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Mo2va2on	  

•  Standard	  Model	  is	  a	  very	  successful	  effec2ve	  
theory	  

•  Plenty	  of	  mo2va2on	  to	  go	  beyond	  (Dark	  MaSer,	  
hierarchy	  problem,	  …)	  	  

•  Standard	  Model	  is	  not	  sufficient	  to	  describe	  
Baryon	  Asymmetry	  of	  the	  Universe	  (BAU)	  

Sakharov’s	  condi2ons:	   1.  B	  viola2on	  
2.  First	  order	  EW	  phase	  transi2on	  
3.  C	  and	  CP	  viola2on	  



Examples	  of	  successful	  EW	  Baryogenesis	  
•  MSSM	  

	  

•  2HDM	  

Li,Profumo,	  Ramesy-‐Musolf,	  2008-‐2010	  

Bian,	  Liu,	  Shu,	  2014	  
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FIG. 3: The green band shows the region, in the (M1, sinφ1) plane compatible with electroweak
baryogenesis. We assume that sinφ2 = 0. On the same plane, we indicate iso-level curves at

constant values for the electron (left) and for the neutron (right) EDMs.
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FIG. 4: The green band shows the region, in the (M2, sinφ2) plane compatible with electroweak

baryogenesis. We assume that sinφ1 = 0. On the same plane, we indicate iso-level curves at
constant values for the electron (left) and for the neutron (right) EDMs. Parameter space points
above the red lines are excluded by current experimental constraints on electron and neutron

EDMs.

in Ref. [1]). We observe that as |M1|(|M2|) approaches |µ| = 200 GeV, the resonant en-
hancement becomes larger and larger, and thus the phase φ1(φ2) needed to generate enough
baryon asymmetry becomes smaller and smaller (no enhancement occurs in the two-loop
EDMs if |µ| ∼ |M1,2|). In turn, this makes it easier to evade the EDM bounds. However, for
the reasons outlined above, one sees that, since the φ1 contribution to EDMs is much smaller
than that from φ2, all the values of sinφ1 are presently consistent with experimental EDM
bounds, while the range of viable sinφ2 values is constrained to a very limited parameter
space (and likely ruled out when a more realistic Higgs profile is used). Future neutron
and electron EDM searches with ∼ 100 times better sensitivity than existing experiments
would be needed to fully explore the CP-violating parameter space in the presently proposed
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Electroweak	  baryogenesis	  
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Figure 1. Expanding bubbles of electroweak-broken phase within the surrounding
plasma in the electroweak-symmetric phase.

first impediment is that the SM electroweak phase transition is first-order only if the

mass of the Higgs boson lies below mh . 70 GeV [18, 19]. This is much less than

the current experimental lower bound of mh > 115.5 GeV [20, 21]. Even if the phase

transition were first order, the CP violation induced by the CKM phase does not appear

to be su�cient to generate large enough chiral asymmetries [22, 23, 24].

Therefore an essential feature of all viable realizations of EWBG is new physics

beyond the Standard Model (SM). This beyond the SM (BSM) physics must couple

to the SM with at least a moderate strength, and it must be abundant in the thermal

plasma at the time of the electroweak phase transition. Together, these two conditions

imply the existence of new particles with masses not too far above the electroweak

scale and direct couplings to the SM. Thus, a generic prediction of EWBG is that new

phenomena should be discovered in upcoming collider and precision experiments. It is

this property that sets EWBG apart from many other mechanisms of baryon creation.

Because of the prospects for experimental probes of EWBG, it is particularly

important to achieve the most robust theoretical predictions for the baryon asymmetry

within this framework as well as for the associated phenomenological implications

within specific BSM scenarios. Consequently, we review both progress in developing

the theoretical machinery used for computations of the baryon asymmetry as well

as developments on the phenomenological front. The former entail a mix of non-

perturbative Monte Carlo studies and various perturbative approximations. Work on

the phenomenological side includes applications to specific BSM scenarios, such as the

Minimal Supersymmetric Standard Model (MSSM), and the delineation of consequences

for collider studies, low-energy probes of CP-violation, and astrophysical observations.

The plan for this review is as follows. In Section 2 we discuss the electroweak phase

transition in greater depth, concentrating on its strength and other characteristics. Next,

in Section 3 we describe in more detail the creation of asymmetries in the CP and baryon

charges during the phase transition. Some of the ways the new ingredients required for

EWBG can be studied in the laboratory are studied in Section 4. Finally, Section 5 is

reserved for our conclusions.
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Figure 2. Baryon production in front of the bubble walls.

2. The electroweak phase transition

Baryon creation in EWBG is closely tied to the dynamics of the electroweak phase

transition (EWPT). In this transition, the thermal plasma goes from a symmetric state

in which the full SU(2)L ⇥ U(1)Y gauge invariance is manifest to a broken one where

only the U(1)em electroweak subgroup remains [11, 13, 14]. As discussed above, the

transition must be first-order and proceed through the nucleation of bubbles of the

broken phase. In this section we will discuss the dynamics of this phase transition and

describe the role it plays in EWBG.

The transition from symmetric to broken phase in the SM can be characterized by

the vacuum expectation value (VEV) of the Higgs field H ⌘ (H+, H0)T that transforms

as (1,2, 1/2) under SU(3)c ⇥ SU(2)L ⇥U(1)Y . A field basis can always be chosen such

that only the real component of H0 develops a non-zero expectation value. Thus, we

will write

�/
p
2 ⌘ hH0i . (1)

The symmetric phase corresponds to � = 0 and the broken phase to � 6= 0. Note that

(in unitary gauge) the masses of the W± and Z0 weak vector bosons and the fermions

are proportional to �.

The features of this transition that are most relevant for EWBG are (a) its character

(first order, second order, cross over); (b) the critical temperature Tc and the bubble

nucleation temperature Tn that describe when it occurs; (c) the sphaleron transition rate

�
sph

that governs the rate of baryon number generation and washout; and (d) the bubble

nucleation rate. These features have been studied using a broad range of theoretic tools.

The most robust computations of many of these quantities are performed using

non-perturbative, Monte Carlo methods. However, given the level of e↵ort required

to perform such studies, they have only been applied to a few specific theories of

Huet,	  Nelson,	  1995	  

Morrissey,	  Ramsey-‐Musolf,	  2012	  

•  At	  the	  boundary	  of	  two	  
phases	  the	  par2cle-‐
an2par2cle	  asymmetry	  is	  
generated	  

•  It	  diffuses	  into	  the	  symmetric	  
phase	  and	  EW	  sphalerons	  
transfer	  the	  lea	  handed	  
quark	  asymmetry	  into	  the	  
net	  baryon	  asymmetry	  
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Extended	  Higgs	  sectors	  
•  With	  the	  discovery	  of	  the	  Higgs	  
boson,	  it	  is	  plausible	  that	  the	  new	  
physics	  is	  hiding	  in	  the	  extended	  
Higgs	  sector	  	  

•  Adding	  a	  real	  singlet	  to	  Standard	  
Model	  modifies	  the	  SM	  scalar	  
poten2al	  so	  that	  the	  1st	  order	  PT	  can	  
be	  achieved	  without	  upsedng	  
exis2ng	  collider	  bounds	  

•  Adding	  a	  real	  triplet	  to	  Standard	  
Model	  provides	  a	  stable	  DM	  
candidate,	  possibility	  for	  a	  two	  step	  
phase	  transi2on	  

	  

Profumo,	  Ramsey-‐Musolf,	  	  
Wainwright,	  Winslow,	  2014	  

	  
Perez,	  Patel,	  Ramsey-‐Musolf,	  2008	  

Blinov,	  Kozaczuk,	  Morrissey,	  Tamarit,	  2015	  

	  
Patel,	  Ramsey-‐Musolf,	  2012	  



Phase	  transi2on	  in	  two	  steps?	  

second step at a temperature below the second critical temper-
ature Th, the universe makes a transition from isospin break-
ing phase at point Σ to the electroweak symmetry breaking
phase at point H , where the Higgs vev ⟨H0⟩ becomes non-
vanishing but ⟨Σ0⟩ relaxes to zero, ultimately leading to the
T = 0 Higgs phase with Σ0 as the dark matter particle.
While the remainder of the paper addresses the dynamics

for this scenario in detail, we comment on several salient fea-
tures here.

(1) Although the zero temperature Σ0 vev in the Higgs
phase need not vanish, the constraint from the elec-
troweak ρ parameter requires it to be small ⟨Σ0⟩ <
4 GeV. Allowing it to be tiny but non-vanishing does
not substantially alter the EWPT dynamics but does
preclude Σ0 as a viable dark matter candidate. Con-
sequently, we take ⟨Σ0⟩ = 0 at the conclusion of the
second step in order to yield a dark matter candidate.
To that end, we impose a dark matter-preserving (Z2)Σ
symmetry on the potential and refer to the model as the
“Z2ΣSM.”

(2) The first step of the phase transition (O → Σ) can be
strongly first order, driven entirely by the finite-T dy-
namics of the effective potential along the neutral triplet
scalar direction. This transition is analogous to the one
that might occur along the O → H direction in the
Standard Model but is excluded from being first order
due to non-existence of a sufficiently light Higgs boson.
In contrast, the parameters in the Σ⃗ sector of the theory
are sufficiently unconstrained by current phenomenol-
ogy to allow for a strong first order EWPT along the
O → Σ direction.

(3) Bubble nucleation during the first step (O → Σ) creates
the necessary environment for baryon number genera-
tion, assuming additional sources of CP-violation be-
yond those provided by the Standard Model. Since
the Σ⃗-field carries non-trivial SU(2)L charge, the B+L-
violating monopole interactions that destroy baryon
number are suppressed inside theΣ-phase bubbles, cap-
turing any net baryon number density produced ahead
of the advancing bubble walls. In the present work,
we concentrate on the phase transition dynamics for
this step, leaving an analysis of possible sources of CP-
violation to a future study.

(4) The dynamics of the second step (Σ → H) are gov-
erned by the tree-level interaction between the Σ⃗ and
H fields. To ensure that any baryon number produced
during the first step is not washed out by reactivation of
the SM sphalerons, this transition is also first order and
sufficiently strong. Moreover, entropy production is not
too copious without diluting the initial baryon asymme-
try2. As we discuss below, the degree to which these

2 We thank A. Kusenko for initial discussions of the latter point.
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FIG. 1: Field phase space indicating critical (extremal) points in the
tree-level potential at zero temperature, and the expected two-step
pattern of symmetry breaking at finite temperature. Red points are
related to black points via (Z2)H and (Z2)Σ symmetries.

requirements are met can be constrained by measure-
ments of the H → γγ rate.

(5) While the introduction of the Σ⃗ field constitutes the
minimal extension of the Standard Model scalar sector
leading to this scenario, it is possible that scalars trans-
forming under higher-dimensional isospin representa-
tions will yield similar dynamics, though not necessar-
ily with a cold dark matter candidate as well. As we ar-
gue below, the main features are otherwise generic and
are likely to persist in other models that also include ad-
ditional degrees of freedom as needed for an appropri-
ate ultraviolet completion. In this regard, a similar two-
step scenario was considered3 in [6] involving a second
Higgs doublet rather than a real triplet. The authors en-
visioned baryon-asymmetry generation to occur during
the much stronger second step of the phase transition.
However, as pointed out in [7], since weak isospin sym-
metry is already broken in the first step, B+L violating
processes are already too suppressed to convert existing
CP asymmetry to baryon asymmetry. Hence, we con-
centrate on the case where the first step is strongly first
order.

Our analysis of the foregoing scenario is organized as fol-
lows: in section II, we formulate the model and subsequently
discuss the zero temperature vacuum structure and tree-level
vacuum stability constraints in section III. We then turn our
attention to the finite-T dynamics, focusing first on the B+L
violating interactions in section IV then following up with an
analysis of the two-step EWPT in section V. Finally, we draw
connections to collider phenomenology and discuss implica-
tions coming from recent LHC results in section VI.

3 The authors thank M. B. Wise for alerting us to the existence of this work.

2

•  The	  first	  step	  of	  the	  phase	  transi2on	  
is	  driven	  by	  the	  triplet	  acquiring	  VEV.	  
Easy	  to	  obtain	  1st	  order	  PT	  condi2on	  
with	  heavier	  SM	  Higgs	  mass	  

•  In	  the	  first	  step	  because	  the	  triplet	  
carries	  SU(2)L	  charge	  the	  B+L	  
viola2ng	  monopole	  interac2ons	  
inside	  the	  	  	  	  	  	  	  	  	  	  	  bubbles	  are	  
suppressed	  

•  	  In	  the	  second	  step	  the	  net	  baryon	  
asymmetry	  generated	  during	  the	  
first	  step	  survives	  due	  to	  
(sufficiently)	  strong	  1st	  order	  PT	  	  

	  
Patel,	  Ramsey-‐Musolf,	  2012	  

Open	  ques2on:	  explicit	  model	  realiza2on	  
with	  CPV	  and	  BAU	  evalua2on	  during	  the	  
first	  step	  

⌃�



Our	  Goal	  
•  Our	  goal	  is	  to	  perform	  an	  explicit	  calcula2on	  
of	  the	  BAU	  generated	  during	  the	  first	  step	  of	  
a	  2-‐step	  phase	  transi2on	  

•  The	  choice	  for	  the	  model	  is	  2HDM+real	  
triplet+real	  singlet	  

•  Can	  we	  get	  BAU	  consistent	  with	  the	  EDMs?	  

To be submitted to PRD
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Scenarios with multistep phase transition have been under active investigation recently. We
consider an explicit realization, in which the two Higgs doublet model (2HDM) is extended with a
real triplet and a singlet. In this scenario we study the dynamics of the generation of the BAU in the
first step of a two-step phase transition, when the Higgs bosons are in the symmetric phase and the
extra scalars acquire vacuum expectation value. The successful benchmark scenarios are presented
that provide required amount of generated BAU, and simultaneously are consistent with stringent
bounds coming from the electron EDM. Future bounds from neutron EDMs are also presented. In
the Appendix we outline a numerical method for solving boundary problem of coupled Boltzmann
equations, using fully analytical formulas for relevant integrals that arise.

PACS numbers:

INTRODUCTION

SETUP

The potential in the 2HDM theory with unbroken Z2
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(1)

We are interested in the extension of this theory with
new scalar particles, which undergo phase transition in
the early universe, before the Higgs vacuum expectation
value (VEV) is generated. One attractive possibility is
adding a real triplet with zero hypercharge. It was shown
in [1] that the necessary conditions on the potential for a
first order phase transition to occur in such model are sat-
isfied. We study concrete dynamical realization of such
scenario with detailed BAU calculations.

We need to add another field in order to generate
baryon asymmetry. Indeed, the VEV insertion graphs
in the SUSY involving stops require both VEVs vu(x)
and vd(x) to vary with space-time. In other words one
of the Sakharov’s conditions, namely the departure from
the equilibrium requires interference between two VEVs.
For this reason we add a scalar singlet to the theory. In
the minimal scenario it su�ces to consider the following

additional potential with these two fields

�V (H1, H2, ⌃) = �µ2
⌃

2

⇣

~⌃·~⌃
⌘

+
b4

4

⇣

~⌃·~⌃
⌘2

+



1

2
a2⌃ H†

1H2

⇣

~⌃·~⌃
⌘

+
1

2
a2SH†

1H2S
2 + h.c.

�

.

(2)

After the Electroweak Symmetry Breaking (EWSB) the
neutral component of each of the Higgs fields acquires
a VEV and the fluctuations around this value can be
characterized by charged (H+

i ), CP even (H0
i ) and CP

odd (A0
i ) fields respectively:

Hi =

 

H+
i

vi+H0
i +iA0

ip
2

!

, where i = 1, 2 . (3)

The total potential of our theory has four complex cou-
plings �5, m2

12, a2⌃, a2S . The overall phase in these cou-
plings is unphysical and can be rotated away via a rephas-
ing transformation on the complex scalar fields

H1 = ei✓1H 0
1 , H2 = ei✓2H 0

2 , ⌃ = ⌃0 , S = S0 . (4)

The global phases can be absorbed into the following
redefinition of couplings in the potential

(m2
12)

0 = ei(✓2�✓1)m2
12 , �0

5 = e2i(✓2�✓1)�5 ,

a0
2⌃ = ei(✓2�✓1)a2⌃ , a0

2S = ei(✓2�✓1)a2S ,

(v1v
⇤
2)0 = ei(✓2�✓1)v1v

⇤
2 . (5)

We assume v1 = v⇤
1 and v2 = |v2|ei⇠. The last equa-

tion leads to ⇠0 = ⇠ + ✓1 � ✓2 rephasing transformation
on the spontaneously generated phase. Transformation
in Eq. (4) and Eq. (5) leaves the Lagrangian unchanged
and thus phases in the couplings that can be eliminated

a2⌃, a2S are	  complex	  
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We are interested in the extension of this theory with
new scalar particles, which undergo phase transition in
the early universe, before the Higgs vacuum expectation
value (VEV) is generated. One attractive possibility is
adding a real triplet with zero hypercharge. It was shown
in [1] that the necessary conditions on the potential for a
first order phase transition to occur in such model are sat-
isfied. We study concrete dynamical realization of such
scenario with detailed BAU calculations.

We need to add another field in order to generate
baryon asymmetry. Indeed, the VEV insertion graphs
in the SUSY involving stops require both VEVs vu(x)
and vd(x) to vary with space-time. In other words one
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Compared to the 2HDM we have two new phases that
arise �3, �4 .

Minimizing the potential

Stability of the vacuum state, after the EWSB re-
quires that the Lagrangian couplings and the VEV’s of
the Higgs bosons satisfy the minimization conditions on
the potential and positivity of all the masses in the spec-
trum. In our theory with the potential V + �V given in
Eq. (1) and Eq. (2) we obtain the following minimization
conditions
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where v ⌘ p|v1|2 + |v2|2, tan � ⌘ |v2|/|v1| and the three
phases �i are the following linear combinations of rephas-
ing invariant angles �i :

�1 = �2 � �1, �2 = 2�2 � �1, �3 = �2 � (�1 + �3)/2 .

(8)

In this paper we concentrate on the case of no sponta-

neous CP violation, i.e. ⇠ = 0 . In such case the three
angles are related to the Lagrangian complex couplings
in the following way

�1 = �arg m2
12, �2 = �arg �5, �3 = �arg a2⌃ .

In order to avoid confusion we stress, that even though
the phases �i are manifestly rephasing invariant, while
the arguments of the complex couplings m2

12, �5, a2⌃ are
not, the expressions above are in no conflict with this
issue. The point is that the choice ⇠ = 0 specifies the

rephasing basis, and the values of the phases of the com-
plex arguments in that equation have to be evaluated
with such phase basis choice.

In addition setting the singlet VEV to x0 = 0 we get
the minimization conditions, which are identical to these
of the 2HDM [2]
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In the equations above we have defined c� ⌘ cos �,
s� ⌘ sin � . The fourth equation Eq. (7) becomes a triv-
ial “zero equals to zero”. For the rest of this paper unless
explicitly stated otherwise we will assume ⇠ = x0 = 0 .

Mass mixing
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The mass formula for the charged H+ Higgs agrees with
Ref.[2] and is not modified by the presence of additional
fields of triplet and a singlet.
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where m2
⌃0 ⌘ m2

⌃+ . In the matrix above we made the
following definitions

�345 = �3 + �4 + Re �5. (16)

The top left 3⇥3 block of the matrix M2
neutral is the same

as in the scenario of pure 2HDM [2]. In other words there
is no mixing between the triplet and the two Higgs dou-
blets in our theory for both charged and neutral states.

Relevant Feynman rules

We choose the type-II 2HDM with the following in-
teraction Lagrangian between the Higgs bosons and the
fermions

LII = �YU QL i�2 H⇤
2 uR � YDQL H1dR + h.c. . (17)

For the EDM constraint we will need the Feynman
rules for the Yukawa interactions of the Higgs bosons
with the fermions hif̄f , the tri-scalar interactions
hi⌃+⌃�, and the couplings with neutral gauge bosons
Z ⌃+⌃�, � ⌃+⌃�. The needed interaction Lagrangian
reads
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where the couplings c, c̃, �̄ are given below

ct,i = Ri2/s� , cb,i = Ri1/c� ,

c̃t,i = �Ri3/t� , c̃b,i = �Ri3t� , (19)

d̃t = �1, d̃d = 1,

�̄i = (Ri1 s� + Ri2c�) Re a2 � Ri3 Im a2 .

In equations above the matrix R is defined
to diagonalize the neutral bosons mass matrix
RM2

neutralR
T = diag(m2

h1
, m2

h2
, m2

h3
, m2

h4
). In terms

of matrix R the weak eigenstates are related to mass
eigenstates via (H0

1 , H0
2 , A0, ⌃0) = (h1, h2, h3, h4) · R .

Note that the fermions directly couple to the neu-
tral Goldstone boson G0, while the scalar interaction
⌃+⌃�G0 is absent at tree level.

TABLE I: Table of the parameters in the potential versus the
phenomenological parameters.

Parameters in the potential Phenomenological parameters
�1,�2,�3,�4,Re�5, Im�5 v, x0, ⇠, tan�, ⌫,Re a2⌃,Re a2S

m2
11,m

2
22,Rem2

12, Imm2
12 ↵,↵b, �⌃, �S

Rea2⌃, Ima2⌃, µ⌃, b4,Rea2S , Ima2S mH+ ,mh1 ,mh2 ,mh3 ,m⌃, b4

Phenomenological parameters

For completeness we focus on the general case x0 6=
0, ⇠ 6= 0 to classify the parameters in our theory. In
Table I we provide the set of parameters of our potential
versus the phenomenological parameters. In addition to
the CPV in the 2HDM sector that can be characterized
by angles ↵b, ↵c [2] two additional phases due to triplet
and singlet in our theory are conveniently parametrized
by �⌃, �S which are defined and related to phases �i in
the following way
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As you will see below the amount of generated BAU
is proportional to sin (�⌃ � �S), while the EDM data is
bounding the phase sin �⌃ and is not sensitive to sin �S .

Note that we have one more phenomenological param-
eters (17) compared to the number of the parameters
in the potential (16). This means that our set of phe-
nomenological parameters is over-constrained. Indeed, if
x0 6= 0 we can use the last of the minimization con-
ditions in Eq. (7) to relate x0, m⌃, b4 parameters via
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⌃ = �b4x
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0. On the other hand if x0 = 0, the men-

tioned minimization condition is trivially satisfied. In
both cases the number of phenomenological parameters
reduces by one.

Because both charged and neutral particles spectrum
have no mixing among the ⌃ particles and the two Hig-
gses, the couplings �1, . . . �5 can be found via same equa-

2

with such redefinition are unphysical. We identify the
following phases that are invariant under phase redefini-
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Compared to the 2HDM we have two new phases that
arise �3, �4 .

Minimizing the potential

Stability of the vacuum state, after the EWSB re-
quires that the Lagrangian couplings and the VEV’s of
the Higgs bosons satisfy the minimization conditions on
the potential and positivity of all the masses in the spec-
trum. In our theory with the potential V + �V given in
Eq. (1) and Eq. (2) we obtain the following minimization
conditions

m2
11 = v2

�

�1cos2 � + (�3 + �4 + |�5| cos �2)sin
2 �

�

+
��|m2

12| cos �1 + |a2|x2
0 cos �3

�

tan �,

m2
22 = v2

�

�2 sin2 � + (�3 + �4 + |�5| cos �2) cos2 �
�

+
��|m2

12| cos �1 + |a2|x2
0 cos �3

�

cot �,

0 =
v2 sin � cos �

2

⇣

� |m2
12| sin �1

+ sin � cos � v2|�5| sin �2 + |a2|x2
0 sin �3

⌘

,

0 = x0

�

b4x
2
0 � µ2

⌃ + |a2|v2 cos �3 sin � cos �
�

,

(7)

where v ⌘ p|v1|2 + |v2|2, tan � ⌘ |v2|/|v1| and the three
phases �i are the following linear combinations of rephas-
ing invariant angles �i :

�1 = �2 � �1, �2 = 2�2 � �1, �3 = �2 � (�1 + �3)/2 .

(8)

In this paper we concentrate on the case of no sponta-

neous CP violation, i.e. ⇠ = 0 . In such case the three
angles are related to the Lagrangian complex couplings
in the following way

�1 = �arg m2
12, �2 = �arg �5, �3 = �arg a2⌃ .

In order to avoid confusion we stress, that even though
the phases �i are manifestly rephasing invariant, while
the arguments of the complex couplings m2

12, �5, a2⌃ are
not, the expressions above are in no conflict with this
issue. The point is that the choice ⇠ = 0 specifies the

rephasing basis, and the values of the phases of the com-
plex arguments in that equation have to be evaluated
with such phase basis choice.

In addition setting the singlet VEV to x0 = 0 we get
the minimization conditions, which are identical to these
of the 2HDM [2]
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In the equations above we have defined c� ⌘ cos �,
s� ⌘ sin � . The fourth equation Eq. (7) becomes a triv-
ial “zero equals to zero”. For the rest of this paper unless
explicitly stated otherwise we will assume ⇠ = x0 = 0 .

Mass mixing

We start from the mixing among the charged particles
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The mass formula for the charged H+ Higgs agrees with
Ref.[2] and is not modified by the presence of additional
fields of triplet and a singlet.

The neutral scalar bosons H0
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2 , A0
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0 mix and
in the most general case (⇠ 6= 0) there is one massless
neutral Goldstone boson G0. In the case of our interest
⇠ = 0 this state is the following combination of CP odd
Higgs bosons A0
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This is also the same as in the case of 2HDM alone
Ref.[2]. Considering the mixing between the orthogonal
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0 mix and
in the most general case (⇠ 6= 0) there is one massless
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m⌃0 ⌘ m⌃+

No	  mixing	  among	  the	  new	  scalars	  (triplet	  and	  singlet)	  and	  the	  2	  Higgs	  doublets	  
Mass	  matrices	  block	  diagonal,	  the	  top	  3x3	  block	  of	  the	  neutral	  matrix	  iden2cal	  to	  2HDM	  

Inoue,	  Ramsey-‐Musolf,	  Zhang,	  2014	  
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state A0 ⌘ �s�A0
1+c�A0

2 and three other neutral scalars:
H0

1 , H0
2 , A0, ⌃0 we get the following mixing matrix

M2
neutral =

v2
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�1c
2
� + ⌫s2� (�345 � ⌫)s�c� � 1

2s� Im�5 0
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2 c�Im�5 ⌫ � Re�5 0

0 0 0
m2
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v2
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CCA ,

(15)

where m2
⌃0 ⌘ m2

⌃+ . In the matrix above we made the
following definitions

�345 = �3 + �4 + Re �5. (16)

The top left 3⇥3 block of the matrix M2
neutral is the same

as in the scenario of pure 2HDM [2]. In other words there
is no mixing between the triplet and the two Higgs dou-
blets in our theory for both charged and neutral states.

Relevant Feynman rules

We choose the type-II 2HDM with the following in-
teraction Lagrangian between the Higgs bosons and the
fermions

LII = �YU QL i�2 H⇤
2 uR � YDQL H1dR + h.c. . (17)

For the EDM constraint we will need the Feynman
rules for the Yukawa interactions of the Higgs bosons
with the fermions hif̄f , the tri-scalar interactions
hi⌃+⌃�, and the couplings with neutral gauge bosons
Z ⌃+⌃�, � ⌃+⌃�. The needed interaction Lagrangian
reads

Lint = �mf

v

h

hi

�

cf,if̄f + c̃f,i f̄ i�5f
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+ G0 d̃f f̄ i�5f
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�

⌃�⇤ (e Aµ + g2 cW Zµ) ,

(18)

where the couplings c, c̃, �̄ are given below

ct,i = Ri2/s� , cb,i = Ri1/c� ,

c̃t,i = �Ri3/t� , c̃b,i = �Ri3t� , (19)

d̃t = �1, d̃d = 1,

�̄i = (Ri1 s� + Ri2c�) Re a2 � Ri3 Im a2 .

In equations above the matrix R is defined
to diagonalize the neutral bosons mass matrix
RM2

neutralR
T = diag(m2

h1
, m2

h2
, m2

h3
, m2

h4
). In terms

of matrix R the weak eigenstates are related to mass
eigenstates via (H0

1 , H0
2 , A0, ⌃0) = (h1, h2, h3, h4) · R .

Note that the fermions directly couple to the neu-
tral Goldstone boson G0, while the scalar interaction
⌃+⌃�G0 is absent at tree level.

TABLE I: Table of the parameters in the potential versus the
phenomenological parameters.

Parameters in the potential Phenomenological parameters
�1,�2,�3,�4,Re�5, Im�5 v, x0, ⇠, tan�, ⌫,Re a2⌃,Re a2S

m2
11,m

2
22,Rem2

12, Imm2
12 ↵,↵b, �⌃, �S

Rea2⌃, Ima2⌃, µ⌃, b4,Rea2S , Ima2S mH+ ,mh1 ,mh2 ,mh3 ,m⌃, b4

Phenomenological parameters

For completeness we focus on the general case x0 6=
0, ⇠ 6= 0 to classify the parameters in our theory. In
Table I we provide the set of parameters of our potential
versus the phenomenological parameters. In addition to
the CPV in the 2HDM sector that can be characterized
by angles ↵b, ↵c [2] two additional phases due to triplet
and singlet in our theory are conveniently parametrized
by �⌃, �S which are defined and related to phases �i in
the following way

�⌃ = arg [a⇤
2⌃ v1v

⇤
2 ] = �2 � �1 + �3

2
, (20)

�S = arg [a⇤
2S v1v

⇤
2 ] = �2 � �1 + �4

2
. (21)

As you will see below the amount of generated BAU
is proportional to sin (�⌃ � �S), while the EDM data is
bounding the phase sin �⌃ and is not sensitive to sin �S .

Note that we have one more phenomenological param-
eters (17) compared to the number of the parameters
in the potential (16). This means that our set of phe-
nomenological parameters is over-constrained. Indeed, if
x0 6= 0 we can use the last of the minimization con-
ditions in Eq. (7) to relate x0, m⌃, b4 parameters via
m2

⌃ = �b4x
2
0. On the other hand if x0 = 0, the men-

tioned minimization condition is trivially satisfied. In
both cases the number of phenomenological parameters
reduces by one.

Because both charged and neutral particles spectrum
have no mixing among the ⌃ particles and the two Hig-
gses, the couplings �1, . . . �5 can be found via same equa-

3

state A0 ⌘ �s�A0
1+c�A0

2 and three other neutral scalars:
H0

1 , H0
2 , A0, ⌃0 we get the following mixing matrix

M2
neutral =

v2

0

BB@

�1c
2
� + ⌫s2� (�345 � ⌫)s�c� � 1

2s� Im�5 0
(�345 � ⌫)s�c� �2s

2
� + ⌫c2� � 1

2 c� Im�5 0
� 1

2s�Im�5 � 1
2 c�Im�5 ⌫ � Re�5 0

0 0 0
m2

⌃0

v2

1

CCA ,

(15)

where m2
⌃0 ⌘ m2

⌃+ . In the matrix above we made the
following definitions

�345 = �3 + �4 + Re �5. (16)

The top left 3⇥3 block of the matrix M2
neutral is the same

as in the scenario of pure 2HDM [2]. In other words there
is no mixing between the triplet and the two Higgs dou-
blets in our theory for both charged and neutral states.

Relevant Feynman rules

We choose the type-II 2HDM with the following in-
teraction Lagrangian between the Higgs bosons and the
fermions

LII = �YU QL i�2 H⇤
2 uR � YDQL H1dR + h.c. . (17)

For the EDM constraint we will need the Feynman
rules for the Yukawa interactions of the Higgs bosons
with the fermions hif̄f , the tri-scalar interactions
hi⌃+⌃�, and the couplings with neutral gauge bosons
Z ⌃+⌃�, � ⌃+⌃�. The needed interaction Lagrangian
reads

Lint = �mf

v

h

hi

�

cf,if̄f + c̃f,i f̄ i�5f
�

+ G0 d̃f f̄ i�5f
i

��̄ivhi⌃
+⌃� ,

+
⇥

⌃+
�

i@µ⌃�� � �

i@µ⌃+
�

⌃�⇤ (e Aµ + g2 cW Zµ) ,

(18)

where the couplings c, c̃, �̄ are given below

ct,i = Ri2/s� , cb,i = Ri1/c� ,

c̃t,i = �Ri3/t� , c̃b,i = �Ri3t� , (19)

d̃t = �1, d̃d = 1,

�̄i = (Ri1 s� + Ri2c�) Re a2 � Ri3 Im a2 .

In equations above the matrix R is defined
to diagonalize the neutral bosons mass matrix
RM2

neutralR
T = diag(m2

h1
, m2

h2
, m2

h3
, m2

h4
). In terms

of matrix R the weak eigenstates are related to mass
eigenstates via (H0

1 , H0
2 , A0, ⌃0) = (h1, h2, h3, h4) · R .

Note that the fermions directly couple to the neu-
tral Goldstone boson G0, while the scalar interaction
⌃+⌃�G0 is absent at tree level.

TABLE I: Table of the parameters in the potential versus the
phenomenological parameters.

Parameters in the potential Phenomenological parameters
�1,�2,�3,�4,Re�5, Im�5 v, x0, ⇠, tan�, ⌫,Re a2⌃,Re a2S

m2
11,m

2
22,Rem2

12, Imm2
12 ↵,↵b, �⌃, �S

Rea2⌃, Ima2⌃, µ⌃, b4,Rea2S , Ima2S mH+ ,mh1 ,mh2 ,mh3 ,m⌃, b4

Phenomenological parameters

For completeness we focus on the general case x0 6=
0, ⇠ 6= 0 to classify the parameters in our theory. In
Table I we provide the set of parameters of our potential
versus the phenomenological parameters. In addition to
the CPV in the 2HDM sector that can be characterized
by angles ↵b, ↵c [2] two additional phases due to triplet
and singlet in our theory are conveniently parametrized
by �⌃, �S which are defined and related to phases �i in
the following way

�⌃ = arg [a⇤
2⌃ v1v

⇤
2 ] = �2 � �1 + �3

2
, (20)

�S = arg [a⇤
2S v1v

⇤
2 ] = �2 � �1 + �4

2
. (21)

As you will see below the amount of generated BAU
is proportional to sin (�⌃ � �S), while the EDM data is
bounding the phase sin �⌃ and is not sensitive to sin �S .

Note that we have one more phenomenological param-
eters (17) compared to the number of the parameters
in the potential (16). This means that our set of phe-
nomenological parameters is over-constrained. Indeed, if
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both cases the number of phenomenological parameters
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have no mixing among the ⌃ particles and the two Hig-
gses, the couplings �1, . . . �5 can be found via same equa-

Compared	  to	  the	  2HDM	  model	  two	  addi2onal	  CPV	  phases	  appear	  



Technical	  simplifica2on	  for	  BAU	  analysis	  

•  When	  the	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  coupling	  is	  present	  it	  leads	  
to	  flavor	  oscilla2ons	  when	  the	  triplet	  and	  singlet	  
undergo	  phase	  transi2on	  in	  the	  early	  universe	  

•  To	  avoid	  this	  technical	  difficulty	  we	  set	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  which	  removes	  CPV	  from	  the	  2HDM	  
sector	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  and	  the	  only	  two	  possible	  
phases	  are	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

m2
12 6= 0

m2
12 = 0

�⌃, �S

(↵b = ↵c = 0)

Cirigliano,	  Lee,	  Ramsey-‐Musolf,	  Tulin,	  2006	  

Thus,	  we	  work	  in	  the	  exact	  Z2	  symmetry	  limit	  of	  2HDM	  

We	  also	  will	  assume	  everywhere	  the	  alignment	  limit	  	   ↵ = � � ⇡/2
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FIG. 2: The dominant EDM contribution from the triplet
comes from this Barr-Zee diagram.

scalar ⌃+ (Figure 2). Since the triplet has no direct cou-
pling to the SM fermions, this is the dominant EDM
contribution from the triplet. The result for dimension-
less EDM �f ⌘ �df/2mfe (as in [5]) from this diagram
is analogous to the H+ loop result [6]:

(�f )h��
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Qfe2v2

256⇡4m2
⌃+

3
X
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f(zi
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g2 cW v2

256⇡4m2
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(26)
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3

X

i=1

h

f̃(zi
⌃, m2

⌃+/M2
Z) � g̃(zi

⌃, m2
⌃+/M2

Z)
i

�̄ic̃f,i ,

where the coupling of the electron to the Z equals
gV

Zēe = g2(s2
W � 1/4)/cW and

zi
⌃ ⌘ m2

⌃+/m2
hi

. (27)

Loop functions f(z), g(z), f̃(z), g̃(z) are listed in Ap-
pendix A. Note, that in the limit ↵b = ↵c = m2

12 =
Im �5 = 0 the 2HDM potential has no CPV and the only
EDM bound arises from Figure 2. By analyzing expres-
sions for �̄i in Eq. (19) in this limit we see that only
i = 3 contributes to the fermion EDM. Thus theoretical
predictions for both electron and neutron EDM’s depend
only on the masses mh3 , m⌃+ . The electron EDM which
gives the strongest bound is proportional to the sin �⌃

and tan � parameters �e = sin �⌃ tan � F (m⌃, mh3) .

BARYOGENESIS AND TWO-STEP PHASE
TRANSITION

m2
H1

(T ) � m2
H2

(T )

=

"

y2
b � y2

t +
m2

h2

v2
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In Ref.[1] it was shown that adding a triplet to SM al-
lows for a possibility of a first order phase transition.
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FIG. 3: Vev insertion Feynman graphs in the two-Higgs dou-
blet plus a real triplet theory.
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In this section we use the benchmarks from that refer-
ence and provide a detailed analysis of the generation of
the BAU during the first step in the series of two-step
phase transitions. We are interested in the generation
of the baryon asymmetry in our theory when the phase
transition happens in the direction of the new real scalars
⌃, S (triplet and the singlet correspondingly), when these
fields acquire non-zero vacuum expectation values v⌃, vS

at some stage in the early universe. Later on by virtue of
some mechanism this phase will return to the symmetric
one v⌃ = vS = 0.

Coupled Boltzmann equations

In our theory the Yukawa sector is identical to MSSM
(we consider type-II 2HDM), thus �Y is trivially ex-
tracted from [7, 8]. The only source of the CP violation
appears in the density H = nH+

2
+nH0

2
�nH+

1
�nH0

1
from

the vev-insertion graphs which are calculated by a close
analogy with [7]. TODO: add Feynman graphs to
the paper.

As a result we get the following coupled set of Boltz-
mann equations that contain information on the gener-

�e = sin �⌃ tan� F (m⌃,mh3)

Bar-‐Zee	  graph	  
�f ⌘ � df

2mfe
(dimensionless	  EDM)	  

at	  90%	  confidence	  level	  

•  In	  the	  exact	  Z2	  limit	  of	  our	  theory	  
EDM	  is	  sensi2ve	  only	  to	  the	  phase	  	  	  	  	  	  	  	  	  	  	  
and	  not	  	  	  

•  Amount	  of	  BAU	  as	  you	  will	  see	  
depends	  on	  the	  combina2on	  	  

|de| < 8.7⇥ 10�29 ecm

�⌃
�S

�⌃ �S�



EDM	  exclusion	  results	  

�e = sin �⌃ tan� F (m⌃,mh3)

•  Electron	  EDM	  bound	  
•  Neutron	  EDM	  bound	  
(100xcurrent	  sensi2vity)	  	  

|de| < 8.7⇥ 10�29 ecm

|dn| < 2.9⇥ 10�28 ecm
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Genera2on	  of	  the	  baryon	  asymmetry	  	  



Theore2cal	  framework	  

•  We	  assume	  relying	  on	  previous	  studies	  that	  
the	  1st	  order	  phase	  transi2on	  condi2on	  is	  
sa2sfied	  

•  We	  use	  closed	  2me	  path	  integral	  (CTP)	  
approach	  to	  derive	  transport	  equa2ons	  that	  
describe	  the	  dynamics	  of	  the	  bubble	  
nuclea2on	  during	  the	  EW	  phase	  transi2on	  

•  For	  CPV	  source	  terms	  we	  use	  the	  VEV	  
inser2on	  approxima2on	  

Blinov,	  Kozaczuk,	  Morrissey,	  Tamarit,	  2015	  

	  
Patel,	  Ramsey-‐Musolf,	  2012	  
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2.4 CP violating sources

We start from reviewing the results of vev-insertion calculation for graph in FIG. 1a in hep-
ph/0412354. There the authors find for the source:

⌃̃R(x, y) = �g(x, y) G̃0
L(x, y) , (10)
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For the complex triplet the essential formula is:

HT
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1 H
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3 Analytical solution

Ḣ � D̄r2H + �̄HH + �̄hh � S̄ = 0 (32)

D̄ =
(DhkH(kB + 9(kQ + kT )) +Dq(9kQkT + kB(kQ + 4kT )))

9kQkT + 9kH(kQ + kT ) + kB(kH + kQ + 4kT )
, (33)

�̄H =
(kB + 9(kQ + kT ))

9kQkT + 9kH(kQ + kT ) + kB(kH + kQ + 4kT )
��
M , (34)

�̄h = � kH(kB + 9(kQ + kT ))

kH(9kQkT + 9kH(kQ + kT ) + kB(kH + kQ + 4kT ))
�+
M , (35)

S̄ =
kH(kB + 9(kQ + kT ))

9kQkT + 9kH(kQ + kT ) + kB(kH + kQ + 4kT )
SCPV
H (36)
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where i = 1 corresponds to H+
1 ! H+

2 ! H+
1 and i = 2 corresponds to H0

1 ! H0
2 ! H0

1 .
Finally adding these two graphs and concentrating on the CP-violating source we get:
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Similarly to the deal triplet case above the second column graphs di↵er by a minus sign:
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2.5 Relaxation terms

The relevant terms in the potential that are needed for evaluation of self-energy graphs are
listed below. For the real triplet:
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The Yukawa Lagrangian in 2HDM:
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where H̃i ⌘ i�2H
⇤
i . Restricting ourselves to third generation and keeping only top Yukawa

coe�cient yt we get:
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Boltzmann equations become:
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For the complex triplet the essential formula is:
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3 Analytical solution

Ḣ � D̄r2H + �̄HH + �̄hh � S̄ = 0 (32)

D̄ =
(DhkH(kB + 9(kQ + kT )) +Dq(9kQkT + kB(kQ + 4kT )))
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For the complex triplet the essential formula is:

HT
1 i�2�

†H2 = 1/2(�2H0
1H

0
2�

⇤
0 + 2H+

1 H
+
2 (�

++)⇤ �
p
2(H0

2H
+
1 +H0

1H
+
2 )(�

+)⇤) . (31)

3 Analytical solution

Ḣ � D̄r2H + �̄HH + �̄hh � S̄ = 0 (32)

D̄ =
(DhkH(kB + 9(kQ + kT )) +Dq(9kQkT + kB(kQ + 4kT )))

9kQkT + 9kH(kQ + kT ) + kB(kH + kQ + 4kT )
, (33)

�̄H =
(kB + 9(kQ + kT ))

9kQkT + 9kH(kQ + kT ) + kB(kH + kQ + 4kT )
��
M , (34)

�̄h = � kH(kB + 9(kQ + kT ))

kH(9kQkT + 9kH(kQ + kT ) + kB(kH + kQ + 4kT ))
�+
M , (35)

S̄ =
kH(kB + 9(kQ + kT ))

9kQkT + 9kH(kQ + kT ) + kB(kH + kQ + 4kT )
SCPV
H (36)

7
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Figure 2. Baryon production in front of the bubble walls.

2. The electroweak phase transition

Baryon creation in EWBG is closely tied to the dynamics of the electroweak phase

transition (EWPT). In this transition, the thermal plasma goes from a symmetric state

in which the full SU(2)L ⇥ U(1)Y gauge invariance is manifest to a broken one where

only the U(1)em electroweak subgroup remains [11, 13, 14]. As discussed above, the

transition must be first-order and proceed through the nucleation of bubbles of the

broken phase. In this section we will discuss the dynamics of this phase transition and

describe the role it plays in EWBG.

The transition from symmetric to broken phase in the SM can be characterized by

the vacuum expectation value (VEV) of the Higgs field H ⌘ (H+, H0)T that transforms

as (1,2, 1/2) under SU(3)c ⇥ SU(2)L ⇥U(1)Y . A field basis can always be chosen such

that only the real component of H0 develops a non-zero expectation value. Thus, we

will write

�/
p
2 ⌘ hH0i . (1)

The symmetric phase corresponds to � = 0 and the broken phase to � 6= 0. Note that

(in unitary gauge) the masses of the W± and Z0 weak vector bosons and the fermions

are proportional to �.

The features of this transition that are most relevant for EWBG are (a) its character

(first order, second order, cross over); (b) the critical temperature Tc and the bubble

nucleation temperature Tn that describe when it occurs; (c) the sphaleron transition rate

�
sph

that governs the rate of baryon number generation and washout; and (d) the bubble

nucleation rate. These features have been studied using a broad range of theoretic tools.

The most robust computations of many of these quantities are performed using

non-perturbative, Monte Carlo methods. However, given the level of e↵ort required

to perform such studies, they have only been applied to a few specific theories of

nB = �3
�ws

vw

Z 0

�1
dz nleft(z) e

15
4

�wsz
vw

< ⌃ >=< S >= 0
< ⌃ > 6= 0

< S > 6= 0
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FIG. 6: Resonant behavior of BAU dependence on the pa-
rameters of the theory. See text for more details.

We solve this system of two coupled Boltzman equa-
tions numerically and compare it to the full solution of
the 4 equations in Eq. (29) .

Generation of the baryon asymmetry

For Dq,h, Lw, vw we use from Ref.[9] Dq = 6/T and
Dh = 110/T and Lw = 0.25/T, vw = 0.05. We use a
standard VeV profile function in the numerical calcula-
tion

v⌃(z) =
v⌃ (1 + tanh[z/Lw])

2
,

vS(z) =
vS (1 + tanh[z/(2Lw)])

2
. (36)

How the CP violating source term SCPV
H depends on the

short distance parameters and on the combination of the
VeVs we present in Appendix . As one can see from the
explicit expression, the value of the source is identically
equal to zero when the shapes of both profiles are equal
to each other. For that reason we made a somewhat
arbitrary choice to make the singlet’s bubble wall width
to be a factor of 2 larger than the triplet’s one. In the
numerical simulations we have used v⌃ = 76.3 GeV, vS =
2v⌃ in the numerical simulation. For the temperature we
used T = 123GeV.

In Table II we present the thermal masses and widths.
In Table III we present the relaxation rates and the ratios
of ⌧diff/⌧eq for each benchmark, following Ref [9].

In the general case, the m2
12 6= 0 one has to diagonal-

ize the mass matrix of the two Higgses and write down
the Boltzmann equations in terms of the mass diagonal
fields, which ought to be used in the Feynman graphs of
the CTP formalism that lead to terms in the Boltzmann

TABLE III: Table of relaxation rates for benchmarks A,B.

Rate A/GeV
⌧A
diff
⌧A
eq

B/GeV
⌧B
diff
⌧B
eq

�Y 1.9 263 1.9 265
�H 0.14 19 0.026 3.6
�ss 0.41 57 0.41 57
�M+ �0.0028 �0.39 0.0010 0.14
�M� 0.30 42 0.16 22

equations. It is easy to see that in the presence of such
mixing, the CP violating source term generated by the
VeV insertion graph arises for the o↵-diagonal transition
H1 ! H2. This would lead to flavor oscillations between
densities of H1 and H2. In order to avoid technical com-
plications due to this e↵ect, we make a simplifying as-
sumption that m2

12 = 0 and concentrate on this case for
the rest of the paper. Without loss of generality one can
assume that ⌫ = 0 and ↵b = ↵c = 0 in this case. All
other cases like ↵b = ⇡ and/or ↵c = ⇡/2 that also lead
to m2

12 = 0 are equivalent with our choice up to trivial
transformations in the H1, H2 fields. Note that at the fi-

nite temperature, a mass term �m2(T ) = a2T 2

8 + a0
2T 2

24 is
generated and also would lead to flavor oscillations. We
neglect this however we estimate the order of magnitude
of the error by a simple back of the envelope calcula-
tion ✓ ⇠ �m2(T )/(m2

H1
�m2

H2
) and the flavor oscillations

probability Posc ⇠ ✓2.

We select two benchmark scenarios A and B for which
we are able to generate the desirable amount of baryon
asymmetry and also avoid the EDM bounds. In the space
of (s2, tan �, mh2 , mh3 , m⌃, mH+ , arg a0) they correspond
to A(0.05, 2.7, 200, 500, 130) and B(0.03, 2, 230, 200, 200)
where all masses are in GeV units. The remaining pa-
rameters we fix at the values mh1 = 125GeV, mH+ =
300 GeV. The mass of the singlet at finite temperature
we fix at mS = 200GeV. We also use the following pa-
rameters in the triplet potential Re a2 = 1.07, b4 = 0.8 .

For each of the benchmarks A, B we present our numer-
ical results in Figures 8. We get the total baryon asym-

metry for model A: Y
(A)
B = 7.0⇥10�11 using the solution

to the full set of equations and Y
(A)
B,appr. = 8.1 ⇥ 10�11

using the approximate method. The EDM value for

the model A: �
(A)
f = 1.86 ⇥ 10�7, to be compared

with the electron EDM bound |�f |exp < 2.5 ⇥ 10�7.

Analogous numbers for the model B are Y
(B)
B = 7.7 ⇥

10�11, Y
(B)
B,appr. = 9.0 ⇥ 10�11 and �

(B)
f = 1.23 ⇥ 10�7 .

Note that the values of the parameter ✓ defined above
that controls the magnitude of flavor oscillations for
our two benchmarks are ✓(A) = �0.37 � 0.060i and
✓(B) = 0.28 + 0.0060i. Thus the neglected oscillations
are of the order of Posc ⇠ ✓2 ⇠ 5 � 10% for our bench-
marks but of course the e↵ect varies when varying the
parameters in Figures 9 and 10 below.
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Coe�cients gt, gW , g⌃ in our 2HDM plus a real triplet
theory equal [14]

gt =
R12

sin �
= 1, (45)

gW = a1 = 1, (46)

g⌃ =
1

2
�̄1

✓

v

m⌃

◆2

=
1

2
sin 2� Re a2

✓

v

m⌃

◆2

.(47)

The experimental constraint on the theory parameters
m⌃, g⌃ from the ATLAS diphoton data is shown in Fig-
ure 11. For reference the corresponding positions in this
plane of the benchmark scenarios A, B are shown. As
one can see the benchmark A is outside of the 1� and
inside 2� ATLAS bend while the benchmark B is inside
the 1� bend. Thus we conclude that our two benchmark
scenarios are currently in agreement with LHC diphoton
data, however with the run II data of LHC they might
be ruled out or discovered.

CONCLUSIONS

APPENDIX A: EDM LOOP INTEGRALS

Here we summarize the loop functions needed for the
EDM calculation.

f(z) =
z

2

Z 1

0

dx
[1 � 2x(1 � x)] ln x(1�x)

z

x(1 � x) � z
,

g(z) =
z

2

Z 1

0

dx
ln x(1�x)

z

x(1 � x) � z
,

f̃(x, y) =
yf(x)

y � x
+

xf(y)

x � y
,

g̃(x, y) =
yg(x)

y � x
+

xg(y)

x � y
. (48)
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FIG. 11: Two and three sigma constraints from ATLAS data
on the parameter space of our model from Higgs to diphoton
decay.

APPENDIX B: BARYOGENESIS FORMULAS
FOR RELAXATION RATES AND SOURCES

Here we summarize the relaxation and source terms
entering the Baryogenesis analysis. The CP conserving
and CP violating source terms are described by

�M± = � 3 W±

2⇡2T 3

�

�a2v
2
⌃(x) + a0

2v
2
S(x)

�

�

2
,

SCPV
H (x) =

Im a2⌃a⇤
2S

⇡2
vS(x)v⌃(x)

⇥ [vS(x)v̇⌃(x) � v̇S(x)v⌃(x)] ⇤, (49)

where

W± =

Z

k2dk

!1!2

1

2
Im

✓

hB(✏2) ⌥ hB(✏⇤
1)

✏2 � ✏⇤
1

� hB(✏2) ⌥ hB(✏1)

✏2 + ✏1

◆

,

⇤ =

Z

k2dk

!1!2
Im

✓

nB(✏⇤
1) � nB(✏2)

(✏⇤
1 � ✏2)2

+
nB(✏1) + nB(✏2) + 1

(✏2 + ✏1)2

◆

.

(50)

The Yukawa relaxation rates and the �H equal

�Y =
12NC y2

t

T 2
IF (mtR , mQ, mH2) + 0.129

g2
3

4⇡
T ,

�H ⇡ 12

T 2

h

|a2|2IB (v⌃(x); mH1 , mH2 , m⌃)

+|a0
2|2IB (vS(x); mH1 , mH2 , mS)

i

. (51)

The strong sphaleron rate is

�ss = 60 8

3
↵4

s T, (52)

with 0 ⇠ O(1). In addition we have mixing be-
tween H1 � H2 at finite temperature with mass term
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ure 11. For reference the corresponding positions in this
plane of the benchmark scenarios A, B are shown. As
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the 1� bend. Thus we conclude that our two benchmark
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Here we summarize the relaxation and source terms
entering the Baryogenesis analysis. The CP conserving
and CP violating source terms are described by
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The Yukawa relaxation rates and the �H equal

�Y =
12NC y2

t

T 2
IF (mtR , mQ, mH2) + 0.129

g2
3

4⇡
T ,

�H ⇡ 12

T 2

h

|a2|2IB (v⌃(x); mH1 , mH2 , m⌃)

+|a0
2|2IB (vS(x); mH1 , mH2 , mS)

i
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The strong sphaleron rate is

�ss = 60 8

3
↵4

s T, (52)

with 0 ⇠ O(1). In addition we have mixing be-
tween H1 � H2 at finite temperature with mass term

CPV	  source	  

m2
H1

(T )�m2
H2

(T ) = f(yb, yt,m2, tan�)

Expect	  strong	  parameter	  dependence	  of	  the	  BAU	  	  
on	  the	  CP	  even	  (heavy)	  Higgs	  mass	  m2	  and	  	  tan�

SH ⇠ sin(�⌃ � �S)⇤(mH1(T ),mH2(T ))



Flavor	  oscilla2ons	  at	  finite	  temperature	  

1.	  Black	  line	  corresponds	  to	  the	  precise	  resonant	  relaxa2on	  
2.	  Red	  and	  Blue	  lines	  correspond	  to	  being	  away	  from	  
the	  resonant	  relaxa2on	  so	  that	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  and	  different	  CPV	  angle	  
3.	  The	  solid	  circles	  tell	  us	  which	  parameters	  (	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  give	  maximum	  amount	  of	  	  
BAU	  with	  the	  flavor	  oscilla2ons	  of	  the	  order	  of	  0.4*0.4=16%	  	  	  

m2
H1

(T ) = m2
H2

(T )

|✓| = 0.4
tan�,m2

dS=0

0.2 0.5 1.0 2.0 5.0 10.020

50

100

200

500

1000

2000

tan b

m
2HGe

V
L

m2-tan b parameters at and near the resonance

»q»=•
sdS=0.1, »q»=0.4
sdS=0.9, »q»=0.4
m2=200 GeV

dS=0

0.2 0.5 1.0 2.0 5.0 10.020

50

100

200

500

1000

2000

tan b
m
2HGe

V
L

m2-tan b parameters at and near the resonance

»q»=•
sdS=-0.1, »q»=0.4
sdS=-0.9, »q»=0.4
m2=200 GeV

�⌃ � �S = 0.1, 0.9

P
osc

⇠ |✓|2



BAU	  anatomy	  

•  For	  a	  representa2ve	  case	  m2=200	  GeV	  we	  scan	  
through	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  	  	  	  	  	  	  	  	  	  	  	  (lea	  plot	  with	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  
and	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  	  	  	  	  	  	  	  	  	  	  	  (right	  plot	  with	  	  	  	  	  	  	  	  	  	  	  	  	  )	  and	  show	  the	  
dependence	  of	  BAU	  on	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	  	  	  	  	  	  	  

•  In	  the	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  case	  the	  electron	  EDM	  is	  excluding	  the	  BAU	  bounds	  
(except	  for	  the	  red	  curve	  near	  resonance	  where	  the	  flavor	  oscilla2ons	  are	  non-‐
negligible)	  
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BAU	  anatomy	  
•  The	  result	  of	  the	  comprehensive	  analysis	  of	  
the	  BAU	  anatomy	  plots	  (more	  in	  the	  backup)	  
is	  that	  in	  order	  to	  generate	  the	  observed	  BAU	  
and	  avoid	  large	  flavor	  oscilla2ons	  and	  EDM	  
bounds,	  need	  large	  phase	  	  

	  
�S

we	  also	  assumed	  m2>50	  GeV,	  otherwise	  exists	  possibility	  with	  

m2 ⇠ 45GeV, �S = 0, �⌃ ⇠ 0.6, tan� ⇠ 0.2,

�S >⇠ �0.5, �⌃ small or zero



Parameter	  dependence	  of	  bounds	  

�e = sin �⌃ tan� F (m⌃,mh3)

YB ⇡ sin(�⌃ � �S)G(mh2 , tan�)

Electron	  EDM	  

BAU	  



BAU	  vs	  EDM	  bounds	  

Guided	  by	  the	  anatomy	  plots	  we	  easily	  find	  
successful	  benchmark	  scenarios	  that	  	  
sa2sfy	  both	  Baryogenesis	  and	  EDM	  bounds	  
with	  negligible	  flavor	  oscilla2ons	  

Blue	  
Y WMAP
B = (7.3± 2.5)⇥ 10�11

Gray:	  electron	  EDM	  

Pink(ish):	  neutron	  EDM	  	  
(x100	  sensi2vity	  improvement)	  
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Conclusions	  

•  In	  an	  extension	  of	  the	  2HDM	  with	  a	  real	  triplet	  
and	  a	  real	  singlet	  we	  have	  computed	  the	  BAU	  
from	  CTP	  formalism	  

•  We	  found	  a	  range	  for	  successful	  benchmarks	  
consistent	  with	  both	  BAU	  and	  EDMs	  

•  We	  neglected	  flavor	  oscilla2ons	  and	  checked	  that	  
the	  assump2on	  is	  valid	  for	  the	  benchmark	  
(addi2onal	  suppression	  of	  BAU)	  

•  This	  work	  is	  another	  step	  towards	  a	  consistent	  
phenomenology	  of	  mul2-‐step	  phase	  transi2ons	  
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FIG. 7: BAU anatomy as a function of the parameters of the theory. See text for more details.

The profile dependence of the relaxation rates, sources
and particle-anti-particle asymmetries for benchmark
points A, B we present in the Figure 8 . In this Figure
the top four panels correspond to benchmark A while
the bottom ones to the benchmark B. The first one of
the four panels represents the dependence of two e↵ec-

tive relaxation rates �̄11 and �̄21 entering the approxi-
mate two coupled equations in Eq. (34) on the parameter
z = x + vwt. This parameter is on the horizontal axis of
all of the Figures. The second panel represents the two
sources S1, S2 entering the approximate formula. The
third panel represents all the four densities T, Q, H, h in

•  Same	  as	  in	  the	  last	  slide,	  but	  for	  a	  value	  of	  m2	  that	  is	  a	  func2on	  of	  	  	  	  	  	  	  	  	  	  	  	  	  so	  
that	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  a	  fixed	  number	  

•  Solid	  lines	  sidng	  on	  the	  resonance	  (maximum	  possible	  BAU)	  
•  Dashed	  lines	  moving	  away	  from	  resonance	  to	  suppress	  the	  flavor	  oscilla2on	  

to	  16%	  (maximum	  possible	  BAU	  with	  fixed	  magnitude	  of	  the	  flavor	  
oscilla2ons)	  	  	  
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FIG. 2: The dominant EDM contribution from the triplet
comes from this Barr-Zee diagram.

scalar ⌃+ (Figure 2). Since the triplet has no direct cou-
pling to the SM fermions, this is the dominant EDM
contribution from the triplet. The result for dimension-
less EDM �f ⌘ �df/2mfe (as in [5]) from this diagram
is analogous to the H+ loop result [6]:

(�f )h��
⌃+ =

Qfe2v2

256⇡4m2
⌃+

3
X

i=1

⇥

f(zi
⌃) � g(zi

⌃)
⇤

�̄ic̃f,i ,

(�f )hZ�
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gV
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g2 cW v2

256⇡4m2
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(26)

⇥
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X
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f̃(zi
⌃, m2

⌃+/M2
Z) � g̃(zi

⌃, m2
⌃+/M2

Z)
i

�̄ic̃f,i ,

where the coupling of the electron to the Z equals
gV

Zēe = g2(s2
W � 1/4)/cW and

zi
⌃ ⌘ m2

⌃+/m2
hi

. (27)

Loop functions f(z), g(z), f̃(z), g̃(z) are listed in Ap-
pendix A. Note, that in the limit ↵b = ↵c = m2

12 =
Im �5 = 0 the 2HDM potential has no CPV and the only
EDM bound arises from Figure 2. By analyzing expres-
sions for �̄i in Eq. (19) in this limit we see that only
i = 3 contributes to the fermion EDM. Thus theoretical
predictions for both electron and neutron EDM’s depend
only on the masses mh3 , m⌃+ . The electron EDM which
gives the strongest bound is proportional to the sin �⌃

and tan � parameters �e = sin �⌃ tan � F (m⌃, mh3) .

BARYOGENESIS AND TWO-STEP PHASE
TRANSITION

m2
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=

"
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t +
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#

T 2

4
. (28)

In Ref.[1] it was shown that adding a triplet to SM al-
lows for a possibility of a first order phase transition.
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FIG. 3: Vev insertion Feynman graphs in the two-Higgs dou-
blet plus a real triplet theory.
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FIG. 4: Vev insertion Feynman graphs in the two-Higgs dou-
blet plus a real triplet theory.

In this section we use the benchmarks from that refer-
ence and provide a detailed analysis of the generation of
the BAU during the first step in the series of two-step
phase transitions. We are interested in the generation
of the baryon asymmetry in our theory when the phase
transition happens in the direction of the new real scalars
⌃, S (triplet and the singlet correspondingly), when these
fields acquire non-zero vacuum expectation values v⌃, vS

at some stage in the early universe. Later on by virtue of
some mechanism this phase will return to the symmetric
one v⌃ = vS = 0.

Coupled Boltzmann equations

In our theory the Yukawa sector is identical to MSSM
(we consider type-II 2HDM), thus �Y is trivially ex-
tracted from [7, 8]. The only source of the CP violation
appears in the density H = nH+

2
+nH0

2
�nH+

1
�nH0

1
from

the vev-insertion graphs which are calculated by a close
analogy with [7]. TODO: add Feynman graphs to
the paper.

As a result we get the following coupled set of Boltz-
mann equations that contain information on the gener-


