: i) more advanced calculations of
the QE single-nucleon knock-out contribution using up-
to-date nuclear theory and validated by experimental QE
data; ii) advanced calculations of the QE two-nucleon
knock-out that is the main contribution to �NS , which
should also be confronted with the experimental data;
iii) include nuclear shadowing e↵ects which may a↵ect
the evaluation of �V

R on a nucleus, and have not been
considered in the literature. To set up this research pro-
gram, a close cooperation between particle and nuclear
theorists, and experimentalists will be crucial.

VIII. RELATION TO eN-SCATTERING DATA

Besides making use of the neutrino scattering data, one
other possibility to probe the �W interference matrix
element in experiment is to relate it to the �Z matrix
element which can be measured in parity-violating eN -
scattering through isospin symmetry. To illustrate this
point, we first define a set of rank-one spherical tensors in
the isospin space using the axial current Aµ

i = q̄�µ�5⌧iq:

A±1,µ
1 = ⌥

1
p
2
(Aµ

1 ± iAµ
2 )

A0,µ
1 = Aµ

3 (68)

such that the axial components of the charged and neu-
tral weak currents are given by (Jµ

W )A = (1/
p
2)A1,µ

1 and

(Jµ
Z)A = �(1/2)A0,µ

1 . With this, one can easily show us-
ing the Wigner-Eckart theorem in the isospin space that

hp| J (0)µ
em (J⌫

W )A |ni (69)

= hp| J (0)µ
em (J⌫

Z)A |pi � hn| J (0)µ
em (J⌫

Z)A |ni ,

where J (0)µ
em is the isosinglet component of the electro-

magnetic current (and a superscript “3” will denote its

isotriplet component). Next, we can write J (0)µ
em =

Jµ
em � J (3)µ

em at the right hand side of the equation above

and argue that the terms with J (3)µ
em sum up to zero. The

reason is simple: both J (3)µ
em and (J⌫

Z)A are (I = 1, I3 = 0)
objects, so their product can only be (I = 0, I3 = 0) or
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It worths mentioning that, with this update the amount
of uncertainty in Vud induced by �V

R is now almost the
same as that due to Ft. Our study leads to a new, more
precise extraction of Vud from superallowed decays,

V old
ud = 0.97420(21) ! V new

ud = 0.97370(14). (48)

One may also extract Vud from free neutron beta decay:

|V old
ud |free n = 0.9758(16) ! |V new

ud |free n = 0.9753(16),

(49)

where we have taken ⌧n = 880.2(1.0)s and � =
�1.2724(23) as quoted in PDG 2018 [2]. Our new evalua-
tion of �V

R does not impact the total uncertainty because
the latter is dominated by the experimental uncertainties
of ⌧n and �.
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FIG. 7: Our prediction of
M2

W
M2

W+Q2M
(0)
3 (1, Q2) vs the MS’s

prediction. Notice that the peak around Q
2 = 0.1 GeV2 is

due to the Born contribution.

The comparison between our new result and the
MS result is most easily visualized through a plot of�
M2

W /(M2
W +Q2)

�
M (0)

3 (1, Q2) versus Q2 in log scale,
as shown in Fig. 7. Since dQ2/Q2 = d lnQ2 in Eq.
(26), the area under the curve provides a direct measure
of ⇤V A

�W . While mutually agreeing at large Q2, we find
three main di↵erences between our approach and MS: (1)
MS assume no physics other than Born at low Q2, which
is not true by inspecting the W 2

� Q2 diagram in Fig.
3. In fact, our result shows that inelastic channels start
contributing significantly already from Q2

⇡ 0.1 GeV2

onwards; (2) MS require their interpolating function to
vanish when Q2

! 0 (which turns out not to be true by
explicit ChPT calculation), which causes the function to
drop too fast with decreasing Q2 and meet Fel(Q2) at
relatively large matching point Q2 = (0.823GeV)2; (3)
MS require the integral of their interpolating function,
instead of the function itself, to match pQCD result in
the asymptotic region. This causes a discontinuity of

their F (Q2) at the UV-matching point. All in all, the
MS treatment of the interpolating function results in an
underestimation of �V

R .
Our update on Vud from superallowed decays reflects

in the first row CKM unitarity,

|Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9984± 0.0004, (50)

where 2018 PDG averages [2] |Vus| = 0.2243(5) and
|Vub| = 0.00394(36) were used. The previous PDG con-
straint on the first row unitarity was |Vud|

2 + |Vus|
2 +

|Vub|
2 = 0.9994 ± 0.0005, roughly consistent with uni-

tarity. Our new result suggests that, if all other SM
corrections are correct, first row unitarity is violated by
(1.6 ± 0.4) ⇥ 10�3. As mentioned already in the Intro-
duction, the value of Vud extracted from the superallowed
nuclear decays relies on the nuclear structure corrections
�NS which are purely theoretical. There persists a discus-
sion on the uncertainty and model dependence of those
calculations, see e.g. the recent Ref. [8] and references
therein. The shell model approach with the Wood-Saxon
potential advocated by Hardy and Towner is at variance
with Hartree-Fock evaluations which may signal a sys-
tematic e↵ect that has not yet been fully understood. In
view of this we plan reassessing the nuclear corrections
from the dispersion relation perspective in detail in the
upcoming work. In the next Section we demonstrate the
potential of the dispersion treatment on the example of
the quasielastic contribution to the �W -box calculation
on nuclei.

VII. NUCLEAR CONTRIBUTIONS TO ⇤V A
�W

FOR NUCLEAR FERMI DECAYS:
QUASIELASTIC CONTRIBUTION

FIG. 8: Idealized structure of virtual photoabsorption on a
nucleus.

Fig. 8 displays the idealized structure of the electroab-
sorption spectrum on a nucleus. While the shape in the
hadronic range is similar to that on a free nucleon in
Fig. 4, the lower part of the nuclear spectrum contains
nuclear resonances and the quasielastic (QE) peak con-
taining one-nucleon knock-out, as well as knock-out of
two or more nucleons in a single scattering process.

Compensates for a part of the shift due to a new evaluation of ΔVR

Brings the first row a little closer to the unitarity (4σ → 3σ)

Important message:  
dispersion relations as a unified tool for treating hadronic and nuclear parts of RC



3.Splitting of the RC into inner and outer
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MG, arXiv: 1811.xxxxx🔜🛠



Splitting the RC into “inner” and “outer”

!16

Radiative corrections ~ α/2𝜋 ~ 10-3 Precision goal: ~ 10-4

When does energy dependence matter?  
Correction ~ Ee/Λ, with Λ ~ relevant mass (me; Mp; MA) 
Maximal Ee ranges from 1 MeV to 10.5 MeV 

Electron mass regularizes the IR divergent parts - (Ee/me important) - “outer” correction 

If Λ of hadronic origin (at least m𝜋) —> Ee/Λ small, correction ~ 10-5 —> negligible 
- certainly true for the neutron decay 
- hadronic contributions do not distort the spectrum, may only shift it as a whole 

However, in nuclei binding energies ~ few MeV — similar to Q-values 

A scenario is possible when RC ~ (α/2𝜋)x(Ee/ΛNucl) ~ 10-3 

Nuclear structure may distort the electron spectrum  

With dispersion relations can be checked straightforwardly!
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Nuclear structure and E-dependent RC
With DR: can include linear terms in energy 
Even and odd powers of energy - leading terms
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E-dependent correction: estimate with nuclear polarizabilities and size

3

where Emin = (⌫ +
p
⌫2 +Q2)/2, ⌫thr = ✏ + Q2/(2M)

and in terms of the invariants ⌫ = (W 2
�M2+Q2)/2M ,

W being the invairant mass of the excited nuclear
intermediate state. The E-even piece has recently been
addressed in [7, 8]. In the remaining part of the article I
concentrate on the E-odd part. To estimate the size of
the coe�cient in front of E in Re⇤odd

�W , I will use two
methods: dimension analysis with the nuclear dipole
polarizability and charge radius, and a more microscopic
Fermi gas calculation.

Dimensional analysis with the photonulcear sum rule
The photonuclear sum rule expresses the dipole elec-
tric polarizability ↵E as an integral over electromagnetic
structure functions F1,2

↵E =
2↵

M

1Z

✏

d⌫

⌫3
F1(⌫, 0) = 2↵

1Z

✏

d⌫

⌫2
@

@Q2
F2(⌫, 0). (11)

The equality between the representations with F1 and
the Q2-slope of F2 is a reflection of gauge invariance. The
electromagnetic structure functions should be similar to
their vector charged current - electromagnetic current in-
terference counterpart. I next assume the very low Q2

under the integral to dominate (hence Emin ! ⌫), and
the Q2 dependence of the dipole polarizability to follow
that of the charge form factor ⇠ e�R2

ChQ
2/6. Hence, dis-

carding the contribution of F3 for which no information
in terms of nuclear polarizability is available, I obtain for
the �+ case

Re⇤odd
�W ⇠

4↵E

⇡NR2
Ch

E, (12)

The observed approximate scaling of the nuclear radii
with the atomic number RCh ⇠ R0A1/3 with R0 ⇡ 1.2
fm [10], and that of the nuclear electric dipole response
↵E ⇠ (2.2⇥ 10�3)A5/3 fm3 [11], leads to the estimate

Re⇤odd
�W ⇠ 5⇥ 10�5

✓
E

5MeV

◆✓
A

N

◆
. (13)

This correction leads to an E-dependent correction to the
di↵erential decay rate, which is roughly independent of
the nucleus since A/N ⇡ 2 for all nuclei relevant for the
superallowed decays,

�R(E) = 2Re⇤odd
�W (E) = 2⇥ 10�4

✓
E

5MeV

◆
, (14)

The scale 5 MeV represents an average Q-value across
the 14 superallowed decays used for the Vud extraction.

Estimate in the free Fermi gas model
In a microscopic picture, a large part of the nuclear po-
larizability can be explained by the quasielastic mecha-
nism. The (generalized) Compton reaction on a nucleus

proceeds via the knockout of a single active nucleon by
the initial electroweak probe, leaving the remaining part
of the nucleus una↵ected, and the reabsorption of the nu-
cleon back into the nucleus accompanied by the emission
of the final photon, see Fig. 1. The finite gap between

FIG. 1: Quasielastic contribution to the �W -box correction
on a nucleus.

the bound state and the continuum, the removal energy,
is one relevant parameter that governs the size of the nu-
clear polarizability. The other parameter is the Fermi
momentum kF , the typical momentum of a nucleon in-
side the nucleus, which defines the initial kinematics from
which the knockout process results. In the case of a de-
cay process, the initial and final states are not identical
due to the n ! p conversion for the �� process, and
p ! n for �+ process. Apart from the change of the
nucleon specie and thus the change of the charge of the
nucleus in the initial (parent) and final (daughter) state,
the mass of the daughter is slightly smaller, which is a
prerequisite of the decay to take place. For the quasielas-
tic process W± + A ! n(p) + A00

! � + A0, with A00 a
spectator nuclear state, there are two distinct removal
energies at the first and the second stage of the reaction.
Specifically for the �+ process, ✏1 = MA00 + Mn � MA

and ✏2 = MA00 +Mn �MA0 obeying ✏2 > ✏1. In the re-
cent work [8] it was proposed to use an e↵ective removal
energy defined as ✏̄ =

p
✏1✏2. For the 20 superallowed

�+ decays listed in [3] the e↵ective removal energies fall
within a narrow range, ✏̄ = 7.5± 1.5 MeV [8]. In the free
Fermi gas (FFG) model the structure functions entering
Re⇤�W has a generic form

1

N
Fi(⌫, Q

2) = fB
i (Q2)S(⌫, Q2, ✏̄, kF ), (15)

with the spectral function

S = FP(|~q|, kF )

Z
d3~k |�(k)|2�((k + q)2 �M2). (16)

Above, k is the 4-momentum of the active nucleon, �(k)
the momentum distribution in the FFG model, |�(k)|2 =

3/(4⇡k3F )✓(kF �k) normalized as
R
d3~k|�(k)|2 = 1. Pauli

blocking is described by the Pauli function

FP(|~q |, kF ) =
3|~q |

4kF
[1� ~q 2/(12k2F )] for |~q|  2kF , (17)

and FP = 1 otherwise, and |~q | =
p

⌫2 +Q2 stands for
the 3-momentum of the virtual photon (W± boson). The

Photonuclear sum rule:

Supplement with the nuclear form factor: αE(Q2) ∼ αE(0) × e−R2
ChQ2/6

Radius and polarizability scale with A: RCh ∼ 1.2 fm A1/3, αE ∼ 2.25 × 10−3 fm3 A5/3

ΔR(E) = 2 × 10−5 ( E
MeV ) A

NDimensional analysis estimate:
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E-dependent correction: estimate in Fermi gas model (similar to E-independent)

4

blocking is described by the Pauli function

FP(|~q |, kF ) =
3|~q |

4kF
[1� ~q 2/(12k2F )] for |~q|  2kF , (17)

and FP = 1 otherwise, and |~q | =
p

⌫2 +Q2 stands for
the 3-momentum of the virtual photon (W± boson). The
�-function reflects the knock-out nucleon being on shell.
The integral in Eq. (16) can be carried out analytically
[8] after which the dependence of the spectral function S
on the breakup threshold becomes explicit. Finally, the
residues fi corresponding to the coe�cient in front of the
� function in the nucleon Born contribution read

f (0)
1 =

Q2

8
GW

MGS
M , f (0)

2 =
Q2

4

GV
EG

S
E + ⌧GV

MGS
M

1 + ⌧
,

f (�)
3 = �

Q2

4
GAG

V
M , (18)

with GS,V
E,M = Gp

E,M (Q2) ± Gn
E,M (Q2) the nucleon

isoscalar and isovector electromagnetic form factors, the
axial form factor GA with GA(0) = �1.2755, and the nu-
cleon recoil ⌧ = Q2/4M2

p . A numerical evaluation with
the e↵ective separation energy ✏̄ = 7.5 ± 1.5 MeV and
Pauli momentum kF = 235 ± 10 MeV leads to the FFG
estimate

�R(E) = (1.4± 0.2)⇥ 10�3

✓
E

5MeV

◆
. (19)

This estimate is one order of magnitude larger than
the naive estimate with the nuclear electric dipole
polarizability and the nuclear size. It is well known
that QE cross sections with slightly virtual photons are
much larger than with real photons, so the estimate
↵E(Q2) ⇠ ↵E(0)e�R2

ChQ
2/6 used in the previous section

is likely to underestimate the actual e↵ect. On the
other hand, the FFG model is known to overestimate
the quasielastic response at very low values of Q2 where
meson exchange currents tend to lead to a suppression.
So the realistic size of the e↵ect should lie between
those two extremes. Note that the contribution of F (�)

3

dominates over the other two terms in Eq. (10) in FFG
due to the large isovector nucleon magnetic moment.

Numerical results and the e↵ect on the Ft-values
Above, I obtained an estimate of the energy-dependent
correction in two di↵erent models which give a rough idea
of the lower and upper bound of the size of the e↵ect.
For numerical estimates I will use the average of the two
estimates with a 100% uncertainty,

�R(E) ⇠ (8± 8)⇥ 10�4

✓
E

5MeV

◆
, (20)

and this result is independent on the nucleus. Never-
theless, the respective correction to the total decay rate

will depend on the particular decay via the correspond-
ing Q-value. The correction to the Ft-value is obtained
by integrating �R(E) over the beta spectrum,

�NS
E =

R Em

me
dEEp(Q� E)2�R(E)

R Em

me
dEEp(Q� E)2

, (21)

where p =
p
E2 �m2

e is the electron 3-momentum, me

the electron mass, and Q the maximal electron energy
available in a given decay. The result of the integration
with the estimate of Eq. (20) leads to

�NS
E = (8± 8)⇥ 10�5 Q

MeV
, (22)

which modifies the Ft values according to

F̃t = ft(1 + �0R)(1� �C + �NS +�NS
E ). (23)

The absolute shift in the Ft values due to the nuclear po-
larizability contribution obtained as �Ft = Ft⇥�NS

E is
shown for the 14 most accurately measured superallowed
decays in Table I along with the central values and the
respective uncertainties of the original analysis of Ref.
[3]. It is seen that for the seven most precise Ft values

Decay Q (MeV) �NS
E (10�4) �Ft(s) Ft(s) [3]

10
C 1.91 1.5 0.5 3078.0(4.5)

14
O 2.83 2.3 0.7 3071.4(3.2)

22
Mg 4.12 3.3 1.0 3077.9(7.3)

34
Ar 6.06 4.8 1.5 3065.6(8.4)

38
Ca 6.61 5.3 1.6 3076.4(7.2)

26m
Al 4.23 3.4 1.0 3072.9(1.0)

34
Cl 5.49 4.4 1.4 3070.7+1.7

�1.8
38m

K 6.04 4.8 1.5 3071.6(2.0)
42
Sc 6.43 5.1 1.6 3072.4(2.3)

46
V 7.05 5.6 1.7 3074.1(2.0)

50
Mn 7.63 6.1 1.9 3071.2(2.1)

54
Co 8.24 6.6 2.0 3069.8+2.4

�2.6
62
Ga 9.18 7.3 2.2 3071.5(6.7)

74
Rb 10.42 8.3 2.6 3076(11)

TABLE I: For 14 superallowed decay I display the respective
Q-value, the fractional e↵ect on the decay rate obtained from
the energy-dependent correction integrated over the electron
spectrum, the respective shift in the Ft value, in comparison
with the Ft values and respective uncertainties taken from [3]

(26mAl through 54Co) the new correction is comparable
with their uncertainties from the analysis of [3]. Such a
systematic shift of all Ft values in the same direction will
then reflect in a substantial shift of their average Ft:

Ft = 7072.07(63)s ! Ft = 7073.6(0.6)(1.5)s. (24)

A recent re-evaluation of the nuclear part of the energy-
independent correction Re⇤even

�W resulted in a shift of a

Correction to Ft values: integrate over spectrum (only total rate measured)

4

blocking is described by the Pauli function

FP(|~q |, kF ) =
3|~q |

4kF
[1� ~q 2/(12k2F )] for |~q|  2kF , (17)

and FP = 1 otherwise, and |~q | =
p

⌫2 +Q2 stands for
the 3-momentum of the virtual photon (W± boson). The
�-function reflects the knock-out nucleon being on shell.
The integral in Eq. (16) can be carried out analytically
[8] after which the dependence of the spectral function S
on the breakup threshold becomes explicit. Finally, the
residues fi corresponding to the coe�cient in front of the
� function in the nucleon Born contribution read
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with GS,V
E,M = Gp

E,M (Q2) ± Gn
E,M (Q2) the nucleon

isoscalar and isovector electromagnetic form factors, the
axial form factor GA with GA(0) = �1.2755, and the nu-
cleon recoil ⌧ = Q2/4M2

p . A numerical evaluation with
the e↵ective separation energy ✏̄ = 7.5 ± 1.5 MeV and
Pauli momentum kF = 235 ± 10 MeV leads to the FFG
estimate

�R(E) = (1.4± 0.2)⇥ 10�3

✓
E

5MeV

◆
. (19)

This estimate is one order of magnitude larger than
the naive estimate with the nuclear electric dipole
polarizability and the nuclear size. It is well known
that QE cross sections with slightly virtual photons are
much larger than with real photons, so the estimate
↵E(Q2) ⇠ ↵E(0)e�R2

ChQ
2/6 used in the previous section

is likely to underestimate the actual e↵ect. On the
other hand, the FFG model is known to overestimate
the quasielastic response at very low values of Q2 where
meson exchange currents tend to lead to a suppression.
So the realistic size of the e↵ect should lie between
those two extremes. Note that the contribution of F (�)

3

dominates over the other two terms in Eq. (10) in FFG
due to the large isovector nucleon magnetic moment.

Numerical results and the e↵ect on the Ft-values
Above, I obtained an estimate of the energy-dependent
correction in two di↵erent models which give a rough idea
of the lower and upper bound of the size of the e↵ect.
For numerical estimates I will use the average of the two
estimates with a 100% uncertainty,

�R(E) ⇠ (8± 8)⇥ 10�4

✓
E

5MeV

◆
, (20)

and this result is independent on the nucleus. Never-
theless, the respective correction to the total decay rate

will depend on the particular decay via the correspond-
ing Q-value. The correction to the Ft-value is obtained
by integrating �R(E) over the beta spectrum,

�NS
E =

R Em

me
dEEp(Q� E)2�R(E)

R Em

me
dEEp(Q� E)2

, (21)

where p =
p
E2 �m2

e is the electron 3-momentum, me

the electron mass, and Q the maximal electron energy
available in a given decay. The result of the integration
with the estimate of Eq. (20) leads to

�NS
E = (8± 8)⇥ 10�5 Q

MeV
, (22)

which modifies the Ft values according to

F̃t = ft(1 + �0R)(1� �C + �NS +�NS
E ). (23)

The absolute shift in the Ft values due to the nuclear po-
larizability contribution obtained as �Ft = Ft⇥�NS

E is
shown for the 14 most accurately measured superallowed
decays in Table I along with the central values and the
respective uncertainties of the original analysis of Ref.
[3]. It is seen that for the seven most precise Ft values

Decay Q (MeV) �NS
E (10�4) �Ft(s) Ft(s) [3]

10
C 1.91 1.5 0.5 3078.0(4.5)

14
O 2.83 2.3 0.7 3071.4(3.2)

22
Mg 4.12 3.3 1.0 3077.9(7.3)

34
Ar 6.06 4.8 1.5 3065.6(8.4)

38
Ca 6.61 5.3 1.6 3076.4(7.2)

26m
Al 4.23 3.4 1.0 3072.9(1.0)

34
Cl 5.49 4.4 1.4 3070.7+1.7

�1.8
38m

K 6.04 4.8 1.5 3071.6(2.0)
42
Sc 6.43 5.1 1.6 3072.4(2.3)

46
V 7.05 5.6 1.7 3074.1(2.0)

50
Mn 7.63 6.1 1.9 3071.2(2.1)

54
Co 8.24 6.6 2.0 3069.8+2.4

�2.6
62
Ga 9.18 7.3 2.2 3071.5(6.7)

74
Rb 10.42 8.3 2.6 3076(11)

TABLE I: For 14 superallowed decay I display the respective
Q-value, the fractional e↵ect on the decay rate obtained from
the energy-dependent correction integrated over the electron
spectrum, the respective shift in the Ft value, in comparison
with the Ft values and respective uncertainties taken from [3]

(26mAl through 54Co) the new correction is comparable
with their uncertainties from the analysis of [3]. Such a
systematic shift of all Ft values in the same direction will
then reflect in a substantial shift of their average Ft:

Ft = 7072.07(63)s ! Ft = 7073.6(0.6)(1.5)s. (24)

A recent re-evaluation of the nuclear part of the energy-
independent correction Re⇤even

�W resulted in a shift of a

ΔR(E) = (2.8 ± 0.4) × 10−4 ( E
MeV ) Uncertainty: spread in ϵ and kF

Use the two estimates as upper and lower bound of the effect

ΔR(E) = (1.6 ± 1.6) × 10−4 ( E
MeV )

Spectrum distortion due to nuclear polarizabilities ~ 0.016 % per MeV 

Roughly independent of the nucleus; 

The total rate will depend on nucleus: different Q-values!

Nuclear structure and E-dependent RC
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Nuclear structure distorts the β-spectrum!

4

blocking is described by the Pauli function

FP(|~q |, kF ) =
3|~q |

4kF
[1� ~q 2/(12k2F )] for |~q|  2kF , (17)

and FP = 1 otherwise, and |~q | =
p

⌫2 +Q2 stands for
the 3-momentum of the virtual photon (W± boson). The
�-function reflects the knock-out nucleon being on shell.
The integral in Eq. (16) can be carried out analytically
[8] after which the dependence of the spectral function S
on the breakup threshold becomes explicit. Finally, the
residues fi corresponding to the coe�cient in front of the
� function in the nucleon Born contribution read
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M , (18)

with GS,V
E,M = Gp

E,M (Q2) ± Gn
E,M (Q2) the nucleon

isoscalar and isovector electromagnetic form factors, the
axial form factor GA with GA(0) = �1.2755, and the nu-
cleon recoil ⌧ = Q2/4M2

p . A numerical evaluation with
the e↵ective separation energy ✏̄ = 7.5 ± 1.5 MeV and
Pauli momentum kF = 235 ± 10 MeV leads to the FFG
estimate

�R(E) = (1.4± 0.2)⇥ 10�3

✓
E

5MeV

◆
. (19)

This estimate is one order of magnitude larger than
the naive estimate with the nuclear electric dipole
polarizability and the nuclear size. It is well known
that QE cross sections with slightly virtual photons are
much larger than with real photons, so the estimate
↵E(Q2) ⇠ ↵E(0)e�R2

ChQ
2/6 used in the previous section

is likely to underestimate the actual e↵ect. On the
other hand, the FFG model is known to overestimate
the quasielastic response at very low values of Q2 where
meson exchange currents tend to lead to a suppression.
So the realistic size of the e↵ect should lie between
those two extremes. Note that the contribution of F (�)

3

dominates over the other two terms in Eq. (10) in FFG
due to the large isovector nucleon magnetic moment.

Numerical results and the e↵ect on the Ft-values
Above, I obtained an estimate of the energy-dependent
correction in two di↵erent models which give a rough idea
of the lower and upper bound of the size of the e↵ect.
For numerical estimates I will use the average of the two
estimates with a 100% uncertainty,

�R(E) ⇠ (8± 8)⇥ 10�4

✓
E

5MeV

◆
, (20)

and this result is independent on the nucleus. Never-
theless, the respective correction to the total decay rate

will depend on the particular decay via the correspond-
ing Q-value. The correction to the Ft-value is obtained
by integrating �R(E) over the beta spectrum,

�NS
E =

R Em

me
dEEp(Q� E)2�R(E)

R Em

me
dEEp(Q� E)2

, (21)

where p =
p
E2 �m2

e is the electron 3-momentum, me

the electron mass, and Q the maximal electron energy
available in a given decay. The result of the integration
with the estimate of Eq. (20) leads to

�NS
E = (8± 8)⇥ 10�5 Q

MeV
, (22)

which modifies the Ft values according to

F̃t = ft(1 + �0R)(1� �C + �NS +�NS
E ). (23)

The absolute shift in the Ft values due to the nuclear po-
larizability contribution obtained as �Ft = Ft⇥�NS

E is
shown for the 14 most accurately measured superallowed
decays in Table I along with the central values and the
respective uncertainties of the original analysis of Ref.
[3]. It is seen that for the seven most precise Ft values

Decay Q (MeV) �NS
E (10�4) �Ft(s) Ft(s) [3]

10
C 1.91 1.5 0.5 3078.0(4.5)

14
O 2.83 2.3 0.7 3071.4(3.2)

22
Mg 4.12 3.3 1.0 3077.9(7.3)

34
Ar 6.06 4.8 1.5 3065.6(8.4)

38
Ca 6.61 5.3 1.6 3076.4(7.2)

26m
Al 4.23 3.4 1.0 3072.9(1.0)

34
Cl 5.49 4.4 1.4 3070.7+1.7

�1.8
38m

K 6.04 4.8 1.5 3071.6(2.0)
42
Sc 6.43 5.1 1.6 3072.4(2.3)

46
V 7.05 5.6 1.7 3074.1(2.0)

50
Mn 7.63 6.1 1.9 3071.2(2.1)

54
Co 8.24 6.6 2.0 3069.8+2.4

�2.6
62
Ga 9.18 7.3 2.2 3071.5(6.7)

74
Rb 10.42 8.3 2.6 3076(11)

TABLE I: For 14 superallowed decay I display the respective
Q-value, the fractional e↵ect on the decay rate obtained from
the energy-dependent correction integrated over the electron
spectrum, the respective shift in the Ft value, in comparison
with the Ft values and respective uncertainties taken from [3]

(26mAl through 54Co) the new correction is comparable
with their uncertainties from the analysis of [3]. Such a
systematic shift of all Ft values in the same direction will
then reflect in a substantial shift of their average Ft:

Ft = 7072.07(63)s ! Ft = 7073.6(0.6)(1.5)s. (24)

A recent re-evaluation of the nuclear part of the energy-
independent correction Re⇤even

�W resulted in a shift of a
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blocking is described by the Pauli function

FP(|~q |, kF ) =
3|~q |

4kF
[1� ~q 2/(12k2F )] for |~q|  2kF , (17)

and FP = 1 otherwise, and |~q | =
p

⌫2 +Q2 stands for
the 3-momentum of the virtual photon (W± boson). The
�-function reflects the knock-out nucleon being on shell.
The integral in Eq. (16) can be carried out analytically
[8] after which the dependence of the spectral function S
on the breakup threshold becomes explicit. Finally, the
residues fi corresponding to the coe�cient in front of the
� function in the nucleon Born contribution read

f (0)
1 =

Q2

8
GW

MGS
M , f (0)

2 =
Q2

4

GV
EG

S
E + ⌧GV

MGS
M

1 + ⌧
,

f (�)
3 = �

Q2

4
GAG

V
M , (18)

with GS,V
E,M = Gp

E,M (Q2) ± Gn
E,M (Q2) the nucleon

isoscalar and isovector electromagnetic form factors, the
axial form factor GA with GA(0) = �1.2755, and the nu-
cleon recoil ⌧ = Q2/4M2

p . A numerical evaluation with
the e↵ective separation energy ✏̄ = 7.5 ± 1.5 MeV and
Pauli momentum kF = 235 ± 10 MeV leads to the FFG
estimate

�R(E) = (1.4± 0.2)⇥ 10�3
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. (19)

This estimate is one order of magnitude larger than
the naive estimate with the nuclear electric dipole
polarizability and the nuclear size. It is well known
that QE cross sections with slightly virtual photons are
much larger than with real photons, so the estimate
↵E(Q2) ⇠ ↵E(0)e�R2

ChQ
2/6 used in the previous section

is likely to underestimate the actual e↵ect. On the
other hand, the FFG model is known to overestimate
the quasielastic response at very low values of Q2 where
meson exchange currents tend to lead to a suppression.
So the realistic size of the e↵ect should lie between
those two extremes. Note that the contribution of F (�)

3

dominates over the other two terms in Eq. (10) in FFG
due to the large isovector nucleon magnetic moment.

Numerical results and the e↵ect on the Ft-values
Above, I obtained an estimate of the energy-dependent
correction in two di↵erent models which give a rough idea
of the lower and upper bound of the size of the e↵ect.
For numerical estimates I will use the average of the two
estimates with a 100% uncertainty,

�R(E) ⇠ (8± 8)⇥ 10�4
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, (20)

and this result is independent on the nucleus. Never-
theless, the respective correction to the total decay rate

will depend on the particular decay via the correspond-
ing Q-value. The correction to the Ft-value is obtained
by integrating �R(E) over the beta spectrum,

�NS
E =

R Em

me
dEEp(Q� E)2�R(E)

R Em

me
dEEp(Q� E)2

, (21)

where p =
p
E2 �m2

e is the electron 3-momentum, me

the electron mass, and Q the maximal electron energy
available in a given decay. The result of the integration
with the estimate of Eq. (20) leads to

�NS
E = (8± 8)⇥ 10�5 Q

MeV
, (22)

which modifies the Ft values according to

F̃t = ft(1 + �0R)(1� �C + �NS +�NS
E ). (23)

The absolute shift in the Ft values due to the nuclear po-
larizability contribution obtained as �Ft = Ft⇥�NS

E is
shown for the 14 most accurately measured superallowed
decays in Table I along with the central values and the
respective uncertainties of the original analysis of Ref.
[3]. It is seen that for the seven most precise Ft values

Decay Q (MeV) �NS
E (10�4) �Ft(s) Ft(s) [3]

10
C 1.91 1.5 0.5 3078.0(4.5)

14
O 2.83 2.3 0.7 3071.4(3.2)

22
Mg 4.12 3.3 1.0 3077.9(7.3)

34
Ar 6.06 4.8 1.5 3065.6(8.4)

38
Ca 6.61 5.3 1.6 3076.4(7.2)

26m
Al 4.23 3.4 1.0 3072.9(1.0)

34
Cl 5.49 4.4 1.4 3070.7+1.7

�1.8
38m

K 6.04 4.8 1.5 3071.6(2.0)
42
Sc 6.43 5.1 1.6 3072.4(2.3)

46
V 7.05 5.6 1.7 3074.1(2.0)

50
Mn 7.63 6.1 1.9 3071.2(2.1)

54
Co 8.24 6.6 2.0 3069.8+2.4

�2.6
62
Ga 9.18 7.3 2.2 3071.5(6.7)

74
Rb 10.42 8.3 2.6 3076(11)

TABLE I: For 14 superallowed decay I display the respective
Q-value, the fractional e↵ect on the decay rate obtained from
the energy-dependent correction integrated over the electron
spectrum, the respective shift in the Ft value, in comparison
with the Ft values and respective uncertainties taken from [3]

(26mAl through 54Co) the new correction is comparable
with their uncertainties from the analysis of [3]. Such a
systematic shift of all Ft values in the same direction will
then reflect in a substantial shift of their average Ft:

Ft = 7072.07(63)s ! Ft = 7073.6(0.6)(1.5)s. (24)

A recent re-evaluation of the nuclear part of the energy-
independent correction Re⇤even

�W resulted in a shift of a

Absolute shift in Ft values

4

blocking is described by the Pauli function

FP(|~q |, kF ) =
3|~q |

4kF
[1� ~q 2/(12k2F )] for |~q|  2kF , (17)

and FP = 1 otherwise, and |~q | =
p

⌫2 +Q2 stands for
the 3-momentum of the virtual photon (W± boson). The
�-function reflects the knock-out nucleon being on shell.
The integral in Eq. (16) can be carried out analytically
[8] after which the dependence of the spectral function S
on the breakup threshold becomes explicit. Finally, the
residues fi corresponding to the coe�cient in front of the
� function in the nucleon Born contribution read

f (0)
1 =

Q2

8
GW

MGS
M , f (0)

2 =
Q2

4

GV
EG

S
E + ⌧GV

MGS
M

1 + ⌧
,

f (�)
3 = �

Q2

4
GAG

V
M , (18)

with GS,V
E,M = Gp

E,M (Q2) ± Gn
E,M (Q2) the nucleon

isoscalar and isovector electromagnetic form factors, the
axial form factor GA with GA(0) = �1.2755, and the nu-
cleon recoil ⌧ = Q2/4M2

p . A numerical evaluation with
the e↵ective separation energy ✏̄ = 7.5 ± 1.5 MeV and
Pauli momentum kF = 235 ± 10 MeV leads to the FFG
estimate

�R(E) = (1.4± 0.2)⇥ 10�3

✓
E

5MeV

◆
. (19)

This estimate is one order of magnitude larger than
the naive estimate with the nuclear electric dipole
polarizability and the nuclear size. It is well known
that QE cross sections with slightly virtual photons are
much larger than with real photons, so the estimate
↵E(Q2) ⇠ ↵E(0)e�R2

ChQ
2/6 used in the previous section

is likely to underestimate the actual e↵ect. On the
other hand, the FFG model is known to overestimate
the quasielastic response at very low values of Q2 where
meson exchange currents tend to lead to a suppression.
So the realistic size of the e↵ect should lie between
those two extremes. Note that the contribution of F (�)

3

dominates over the other two terms in Eq. (10) in FFG
due to the large isovector nucleon magnetic moment.

Numerical results and the e↵ect on the Ft-values
Above, I obtained an estimate of the energy-dependent
correction in two di↵erent models which give a rough idea
of the lower and upper bound of the size of the e↵ect.
For numerical estimates I will use the average of the two
estimates with a 100% uncertainty,

�R(E) ⇠ (8± 8)⇥ 10�4

✓
E

5MeV

◆
, (20)

and this result is independent on the nucleus. Never-
theless, the respective correction to the total decay rate

will depend on the particular decay via the correspond-
ing Q-value. The correction to the Ft-value is obtained
by integrating �R(E) over the beta spectrum,

�NS
E =

R Em

me
dEEp(Q� E)2�R(E)

R Em

me
dEEp(Q� E)2

, (21)

where p =
p
E2 �m2

e is the electron 3-momentum, me

the electron mass, and Q the maximal electron energy
available in a given decay. The result of the integration
with the estimate of Eq. (20) leads to

�NS
E = (8± 8)⇥ 10�5 Q

MeV
, (22)

which modifies the Ft values according to

F̃t = ft(1 + �0R)(1� �C + �NS +�NS
E ). (23)

The absolute shift in the Ft values due to the nuclear po-
larizability contribution obtained as �Ft = Ft⇥�NS

E is
shown for the 14 most accurately measured superallowed
decays in Table I along with the central values and the
respective uncertainties of the original analysis of Ref.
[3]. It is seen that for the seven most precise Ft values

Decay Q (MeV) �NS
E (10�4) �Ft(s) Ft(s) [3]

10
C 1.91 1.5 0.5 3078.0(4.5)

14
O 2.83 2.3 0.7 3071.4(3.2)

22
Mg 4.12 3.3 1.0 3077.9(7.3)

34
Ar 6.06 4.8 1.5 3065.6(8.4)

38
Ca 6.61 5.3 1.6 3076.4(7.2)

26m
Al 4.23 3.4 1.0 3072.9(1.0)

34
Cl 5.49 4.4 1.4 3070.7+1.7

�1.8
38m

K 6.04 4.8 1.5 3071.6(2.0)
42
Sc 6.43 5.1 1.6 3072.4(2.3)

46
V 7.05 5.6 1.7 3074.1(2.0)

50
Mn 7.63 6.1 1.9 3071.2(2.1)

54
Co 8.24 6.6 2.0 3069.8+2.4

�2.6
62
Ga 9.18 7.3 2.2 3071.5(6.7)

74
Rb 10.42 8.3 2.6 3076(11)

TABLE I: For 14 superallowed decay I display the respective
Q-value, the fractional e↵ect on the decay rate obtained from
the energy-dependent correction integrated over the electron
spectrum, the respective shift in the Ft value, in comparison
with the Ft values and respective uncertainties taken from [3]

(26mAl through 54Co) the new correction is comparable
with their uncertainties from the analysis of [3]. Such a
systematic shift of all Ft values in the same direction will
then reflect in a substantial shift of their average Ft:

Ft = 7072.07(63)s ! Ft = 7073.6(0.6)(1.5)s. (24)

A recent re-evaluation of the nuclear part of the energy-
independent correction Re⇤even

�W resulted in a shift of a

Shift comparable with the precision of  
the 7 best-known decays
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Decay ✏1 (MeV) ✏2 (MeV) ✏ (MeV)
10
C !10

B 6.70 4.79 5.67
14
O !14

N 8.24 5.41 6.68
18
Ne !18

F 8.11 4.71 6.18
22
Mg !22

Na 10.41 6.28 8.09
26
Si !26

Al 11.14 6.30 8.38
30
S !30

P 10.64 5.18 7.42
34
Ar !34

Cl 11.51 5.44 7.91
38
Ca !38

K 11.94 5.33 7.98
42
T i !42

Sc 11.57 4.55 7.25
26m

Al !26
Mg 11.09 6.86 8.72

34
Cl !34

S 11.42 5.92 8.22
38m

K !38
Ar 11.84 5.79 8.28

42
Sc !42

Ca 11.48 5.05 7.61
46
V !46

T i 13.19 6.14 9.00
50
Mn !50

Cr 13.00 5.37 8.35
54
Co !54

Fe 13.38 5.13 8.28
62
Ga !62

Zn 12.90 3.72 6.94
66
As !66

Ge 12.74 3.16 6.34
70
Br !70

Se 13.17 3.20 6.49
74
Rb !74

Kr 13.85 3.44 6.90

TABLE I: E↵ective removal energy ✏ as calculated from the
mother and daughter removal energies ✏2,1 for all superallowed
� decays listed in Ref. [4].

[q(0)S qA � 1]CB = �0.25 and notice a significantly larger
nuclear modification in our approach. This means that
retaining all other nuclear corrections in Ref. [4], the
universal Ft value should be corrected by

↵

⇡
(CQE � CB � [q(0)S qA � 1]CB) = �(4.6± 0.9)⇥ 10�4,

(64)

leading to a new estimate

Ft = 3072.07(63)s ! [Ft]new = 3070.65(63)(28)s, (65)

with the second uncertainty stemming from that of the
QE contribution. This shift in the Ft value partially
cancels the large shift in the value of Vud that followed
from the new dispersion evaluation of �V

R in the previous
Section,

V new
ud = 0.97370(14) ! V new, QE

ud = 0.97392(14)(04)

(66)

and that in the first-row CKM unitarity,

|Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9984± 0.0004 (67)

! |Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9988± 0.0004,

three standard deviation from exact unitarity, and within
1.25 standard deviations from the current PDG value,
|Vud|

2 + |Vus|
2 + |Vub|

2 = 0.9994± 0.0005.

As mentioned above, we consider this new dispersion
relation-based estimate of the quasielastic nuclear correc-
tion as exploratory. Unlike our new evaluation of the free
nucleon correction �V

R that is very solid, the quasielastic
calculation can be considered as less reliable since it is
based on a simple free Fermi gas model, and is not yet
directly validated by experimental data. Nevertheless,
we emphasize that our new evaluation of the “quenched
Born contribution” is much better justified, as compared
to the old approach of Ref. [30] that enters �NS which de-
termines the universal Ft value. The dispersion approach
also provides the basis for a unification of the universal
correction �V

R and the nuclear structure-dependent cor-
rections �NS , �C within the same framework. To further
advance the evaluation of these corrections, the following
steps will be necessary: i) more advanced calculations of
the QE single-nucleon knock-out contribution using up-
to-date nuclear theory and validated by experimental QE
data; ii) advanced calculations of the QE two-nucleon
knock-out that is the main contribution to �NS , which
should also be confronted with the experimental data;
iii) include nuclear shadowing e↵ects which may a↵ect
the evaluation of �V

R on a nucleus, and have not been
considered in the literature. To set up this research pro-
gram, a close cooperation between particle and nuclear
theorists, and experimentalists will be crucial.

VIII. RELATION TO eN-SCATTERING DATA

Besides making use of the neutrino scattering data, one
other possibility to probe the �W interference matrix
element in experiment is to relate it to the �Z matrix
element which can be measured in parity-violating eN -
scattering through isospin symmetry. To illustrate this
point, we first define a set of rank-one spherical tensors in
the isospin space using the axial current Aµ

i = q̄�µ�5⌧iq:

A±1,µ
1 = ⌥

1
p
2
(Aµ

1 ± iAµ
2 )

A0,µ
1 = Aµ

3 (68)

such that the axial components of the charged and neu-
tral weak currents are given by (Jµ

W )A = (1/
p
2)A1,µ

1 and

(Jµ
Z)A = �(1/2)A0,µ

1 . With this, one can easily show us-
ing the Wigner-Eckart theorem in the isospin space that

hp| J (0)µ
em (J⌫

W )A |ni (69)

= hp| J (0)µ
em (J⌫

Z)A |pi � hn| J (0)µ
em (J⌫

Z)A |ni ,

where J (0)µ
em is the isosinglet component of the electro-

magnetic current (and a superscript “3” will denote its

isotriplet component). Next, we can write J (0)µ
em =

Jµ
em � J (3)µ

em at the right hand side of the equation above

and argue that the terms with J (3)µ
em sum up to zero. The

reason is simple: both J (3)µ
em and (J⌫

Z)A are (I = 1, I3 = 0)
objects, so their product can only be (I = 0, I3 = 0) or

Decay electron polarizes the daughter nucleus 

As a result the spectrum is slightly distorted  
towards the upper end  

Changes the rate at 0.05% level

4

blocking is described by the Pauli function

FP(|~q |, kF ) =
3|~q |

4kF
[1� ~q 2/(12k2F )] for |~q|  2kF , (17)

and FP = 1 otherwise, and |~q | =
p

⌫2 +Q2 stands for
the 3-momentum of the virtual photon (W± boson). The
�-function reflects the knock-out nucleon being on shell.
The integral in Eq. (16) can be carried out analytically
[8] after which the dependence of the spectral function S
on the breakup threshold becomes explicit. Finally, the
residues fi corresponding to the coe�cient in front of the
� function in the nucleon Born contribution read

f (0)
1 =

Q2

8
GW

MGS
M , f (0)

2 =
Q2

4

GV
EG

S
E + ⌧GV

MGS
M

1 + ⌧
,

f (�)
3 = �

Q2

4
GAG

V
M , (18)

with GS,V
E,M = Gp

E,M (Q2) ± Gn
E,M (Q2) the nucleon

isoscalar and isovector electromagnetic form factors, the
axial form factor GA with GA(0) = �1.2755, and the nu-
cleon recoil ⌧ = Q2/4M2

p . A numerical evaluation with
the e↵ective separation energy ✏̄ = 7.5 ± 1.5 MeV and
Pauli momentum kF = 235 ± 10 MeV leads to the FFG
estimate

�R(E) = (1.4± 0.2)⇥ 10�3

✓
E

5MeV

◆
. (19)

This estimate is one order of magnitude larger than
the naive estimate with the nuclear electric dipole
polarizability and the nuclear size. It is well known
that QE cross sections with slightly virtual photons are
much larger than with real photons, so the estimate
↵E(Q2) ⇠ ↵E(0)e�R2

ChQ
2/6 used in the previous section

is likely to underestimate the actual e↵ect. On the
other hand, the FFG model is known to overestimate
the quasielastic response at very low values of Q2 where
meson exchange currents tend to lead to a suppression.
So the realistic size of the e↵ect should lie between
those two extremes. Note that the contribution of F (�)

3

dominates over the other two terms in Eq. (10) in FFG
due to the large isovector nucleon magnetic moment.

Numerical results and the e↵ect on the Ft-values
Above, I obtained an estimate of the energy-dependent
correction in two di↵erent models which give a rough idea
of the lower and upper bound of the size of the e↵ect.
For numerical estimates I will use the average of the two
estimates with a 100% uncertainty,

�R(E) ⇠ (8± 8)⇥ 10�4

✓
E

5MeV

◆
, (20)

and this result is independent on the nucleus. Never-
theless, the respective correction to the total decay rate

will depend on the particular decay via the correspond-
ing Q-value. The correction to the Ft-value is obtained
by integrating �R(E) over the beta spectrum,

�NS
E =

R Em

me
dEEp(Q� E)2�R(E)

R Em

me
dEEp(Q� E)2

, (21)

where p =
p
E2 �m2

e is the electron 3-momentum, me

the electron mass, and Q the maximal electron energy
available in a given decay. The result of the integration
with the estimate of Eq. (20) leads to

�NS
E = (8± 8)⇥ 10�5 Q

MeV
, (22)

which modifies the Ft values according to

Ft = ft(1 + �0R)(1� �C + �NS +�NS
E ). (23)

The absolute shift in the Ft values due to the nuclear po-
larizability contribution obtained as �Ft = Ft⇥�NS

E is
shown for the 14 most accurately measured superallowed
decays in Table I along with the central values and the
respective uncertainties of the original analysis of Ref.
[3]. It is seen that for the seven most precise Ft values

Decay Q (MeV) �NS
E (10�4) �Ft(s) Ft(s) [3]

10
C 1.91 1.5 0.5 3078.0(4.5)

14
O 2.83 2.3 0.7 3071.4(3.2)

22
Mg 4.12 3.3 1.0 3077.9(7.3)

34
Ar 6.06 4.8 1.5 3065.6(8.4)

38
Ca 6.61 5.3 1.6 3076.4(7.2)

26m
Al 4.23 3.4 1.0 3072.9(1.0)

34
Cl 5.49 4.4 1.4 3070.7+1.7

�1.8
38m

K 6.04 4.8 1.5 3071.6(2.0)
42
Sc 6.43 5.1 1.6 3072.4(2.3)

46
V 7.05 5.6 1.7 3074.1(2.0)

50
Mn 7.63 6.1 1.9 3071.2(2.1)

54
Co 8.24 6.6 2.0 3069.8+2.4

�2.6
62
Ga 9.18 7.3 2.2 3071.5(6.7)

74
Rb 10.42 8.3 2.6 3076(11)

TABLE I: For 14 superallowed decay I display the respective
Q-value, the fractional e↵ect on the decay rate obtained from
the energy-dependent correction integrated over the electron
spectrum, the respective shift in the Ft value, in comparison
with the Ft values and respective uncertainties taken from [3]

(26mAl through 54Co) the new correction is comparable
with their uncertainties from the analysis of [3]. Such a
systematic shift of all Ft values in the same direction will
then reflect in a substantial shift of their average Ft:

Ft = 3072.07(63)s ! Ft = 3073.6(0.6)(1.5)s. (24)

A recent re-evaluation of the nuclear part of the energy-
independent correction Re⇤even

�W resulted in a shift of a

Previously found: E-independent piece lowers the Ft value by about the same amount

The two effects tend to cancel each other; a good problem for hard-core nuclear theorists!
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RC to β-decay from dispersion relations: 
Summary

All three sources of possible model dependence addressed with DR 

At each step a considerable shift beyond the previously assumed precision is observed 

Universal correction: the biggest shift (2.5 𝜎) but the uncertainty reduced 

Matching hadronic and nuclear corrections: shift (- 2𝜎) to the Ft value 

Nuclear polarizabilities distort the β-spectrum, split inner-outer RC ambiguous:  
                                                  shift ~ (+2𝜎) to the Ft value 

Net effect: (4𝜎) deficit for the first-row unitarity 

Some increase in the nuclear uncertainty is likely 

11

It worths mentioning that, with this update the amount
of uncertainty in Vud induced by �V

R is now almost the
same as that due to Ft. Our study leads to a new, more
precise extraction of Vud from superallowed decays,

V old
ud = 0.97420(21) ! V new

ud = 0.97370(14). (48)

One may also extract Vud from free neutron beta decay:

|V old
ud |free n = 0.9758(16) ! |V new

ud |free n = 0.9753(16),

(49)

where we have taken ⌧n = 880.2(1.0)s and � =
�1.2724(23) as quoted in PDG 2018 [2]. Our new evalua-
tion of �V

R does not impact the total uncertainty because
the latter is dominated by the experimental uncertainties
of ⌧n and �.
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FIG. 7: Our prediction of
M2

W
M2

W+Q2M
(0)
3 (1, Q2) vs the MS’s

prediction. Notice that the peak around Q
2 = 0.1 GeV2 is

due to the Born contribution.

The comparison between our new result and the
MS result is most easily visualized through a plot of�
M2

W /(M2
W +Q2)

�
M (0)

3 (1, Q2) versus Q2 in log scale,
as shown in Fig. 7. Since dQ2/Q2 = d lnQ2 in Eq.
(26), the area under the curve provides a direct measure
of ⇤V A

�W . While mutually agreeing at large Q2, we find
three main di↵erences between our approach and MS: (1)
MS assume no physics other than Born at low Q2, which
is not true by inspecting the W 2

� Q2 diagram in Fig.
3. In fact, our result shows that inelastic channels start
contributing significantly already from Q2

⇡ 0.1 GeV2

onwards; (2) MS require their interpolating function to
vanish when Q2

! 0 (which turns out not to be true by
explicit ChPT calculation), which causes the function to
drop too fast with decreasing Q2 and meet Fel(Q2) at
relatively large matching point Q2 = (0.823GeV)2; (3)
MS require the integral of their interpolating function,
instead of the function itself, to match pQCD result in
the asymptotic region. This causes a discontinuity of

their F (Q2) at the UV-matching point. All in all, the
MS treatment of the interpolating function results in an
underestimation of �V

R .
Our update on Vud from superallowed decays reflects

in the first row CKM unitarity,

|Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9984± 0.0004, (50)

where 2018 PDG averages [2] |Vus| = 0.2243(5) and
|Vub| = 0.00394(36) were used. The previous PDG con-
straint on the first row unitarity was |Vud|

2 + |Vus|
2 +

|Vub|
2 = 0.9994 ± 0.0005, roughly consistent with uni-

tarity. Our new result suggests that, if all other SM
corrections are correct, first row unitarity is violated by
(1.6 ± 0.4) ⇥ 10�3. As mentioned already in the Intro-
duction, the value of Vud extracted from the superallowed
nuclear decays relies on the nuclear structure corrections
�NS which are purely theoretical. There persists a discus-
sion on the uncertainty and model dependence of those
calculations, see e.g. the recent Ref. [8] and references
therein. The shell model approach with the Wood-Saxon
potential advocated by Hardy and Towner is at variance
with Hartree-Fock evaluations which may signal a sys-
tematic e↵ect that has not yet been fully understood. In
view of this we plan reassessing the nuclear corrections
from the dispersion relation perspective in detail in the
upcoming work. In the next Section we demonstrate the
potential of the dispersion treatment on the example of
the quasielastic contribution to the �W -box calculation
on nuclei.

VII. NUCLEAR CONTRIBUTIONS TO ⇤V A
�W

FOR NUCLEAR FERMI DECAYS:
QUASIELASTIC CONTRIBUTION

FIG. 8: Idealized structure of virtual photoabsorption on a
nucleus.

Fig. 8 displays the idealized structure of the electroab-
sorption spectrum on a nucleus. While the shape in the
hadronic range is similar to that on a free nucleon in
Fig. 4, the lower part of the nuclear spectrum contains
nuclear resonances and the quasielastic (QE) peak con-
taining one-nucleon knock-out, as well as knock-out of
two or more nucleons in a single scattering process.



CKM first-row unitarity at a historic low. 
Solutions: SM or beyond?
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Discrepancy - BSM?

!22

BSM explanation: non-standard CC interactions —> new V,A,S(PS),T(PT) terms 
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FIG. 7: Corrected Ft values from Table IX plotted as a func-
tion of the charge on the daughter nucleus, Z. The curved
lines represent the approximate loci the Ft values would fol-
low if a scalar current existed with bF = ±0.004.

mized the χ2 in a least-squares fit to the expression Ft =
constant. The result we obtained is

bF = −0.0028± 0.0026, (17)

a marginally larger result than the value from our last
survey [6] but with the same uncertainty. Note that the
uncertainty quoted here is one standard deviation (68%
CL), as obtained from the fit. In Fig. 7 we illustrate
the sensitivity of this analysis by plotting the measured
Ft values together with the loci of Ft values that would
be expected if bF = ±0.004. There is no statistically
compelling evidence for bF to be non-zero.
The result in (17) can also be expressed in terms of

the coupling constants that Jackson, Treiman and Wyld
[217] introduced to write a general form for the weak-
interaction Hamiltonian. Since we are dealing only with
Fermi superallowed transitions, we can restrict ourselves
to scalar and vector couplings, for which the Hamiltonian
becomes

HS+V = (ψpψn)(CSφeφνe + C′
Sφeγ5φνe)

+
(

ψpγµψn

) [

CV φeγµ(1 + γ5)φνe

]

, (18)

in the notation and metric of [217]. We have taken the
vector current to be maximally parity violating, as indi-
cated by experiment. The complexity of the relationship
between bF and the couplings CS , C′

S and CV depends on
what assumptions are made about the properties of the
scalar current. If we take the most restrictive conditions,
that the scalar and vector currents are time-reversal in-
variant (i.e. CS and CV are real) and that the scalar
current, like the vector current, is maximally parity vio-
lating (i.e. CS = C′

S), then we can write1

CS

CV
= −

bF
2

= +0.0014± 0.0013. (19)

1 More correctly we write CS/CV = ±bF /2, with the upper sign
for β− transitions and the lower sign for β+ transitions. Since all
the superallowed Fermi transitions are positron emitters, we will
display only the lower sign in our equations. The sign change
comes about because ψpCSψn changes sign under charge conju-

gation relative to ψpCV γ4ψn.

This limit from superallowed β decay is, by far, the tight-
est limit available on the presence of a scalar current un-
der the assumptions stated.
If we remove the condition that the scalar current be

maximally parity violating, then the expression contains
two unknowns,

bF =
−2CV (CS + C′

S)

2|CV |2 + |CS |2 + |C′
S |

2
≃ −

(

CS

CV
+

C′
S

CV

)

, (20)

and cannot be solved individually for CS/CV and
C′

S/CV . However, the β-ν angular-correlation coefficient,
a, for a superallowed 0+ → 0+ β transition provides an-
other independent measure of CS and CV . In that case

a =
2|CV |2 − |CS |2 − |C′

S |
2

2|CV |2 + |CS |2 + |C′
S |

2

≃ 1−

(

|CS |2

|CV |2
+

|C′
S |

2

|CV |2

)

, (21)

which, together with Eq. (20), can be used to set limits
on both CS/CV and C′

S/CV .
In our previous survey [6] we combined our result for

bF with the result from a β-ν correlation measurement in
the superallowed emitter 38mK [218]. Our new value for
bF in Eq. 17 is so little changed from our previous one
that we quote the same 68% confidence limits for CS/CV

and C′
S/CV : viz.

|CS |

|CV |
≤ 0.065

|C′
S |

|CV |
≤ 0.065 . (22)

The reader is referred to Fig. 8 in [6] for a visual repre-
sentation of these results and their derivation.
A review of the limits obtained on exotic weak-

interaction couplings from precision β-decay experiments
has recently been produced by Naviliat-Cuncic and
González-Alonso [219].

2. Induced scalar currents

If we consider only the vector part of the weak inter-
action for composite spin-1/2 nucleons, then the most
general form the interaction can take is written [220]

HV = ψp (gV γµ − fMσµνqν + ifSqµ)ψn φeγµ(1 + γ5)φνe

(23)
with qµ being the four-momentum transfer between
hadrons and leptons. The values of the coupling con-
stants gV (vector), fM (weak magnetism) and fS (in-
duced scalar) are pre-determined if the CVC hypothesis
– that the weak vector current is just an isospin rota-
tion of the electromagnetic vector current – is correct. In
particular, because CVC implies that the vector current
is divergenceless, the induced scalar term fS should be
identically zero. With the data from superallowed β de-
cay it is possible to test this prediction of CVC by setting
an experimental limit on the value of fS .
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FIG. 7: Corrected Ft values from Table IX plotted as a func-
tion of the charge on the daughter nucleus, Z. The curved
lines represent the approximate loci the Ft values would fol-
low if a scalar current existed with bF = ±0.004.

mized the χ2 in a least-squares fit to the expression Ft =
constant. The result we obtained is

bF = −0.0028± 0.0026, (17)

a marginally larger result than the value from our last
survey [6] but with the same uncertainty. Note that the
uncertainty quoted here is one standard deviation (68%
CL), as obtained from the fit. In Fig. 7 we illustrate
the sensitivity of this analysis by plotting the measured
Ft values together with the loci of Ft values that would
be expected if bF = ±0.004. There is no statistically
compelling evidence for bF to be non-zero.
The result in (17) can also be expressed in terms of

the coupling constants that Jackson, Treiman and Wyld
[217] introduced to write a general form for the weak-
interaction Hamiltonian. Since we are dealing only with
Fermi superallowed transitions, we can restrict ourselves
to scalar and vector couplings, for which the Hamiltonian
becomes

HS+V = (ψpψn)(CSφeφνe + C′
Sφeγ5φνe)

+
(

ψpγµψn

) [

CV φeγµ(1 + γ5)φνe

]

, (18)

in the notation and metric of [217]. We have taken the
vector current to be maximally parity violating, as indi-
cated by experiment. The complexity of the relationship
between bF and the couplings CS , C′

S and CV depends on
what assumptions are made about the properties of the
scalar current. If we take the most restrictive conditions,
that the scalar and vector currents are time-reversal in-
variant (i.e. CS and CV are real) and that the scalar
current, like the vector current, is maximally parity vio-
lating (i.e. CS = C′

S), then we can write1

CS

CV
= −

bF
2

= +0.0014± 0.0013. (19)

1 More correctly we write CS/CV = ±bF /2, with the upper sign
for β− transitions and the lower sign for β+ transitions. Since all
the superallowed Fermi transitions are positron emitters, we will
display only the lower sign in our equations. The sign change
comes about because ψpCSψn changes sign under charge conju-

gation relative to ψpCV γ4ψn.

This limit from superallowed β decay is, by far, the tight-
est limit available on the presence of a scalar current un-
der the assumptions stated.
If we remove the condition that the scalar current be

maximally parity violating, then the expression contains
two unknowns,

bF =
−2CV (CS + C′

S)

2|CV |2 + |CS |2 + |C′
S |

2
≃ −

(

CS

CV
+

C′
S

CV

)

, (20)

and cannot be solved individually for CS/CV and
C′

S/CV . However, the β-ν angular-correlation coefficient,
a, for a superallowed 0+ → 0+ β transition provides an-
other independent measure of CS and CV . In that case

a =
2|CV |2 − |CS |2 − |C′

S |
2

2|CV |2 + |CS |2 + |C′
S |

2

≃ 1−

(

|CS |2

|CV |2
+

|C′
S |

2

|CV |2

)

, (21)

which, together with Eq. (20), can be used to set limits
on both CS/CV and C′

S/CV .
In our previous survey [6] we combined our result for

bF with the result from a β-ν correlation measurement in
the superallowed emitter 38mK [218]. Our new value for
bF in Eq. 17 is so little changed from our previous one
that we quote the same 68% confidence limits for CS/CV

and C′
S/CV : viz.

|CS |

|CV |
≤ 0.065

|C′
S |

|CV |
≤ 0.065 . (22)

The reader is referred to Fig. 8 in [6] for a visual repre-
sentation of these results and their derivation.
A review of the limits obtained on exotic weak-

interaction couplings from precision β-decay experiments
has recently been produced by Naviliat-Cuncic and
González-Alonso [219].

2. Induced scalar currents

If we consider only the vector part of the weak inter-
action for composite spin-1/2 nucleons, then the most
general form the interaction can take is written [220]

HV = ψp (gV γµ − fMσµνqν + ifSqµ)ψn φeγµ(1 + γ5)φνe

(23)
with qµ being the four-momentum transfer between
hadrons and leptons. The values of the coupling con-
stants gV (vector), fM (weak magnetism) and fS (in-
duced scalar) are pre-determined if the CVC hypothesis
– that the weak vector current is just an isospin rota-
tion of the electromagnetic vector current – is correct. In
particular, because CVC implies that the vector current
is divergenceless, the induced scalar term fS should be
identically zero. With the data from superallowed β de-
cay it is possible to test this prediction of CVC by setting
an experimental limit on the value of fS .
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FIG. 7: Corrected Ft values from Table IX plotted as a func-
tion of the charge on the daughter nucleus, Z. The curved
lines represent the approximate loci the Ft values would fol-
low if a scalar current existed with bF = ±0.004.

mized the χ2 in a least-squares fit to the expression Ft =
constant. The result we obtained is

bF = −0.0028± 0.0026, (17)

a marginally larger result than the value from our last
survey [6] but with the same uncertainty. Note that the
uncertainty quoted here is one standard deviation (68%
CL), as obtained from the fit. In Fig. 7 we illustrate
the sensitivity of this analysis by plotting the measured
Ft values together with the loci of Ft values that would
be expected if bF = ±0.004. There is no statistically
compelling evidence for bF to be non-zero.
The result in (17) can also be expressed in terms of

the coupling constants that Jackson, Treiman and Wyld
[217] introduced to write a general form for the weak-
interaction Hamiltonian. Since we are dealing only with
Fermi superallowed transitions, we can restrict ourselves
to scalar and vector couplings, for which the Hamiltonian
becomes

HS+V = (ψpψn)(CSφeφνe + C′
Sφeγ5φνe)

+
(

ψpγµψn

) [

CV φeγµ(1 + γ5)φνe

]

, (18)

in the notation and metric of [217]. We have taken the
vector current to be maximally parity violating, as indi-
cated by experiment. The complexity of the relationship
between bF and the couplings CS , C′

S and CV depends on
what assumptions are made about the properties of the
scalar current. If we take the most restrictive conditions,
that the scalar and vector currents are time-reversal in-
variant (i.e. CS and CV are real) and that the scalar
current, like the vector current, is maximally parity vio-
lating (i.e. CS = C′

S), then we can write1

CS

CV
= −

bF
2

= +0.0014± 0.0013. (19)

1 More correctly we write CS/CV = ±bF /2, with the upper sign
for β− transitions and the lower sign for β+ transitions. Since all
the superallowed Fermi transitions are positron emitters, we will
display only the lower sign in our equations. The sign change
comes about because ψpCSψn changes sign under charge conju-

gation relative to ψpCV γ4ψn.

This limit from superallowed β decay is, by far, the tight-
est limit available on the presence of a scalar current un-
der the assumptions stated.
If we remove the condition that the scalar current be

maximally parity violating, then the expression contains
two unknowns,

bF =
−2CV (CS + C′

S)

2|CV |2 + |CS |2 + |C′
S |

2
≃ −

(

CS

CV
+

C′
S

CV

)

, (20)

and cannot be solved individually for CS/CV and
C′

S/CV . However, the β-ν angular-correlation coefficient,
a, for a superallowed 0+ → 0+ β transition provides an-
other independent measure of CS and CV . In that case

a =
2|CV |2 − |CS |2 − |C′

S |
2

2|CV |2 + |CS |2 + |C′
S |

2

≃ 1−

(

|CS |2

|CV |2
+

|C′
S |

2

|CV |2

)

, (21)

which, together with Eq. (20), can be used to set limits
on both CS/CV and C′

S/CV .
In our previous survey [6] we combined our result for

bF with the result from a β-ν correlation measurement in
the superallowed emitter 38mK [218]. Our new value for
bF in Eq. 17 is so little changed from our previous one
that we quote the same 68% confidence limits for CS/CV

and C′
S/CV : viz.

|CS |

|CV |
≤ 0.065

|C′
S |

|CV |
≤ 0.065 . (22)

The reader is referred to Fig. 8 in [6] for a visual repre-
sentation of these results and their derivation.
A review of the limits obtained on exotic weak-

interaction couplings from precision β-decay experiments
has recently been produced by Naviliat-Cuncic and
González-Alonso [219].

2. Induced scalar currents

If we consider only the vector part of the weak inter-
action for composite spin-1/2 nucleons, then the most
general form the interaction can take is written [220]

HV = ψp (gV γµ − fMσµνqν + ifSqµ)ψn φeγµ(1 + γ5)φνe

(23)
with qµ being the four-momentum transfer between
hadrons and leptons. The values of the coupling con-
stants gV (vector), fM (weak magnetism) and fS (in-
duced scalar) are pre-determined if the CVC hypothesis
– that the weak vector current is just an isospin rota-
tion of the electromagnetic vector current – is correct. In
particular, because CVC implies that the vector current
is divergenceless, the induced scalar term fS should be
identically zero. With the data from superallowed β de-
cay it is possible to test this prediction of CVC by setting
an experimental limit on the value of fS .
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FIG. 7: Corrected Ft values from Table IX plotted as a func-
tion of the charge on the daughter nucleus, Z. The curved
lines represent the approximate loci the Ft values would fol-
low if a scalar current existed with bF = ±0.004.

mized the χ2 in a least-squares fit to the expression Ft =
constant. The result we obtained is

bF = −0.0028± 0.0026, (17)

a marginally larger result than the value from our last
survey [6] but with the same uncertainty. Note that the
uncertainty quoted here is one standard deviation (68%
CL), as obtained from the fit. In Fig. 7 we illustrate
the sensitivity of this analysis by plotting the measured
Ft values together with the loci of Ft values that would
be expected if bF = ±0.004. There is no statistically
compelling evidence for bF to be non-zero.
The result in (17) can also be expressed in terms of

the coupling constants that Jackson, Treiman and Wyld
[217] introduced to write a general form for the weak-
interaction Hamiltonian. Since we are dealing only with
Fermi superallowed transitions, we can restrict ourselves
to scalar and vector couplings, for which the Hamiltonian
becomes

HS+V = (ψpψn)(CSφeφνe + C′
Sφeγ5φνe)

+
(

ψpγµψn

) [

CV φeγµ(1 + γ5)φνe

]

, (18)

in the notation and metric of [217]. We have taken the
vector current to be maximally parity violating, as indi-
cated by experiment. The complexity of the relationship
between bF and the couplings CS , C′

S and CV depends on
what assumptions are made about the properties of the
scalar current. If we take the most restrictive conditions,
that the scalar and vector currents are time-reversal in-
variant (i.e. CS and CV are real) and that the scalar
current, like the vector current, is maximally parity vio-
lating (i.e. CS = C′

S), then we can write1

CS

CV
= −

bF
2

= +0.0014± 0.0013. (19)

1 More correctly we write CS/CV = ±bF /2, with the upper sign
for β− transitions and the lower sign for β+ transitions. Since all
the superallowed Fermi transitions are positron emitters, we will
display only the lower sign in our equations. The sign change
comes about because ψpCSψn changes sign under charge conju-

gation relative to ψpCV γ4ψn.

This limit from superallowed β decay is, by far, the tight-
est limit available on the presence of a scalar current un-
der the assumptions stated.
If we remove the condition that the scalar current be

maximally parity violating, then the expression contains
two unknowns,

bF =
−2CV (CS + C′

S)

2|CV |2 + |CS |2 + |C′
S |

2
≃ −

(

CS

CV
+

C′
S

CV

)

, (20)

and cannot be solved individually for CS/CV and
C′

S/CV . However, the β-ν angular-correlation coefficient,
a, for a superallowed 0+ → 0+ β transition provides an-
other independent measure of CS and CV . In that case

a =
2|CV |2 − |CS |2 − |C′

S |
2

2|CV |2 + |CS |2 + |C′
S |

2

≃ 1−

(

|CS |2

|CV |2
+

|C′
S |

2

|CV |2

)

, (21)

which, together with Eq. (20), can be used to set limits
on both CS/CV and C′

S/CV .
In our previous survey [6] we combined our result for

bF with the result from a β-ν correlation measurement in
the superallowed emitter 38mK [218]. Our new value for
bF in Eq. 17 is so little changed from our previous one
that we quote the same 68% confidence limits for CS/CV

and C′
S/CV : viz.

|CS |

|CV |
≤ 0.065

|C′
S |

|CV |
≤ 0.065 . (22)

The reader is referred to Fig. 8 in [6] for a visual repre-
sentation of these results and their derivation.
A review of the limits obtained on exotic weak-

interaction couplings from precision β-decay experiments
has recently been produced by Naviliat-Cuncic and
González-Alonso [219].

2. Induced scalar currents

If we consider only the vector part of the weak inter-
action for composite spin-1/2 nucleons, then the most
general form the interaction can take is written [220]

HV = ψp (gV γµ − fMσµνqν + ifSqµ)ψn φeγµ(1 + γ5)φνe

(23)
with qµ being the four-momentum transfer between
hadrons and leptons. The values of the coupling con-
stants gV (vector), fM (weak magnetism) and fS (in-
duced scalar) are pre-determined if the CVC hypothesis
– that the weak vector current is just an isospin rota-
tion of the electromagnetic vector current – is correct. In
particular, because CVC implies that the vector current
is divergenceless, the induced scalar term fS should be
identically zero. With the data from superallowed β de-
cay it is possible to test this prediction of CVC by setting
an experimental limit on the value of fS .

Fierz interference: distort the spectrum, affect Ft values

Exp. plans: high precision measurement of 6He spectrum (A. Garcia et al., U. Washington) 

Complementarity to LHC searches (Gonzalez Alonso et al., arXiv: 1803.08732)
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pQCD and the interpolating function over the short dis-
tance domain, rather than matching the functions them-
selves. The log-linear scale conveniently accounts for the
integration measure dQ2/Q2 in (9) so that the correc-
tion ⇤V A

�W is directly proportional to the area under the
curve. Although the line shapes are in agreement above
Q2 & 2 GeV2 and below Q2 . 0.001 GeV2, ours lies sig-
nificantly above that of [MS] for intermediate Q2. This
di↵erence is the origin of the discrepancy between our
central values for �V

R . By working with the two-variable

structure function F (0)
3 (x,Q2), we were able to capture

a broad variety of physics (Born, N⇡, Regge) operat-
ing at intermediate Q2 in contrast with the one-variable
analysis of FM.S.(Q2) by [MS]. We therefore believe our
updated result provides a more realistic assessment of
�V

R , even though the di↵erence with them is larger than
their quoted theoretical uncertainty.

We conclude by discussing how new measurements

could provide tests of our parameterization of F (0)
3 and

further reduce the uncertainty in �V
R . In view of the

upcoming high-intensity neutrino beam program at Fer-
milab, we wish to point out the potential impact which
new, more precise measurements ofM⌫p+⌫̄p

3 (1, Q2) at low
Q2 can have on our fit, as evidenced by Fig. 4. That said,

we have related F (0)
3 and F ⌫p+⌫̄p

3 within a model. How-
ever, by making use of isospin symmetry, we can establish

a more robust relationship between F (0)
3 and the P -odd

structure function FN
3,�Z . The latter is accessible with

parity-violating deep inelastic (inclusive) electron scat-
tering. Since the axial component of the weak neutral
current is predominantly isovector, we obtain

4F (0)
3 ⇡ F p

3,�Z � Fn
3,�Z ⇡ 2F p

3,�Z � F d
3,�Z . (22)

Thus, fixed target measurements using hydrogen and
deuterium can in principle provide a more direct way to
determine⇤V A

�W from data. High quality data in the range

0.1 GeV2 . Q2 . 1 GeV2 and W 2 & 5 GeV2 would be

particularly advantageous, as our parametrization of F (0)
3

admits the greatest model-dependence and exhibits the
largest di↵erence from that of [MS] in this domain. Such
an experimental program will however require a dedi-
cated feasibility study, as the contribution of F3,�Z to
the parity-violating asymmetry with a polarized electron
beam is suppressed by the small weak charge of the elec-
tron. Finally, with the reduction in the uncertainty of
|Vud|, the error in the first-row CKM unitarity constraint
is dominated by the uncertainty in |Vus| = 0.2243(5).
Combined with our results presented here, a commensu-
rate reduction in the latter uncertainty would enhance
the impact of first row CKM unitarity tests.
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Hadronic correction ΔRV

Neutrino data at low Q2 are not precise 
upcoming DUNE experiment @ Fermilab may provide better data for F3 
 - can check the parametrization of F3WW directly 

Isospin rotation needs to be tested separately: 
axial Z-N coupling is a pure isovector  —> 

Update axial 𝛾Z-box —> a change in F3γZ —> a shift in weak charge (seems small) 

Moments M3(0)(N,Q2) from lattice?

Nuclear correction δNS
DR allow to address hadronic and nuclear parts of the calculation on the same footing 

But data will not guarantee the needed precision —> use nuclear model input

The trouble is with Vus
Discrepancy in Vus from Kl3 and Kl2 decays 

Could be due to RC? 𝛾W-box?

|Vud |2 + |VKℓ2
us |2 + |Vub |2 = 0.9979(5)

|Vud |2 + |VKℓ3
us |2 + |Vub |2 = 0.9988(5)

PDG : |Vud |2 + |Vus |2 + |Vub |2 = 0.9984(4)


