Quantum MC Calculations of Beta Decays in Light Nuclei

Saori Pastore Beta Decay as a Probe of New Physics ACFI UMass, Amherst MA - Nov 2018

Washington University in St.Louis Arts & Sciences

Open Questions in Fundamental Symmetries and Neutrino Physics Majorana Neutrinos, Neutrinos Mass Hierarchy, CP-Violation in Neutrino Sector, Dark Matter

with

Carlson & Gandolfi (LANL) & Schiavilla (ODU+JLab) Piarulli (WashU) & Baroni (USC) & Pieper & Wiringa (ANL) Girlanda (Salento U.) & Marcucci & Viviani & Kievsky (Pisa U/INFN) and with Mereghetti & Dekens & Cirigliano & Graesser (LANL) de Vries (Nikhef) & van Kolck (AU+CNRS/IN2P3)

Towards a coherent and unified picture of neutrino-nucleus interactions

* An accurate understanding of nuclear structure and dynamics is required to disentangle new physics from nuclear effects *

* $\omega \sim$ few MeV, $q \sim 0$: β -decay, $\beta\beta$ -decays * $\omega \sim$ few MeV, $q \sim 10^2$ MeV: Neutrinoless $\beta\beta$ -decays * $\omega \lesssim$ tens MeV: Nuclear Rates for Astrophysics * $\omega \sim 10^2$ MeV: Accelerator neutrinos, *v*-nucleus scattering

Nuclear Interactions

The nucleus is made of A non-relativistic interacting nucleons and its energy is

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

where v_{ij} and V_{ijk} are two- and three-nucleon operators based on EXPT data fitting and fitted parameters subsume underlying QCD

Quantum Monte Carlo Methods

Minimize expectation value of $H = T + V_{ij} + V_{ijk}$

$$E_V = rac{\langle \Psi_V | H | \Psi_V
angle}{\langle \Psi_V | \Psi_V
angle} \geq E_0$$

using trial function

$$|\Psi_V\rangle = \left[\mathscr{S}\prod_{i < j} (1 + U_{ij} + \sum_{k \neq i, j} U_{ijk})\right] \left[\prod_{i < j} f_c(r_{ij})\right] |\Phi_A(JMTT_3)\rangle$$

 Ψ_V is further improved it by "filtering" out the remaining excited state contamination

$$\Psi(\tau) = \exp[-(H - E_0)\tau]\Psi_V = \sum_n \exp[-(E_n - E_0)\tau]a_n\psi_n$$
$$\Psi(\tau \to \infty) = a_0\psi_0$$

* QMC: AV18+UIX / AV18+IL7; Wiringa+Schiavilla+Pieper et al.

* QMC: NN(N2LO)+3N(N2LO) (π &N); Gerzelis+Tews+Epelbaum+Gandolfi+Lynn et al.

* QMC: NN(N3LO)+3N(N2LO) (π &N& Δ); Piarulli *et al.*

Lomnitz-Adler et al. NPA361(1981)399 - Wiringa PRC43(1991)1585 - Pudliner et al. PRC56(1997)1720 - Wiringa et al. PRC62(2000)014001

Pieper et al. PRC70(2004)054325 - Carlson et al. RevModPhys87(2014)1067

Energy Spectrum and Shape of Nuclei

Lovato *et al.* PRL111(2013)092501

Nuclear Currents

* Nuclear currents given by the sum of *p*'s and *n*'s currents, one-body currents (1b)

* Two-body currents (2b) essential to satisfy current conservation * We use Meson-Exchange Currents (MEC) or χ EFT Currents

Electromagnetic Currents from Chiral Effective Field Theory

* 3 unknown Low Energy Constants: fixed so as to reproduce d, ³H, and ³He magnetic moments

** also obtainable from LQCD calculations **

Pastore et al. PRC78(2008)064002 & PRC80(2009)034004 & PRC84(2011)024001 Piarulli et al. PRCC87(2013)014006

derived by Park+Min+Rho NPA596(1996)515 in CPT and by Kölling+Epelbaum+Krebs+Meissner PRC80(2009)045502 & PRC84(2011)054008 with UT

Magnetic Moments of Nuclei

chiral truncation error based on EE et al. error algorithm, Epelbaum, Krebs, and Meissner EPJA51(2015)53

Pastore et al. PRC87(2013)035503

One-body magnetic densities

* one-body (IA) magnetic moment operator

$$\mu(IA) = \mu_N \sum_{i} [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 - \tau_{i,z})/2]$$

Electromagnetic Decays and *e*-scattering off nuclei

Electromagnetic Transverse Responses

GFMC O., ----- GFMC O₁₁₊₁₂ - PWIA

World dat a

Saclay data

Pastore et al. PRC87(2013)035503 & PRC90(2014)024321

Lovato & Gandolfi et al. PRC91(2015)062501 & arXiv:1605.00248

25.0

Electromagnetic data are explained when two-body correlations and currents are accounted for!

Neutrinos and Nuclei: Challenges and Opportunities

Beta Decay Rate

Neutrino-Nucleus Scattering

CCQE on 12C

1.8

Standard Beta Decay

* Matrix Element $\langle \Psi_f | \text{GT} | \Psi_i \rangle \propto g_A$ and Decay Rates $\propto g_A^2$ *

 $(Z,N) \rightarrow (Z+1,N-1) + e + \bar{v}_e$

Nuclear Interactions and Axial Currents

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

so far results are available with AV18+IL7 ($A \le 10$) and SNPA or chiral currents (*a.k.a.* hybrid calculations)

A. Baroni *et al.* PRC93(2016)015501
H. Krebs *et al.* Ann.Phy.378(2017)

- * c₃ and c₄ are taken them from Entem and Machleidt PRC68(2003)041001 & Phys.Rep.503(2011)1
- * *c_D* fitted to GT m.e. of tritium Baroni *et al.* PRC94(2016)024003
- * cutoffs $\Lambda = 500$ and 600 MeV
- include also N4LO 3b currents (tiny)

 * derived by Park et al. in the '90 used at tree-level in many calculations (Song-Ho, Kubodera, Gazit, Marcucci, Lazauskas, Navratil ...)
 * pion-pole at tree-level derived by Klos, Hoferichter et al. PLB(2015)B746

Single Beta Decay Matrix Elements in A = 6-10

gfmc (1b) and gfmc (1b+2b); shell model (1b)

Pastore et al. PRC97(2018)022501

A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003

Based on $g_A \sim 1.27$ no quenching factor GT in ³H is fitted to expt - 2b give a 2% additive contribution to 1b prediction * similar results were obtained with MEC currents * data from TUNL, Suzuki *et al.* PRC67(2003)044302, Chou *et al.* PRC47(1993)163

* In ¹⁰B, ΔE with same quantum numbers ~ 1.5 MeV * In A = 7, ΔE with same quantum numbers $\gtrsim 10$ MeV

Chiral calculations of beta decay m.e.'s: Nuclear Interaction

Chiral calculations of beta decay m.e.'s: Nuclear Currents

^k Chiral interactions and axial currents

we now use

1. chiral 2– and 3–body interactions with πN and Δ 's developed by Piarulli *et al.* and 2. axial currents with Δ 's up to N3LO (tree-level) A. Baroni *et al.* arXiv:1806.10245 (2018)

- * *c*₃ and *c*₄ are taken them from Krebs *et al.* Eur.Phys.J.(2007)A32
- *c_D* and *c_E* fitted to trinucleon B.E. and GT m.e. of tritium
 Baroni *et al.* arXiv:1806.10245 (2018)
- * based on NV2+3* chiral interactions

Single Beta Decay Matrix Elements in A = 6-7 in chiEFT

gfmc (1b) and gfmc (1b+2b); shell model (1b)

vmc-chiral-NV2+3* (1b) and vmc-chiral-NV2+3* (1b+2b)

in collaboration with Piarulli et al.

based on chiral axial currents from A. Baroni et al. PRC93(2016)015501 & arXiv:1806.10245 (2018)

* qualitative agreement with hybrid calculations* many-body currents as manifestation of many-body correlations

vmc-chiral-NV2+3* (1b) and vmc-chiral-NV2+3* (1b+2b)

in collaboration with Piarulli et al.

based on chiral axial currents from A. Baroni et al. PRC93(2016)015501 & arXiv:1806.10245 (2018)

* improvement w.r.t. hybrid calculations * agreement at 3%

EM and GT transitions in A = 8 nuclei

 * B(M1) in 8 Be are calculated at the $\sim 10\%$ level due to rich spectrum; presence of isospin-mixed states; transitions operators coupling "big" with "small components"

* 10% - 30% correction from two-body currents in M1 transitions

 $^{*\ 8}\text{Li}$ and ^8B GT rme with one-body currents alone are $\sim 30\%$ smaller than expt; we expect large effect from two-body currents

Two-body M1 transitions densities

$(J_i, T_i) \rightarrow (J_f, T_f)$	IA	NLO-OPE	N2LO-RC	N3LO-TPE	N3LO-CT	N3LO-A	MEC
$(1^+; 1) \rightarrow (2^+_2; 0)$	2.461 (13)	0.457 (3)	-0.058 (1)	0.095 (2)	-0.035 (3)	0.161 (21)	0.620 (5)

Pastore et al. PRC90(2014)024321

The Present and Future of Quantum Monte Carlo Calculations

figure by Lonardoni

Use of Quantum Computers is being also explored - Roggero, Baroni, Carlson, Perdue et al.

Lonardoni et al. to appear on PRC arXiv:1804.08027

Wiringa et al. PRC89(2014)024305

One-body momentum distributions http://www.phy.anl.gov/theory/research/momenta/ Two-body momentum distributions http://www.phy.anl.gov/theory/research/momenta2/

Two-body momentum distributions

Summary and Outlook

Two-nucleon correlations and two-body electroweak currents

are crucial to explain available experimental data of both static (ground state properties) and dynamical (cross sections and rates) nuclear observables

- * We validate the computational framework vs electromagnetic data
- * Two-body electromagnetic currents successfully tested in $A \le 12$ nuclei
- * $\sim 40\%$ two-body contribution found in ⁹C's magnetic moments
- * ~ 10-30% two-body contributions found in M1 transitions in low-lying states of $A \le 8$ nuclei
- * Calculations of β -decay matrix elements in $A \le 10$ nuclei in agreement with the data at 2% 3% level
- * in $A \le 10$ two-body currents ($q \sim 0$) are small ($\sim 2 3\%$) while correlations are crucial to improve agreement with expt
- Study beta-decay within chiral framework (in progress)
- Study beta-decay densities (in progress)
- Extend calculations to A ~ 40 in AFDMC (in progress by LANL group)
- Explore different kinematics for neutrino-nucleus interactions (including evaluation of the spectrum)

* We are developing a coherent picture for neutrino-nucleus interactions

Bonus Material: Inclusive (e, v) scattering

* inclusive xsecs *

$$\frac{d^2\sigma}{dE'd\Omega_{e'}} = \sigma_M \left[v_L R_L(q,\omega) + v_T R_T(q,\omega) \right]$$

$$R_{\alpha}(q,\omega) = \sum_{f} \delta\left(\omega + E_0 - E_f\right) \left| \langle f | O_{\alpha}(\mathbf{q}) | 0 \rangle \right|^2$$

Longitudinal response induced by $O_L = \rho$ Transverse response induced by $O_T = \mathbf{j}$... 5 nuclear responses in v-scattering...

* Sum Rules *

Exploit integral properties of the response functions + closure to avoid explicit calculation of the final states

$$S(q,\tau) = \int_0^\infty d\omega K(\tau,\omega) R_\alpha(q,\omega)$$

* Coulomb Sum Rules * $S_{\alpha}(q) = \int_{0}^{\infty} d\omega R_{\alpha}(q, \omega) \propto \langle 0|O_{\alpha}^{\dagger}(\mathbf{q})O_{\alpha}(\mathbf{q})|0\rangle$

Sum Rules and Two-Body Physics

Carlson et al. PRC65(2002)024002

$$\begin{split} S_T(q) &\propto & \langle 0 | \mathbf{j}^{\dagger} \, \mathbf{j} | 0 \rangle \\ &\propto & \langle 0 | \mathbf{j}_{1b}^{\dagger} \, \mathbf{j}_{1b} | 0 \rangle + \langle 0 | \mathbf{j}_{1b}^{\dagger} \, \mathbf{j}_{2b} | 0 \rangle + \dots \end{split}$$

• $j = j_{1b} + j_{2b}$

 enhancement of the transverse response is due to interference between 1b and 2b currents AND presence of two-nucleon correlations

$$\begin{cases} \mathbf{\lambda} \\ \mathbf{\lambda}$$

Recent Developments on Inclusive *e* and *v* Scattering off ${}^{12}C$

Lovato & Gandolfi et al. PRC91(2015)062501 & arXiv:1605.00248

123

/www.prev/

NC Inclusive Xsec

 ~ 100 million core hours

Challenges and Opportunities

1. How to describe electroweak-scattering off A > 12 without losing two-body physics (*i.e.*, two-body correlations and currents)?

2. How to incorporate (more) exclusive processes?

3. How to incorporate relativistic effects?

Factorization: The Short-Time Approximation

$$R(q,\omega) = \sum_{f} \delta\left(\omega + E_0 - E_f\right) \langle 0|O^{\dagger}(\mathbf{q})|f\rangle \langle f|O(\mathbf{q})|0\rangle$$
$$R(q,\omega) = \int dt \langle 0|O^{\dagger}(\mathbf{q}) e^{i(H-\omega)t} O(\mathbf{q})|0\rangle$$

At short time, expand $P(t) = e^{i(H-\omega)t}$ and keep up to 2b-terms

$$H \sim \sum_{i} t_i + \sum_{i < j} v_{ij}$$

WITH Carlson & Gandolfi (LANL) & Schiavilla (ODU+JLab) & Wiringa (ANL)

Factorization up to two-body operators: The Short-Time Approximation (STA)

Response functions are given by the scattering off pairs of fully interacting nucleons that propagate into a correlated pair of nucleons

$$R(q,\omega) = \sum_{f} \delta\left(\omega + E_0 - E_f\right) \langle 0|O^{\dagger}(\mathbf{q})|f\rangle \langle f|O(\mathbf{q})|0
angle$$

$$O(\mathbf{q}) = O^{(1)}(\mathbf{q}) + O^{(2)}(\mathbf{q}) = \mathbf{lb} + \mathbf{2b}$$

$$|f\rangle \sim |\psi_{p,P,J,M,L,S,T,M_T}(r,R)\rangle = \text{correlated two-nucleon w.f.}$$

* We retain two-body physics consistently in the nuclear interactions and electroweak currents

* STA can describe more two-body physics, e.g., pion-production induced by e and v

$$R(q,\omega) \sim \int \delta(\omega + E_0 - E_f) d\Omega_P d\Omega_P dP dP \left[p^2 P^2 \langle 0 | O^{\dagger}(\mathbf{q}) | \mathbf{p}, \mathbf{P} \rangle \langle \mathbf{p}, \mathbf{P} | O(\mathbf{q}) | 0 \rangle \right]$$

The Short-Time Approximation

Transverse "response-density" 1b + 2b for ${}^{4}He$

$$R(q,\omega) \sim \int \delta(\omega + E_0 - E_f) d\Omega_p d\Omega_p dP dp \left[p^2 P^2 \langle 0|O^{\dagger}(\mathbf{q})|\mathbf{p}, \mathbf{P}\rangle \langle \mathbf{p}, \mathbf{P}|O(\mathbf{q})|0\rangle \right]$$

* Preliminary results *

STA Transverse Response

 $q = 300 {
m MeV}$

Plane Wave Propagator vs Correlated Propagator

 $R_{\alpha}(q,\omega) \sim \int \delta(\omega + E_0 - E_f) d\Omega_P d\Omega_P d\Omega_P dP \left[p^2 P^2 \langle 0 | O_{\alpha}^{\dagger}(\mathbf{q}) | \mathbf{p}, \mathbf{P} \rangle \langle \mathbf{p}, \mathbf{P} | O_{\alpha}(\mathbf{q}) | 0 \rangle \right]$

* Preliminary results *

STA back to back scattering

* Preliminary results *

The Short-Time Approximation

Longitudinal Response function at q = 500 MeV

* Preliminary results *

Neutrinoless Double Beta Decay

"The average momentum is about 100 MeV, a scale set by the average distance between the two decaying neutrons" cit. Engel&Menéndez

* Decay rate \propto (nuclear matrix elements) $^2 \times \langle m_{\beta\beta} \rangle^2$ *

Double beta-decay Matrix Elements in A = 12

with Mereghetti & Dekens & Cirigliano & Carlson & Wiringa PRC97(2018)014606

Sensitivity to 'pion-exchange-like' correlations

- * no 'pion-exchange-like' correlations
- * yes 'pion-exchange-like' correlations

Pastore, Dekens, Mereghetti et al. PRC97(2018)014606

Comparison with calculations of larger nuclei

JM = Javier Menendez private communication JH = Hyvärien *et al.* PRC91(2015)024613

* Relative size of the matrix elements is approximately the same in all nuclei * Short-range terms approximately the same in all nuclei

with Mereghetti & Dekens & Cirigliano & Carlson & Wiringa PRC97(2018)014606

Summary and Outlook

Two-nucleon correlations and two-body electroweak currents are crucial to explain available experimental data of both static (ground state properties) and dynamical (cross sections and rates) nuclear observables

- * Two-body currents can give $\sim 30-40\%$ contributions and improve on theory/EXPT agreement
- * Calculations of β and $\beta\beta$ –decay m.e.'s in $A \le 12$ indicate two-body physics (currents and correlations) is required
- * Short-Time-Approximation to evaluate v-A scattering in A > 12 nuclei is in excellent agreement with exact calculations and data
- Extend STA to study electroweak scattering in A > 4 nuclei
- Incorporate exclusive processes in the STA
- Study beta-decaay within a chiral framework
- Explore neutrino-nucleus intteraction at moderate value of momentum transfer
 - * We are developing a coherent picture for neutrino-nucleus interactions *

Tritium β -decay

* Results based on AV18+UIX and Chiral Currents are qualitatively in agreement

* All contributions "quench" but for the N3LO OPE (tiny due to a cancellation) and CT (fitted)

- * They quench too much, and this is compensated by the fitting of c_D to EXP GT
- * Use of N4LO 2b loop currents from H. Krebs et al. Ann.Phy.378(2017) leads to a reduced value of cD

 $* \sim 2\%$ additive contribution from two-body currents *

A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003

χ EFT currents in A > 3 systems

A = 7 Captures

	gs	ex
LO	2.334	2.150
N2LO	-3.18×10^{-2}	-2.79×10^{-2}
N3LO(OPE)	-2.99×10^{-2}	-2.44×10^{-2}
N3LO(CT)	2.79×10^{-1}	2.36×10^{-1}
N4LO(2b)	-1.61×10^{-1}	-1.33×10^{-1}
N4LO(3b)	-6.59×10^{-3}	-4.86×10^{-3}
TOT(2b+3b)	0.050	0.046

* Large cancellations between CT at N3LO (with c_D fitted) and other 2b currents

- * \lesssim 3% additive contribution from 2b currents in the $A \le 10$ systems we considered
- * this is in agreement with results obtained with "conventional" axial currents
- * when using chiral axial currents $\lesssim 1\%$ error from chiral truncation (in the currents)

Electromagnetic LECs

 d^{S} , d_{1}^{V} , and d_{2}^{V} could be determined by $\pi\gamma$ -production data on the nucleon

Left with 3 LECs: Fixed in the A = 2 - 3 nucleons' sector

* Isoscalar sector:

* d^{S} and c^{S} from EXPT μ_{d} and $\mu_{S}(^{3}\text{H}/^{3}\text{He})$

* Isovector sector:

* c^V from EXPT $npd\gamma$ xsec.

* c^V from EXPT $\mu_V({}^3\text{H}/{}^3\text{He})$ m.m.

* Regulator $C(\Lambda) = exp(-(p/\Lambda)^4)$ with $\Lambda = 500 - 600$ MeV

Λ	NN/NNN	$10 \times d^S$	c^{S}
500	AV18/UIX (N3LO/N2LO)	-1.731 (2.190)	2.522 (4.072)
600	AV18/UIX (N3LO/N2LO)	-2.033 (3.231)	5.238 (11.38)

Electromagnetic LECs

 d^{S} , d_{1}^{V} , and d_{2}^{V} could be determined by $\pi\gamma$ -production data on the nucleon

Left with 3 LECs: Fixed in the A = 2 - 3 nucleons' sector

* Isoscalar sector:

* d^{S} and c^{S} from EXPT μ_{d} and $\mu_{S}(^{3}\text{H}/^{3}\text{He})$

* Isovector sector:

* c^V from EXPT $npd\gamma$ xsec.

* c^V from EXPT $\mu_V({}^3\text{H}/{}^3\text{He})$ m.m.

* Regulator $C(\Lambda) = exp(-(p/\Lambda)^4)$ with $\Lambda = 500 - 600$ MeV

Λ	NN/NNN	Current	d_1^V	c^V
600	AV18/UIX	Ι	4.98	-11.57
		п	4.98	-1.025

Convergence and cutoff dependence

np capture x-section/ μ_V of A = 3 nuclei bands represent nuclear model dependence [NN(N3LO)+3N(N2LO) – AV18+UIX]

Piarulli et al. PRC(2013)014006

Magnetic Moments of Nuclei

chiral truncation error based on EE et al. error algorithm, Epelbaum, Krebs, and Meissner EPJA51(2015)53

Pastore et al. PRC87(2013)035503