Binary Neutron Star Mergers: Dynamics and Multimessenger Aspects

David Radice - Oct. 13, 2022

NS mergers roadmap

From Radice+, Ann. Rev. Nucl. Part. Sci. 70:95 (2020)

NS mergers roadmap

From Radice+, Ann. Rev. Nucl. Part. Sci. 70:95 (2020)

Prompt collapse: $\mathbf{q} \approx 1$

- Prompt collapse: no bounce after merger, direct BH formation
- EOS has a qualitative impact
- If $q \simeq 1$ expected to be EM quiet
- Alternative: use postmerger GWs (likely with 3G)
- Needs of high-quality NR data

Prompt collapse: q = 1

Can constrain the incompressibility at the highest density achieved in NSs!

Volume Var: density

Time $=9.4989 \mathrm{~ms}$

Impact of BH formation

From Bernuzzi+, MNRAS 497:1488 (2020)

Impact of BH formation

The EM counterpart is sensitive to the remnant lifetime!

From Bernuzzi+, MNRAS 497:1488 (2020)

EM constraints on \wedge

- Simulations connect GW parameters to EM observables
- Small \wedge binaries form BHs quickly: EM faint
- Large \wedge binaries form MNSs: EM bright
- Use this to place joint constraints on \wedge

From Radice+, Ann. Rev. Nucl. Part. Sci. 70:95 (2020)

Multi-messenger constraints

$P[\theta \mid d]$

Multi-messenger constraints

$P[\theta \mid d] \sim P[\theta] P[d \mid \theta]$

Multi-messenger constraints

$$
P[\theta \mid d] \sim P[\theta] P[d \mid \theta]=P[\theta] P\left[d_{\mathrm{GW}} \mid \theta\right] P\left[d_{\mathrm{EM}} \mid \theta\right]
$$

Multi-messenger constraints

$$
P[\theta \mid d] \sim P[\theta] P[d \mid \theta]=P[\theta] P\left[d_{\mathrm{GW}} \mid \theta\right] P\left[d_{\mathrm{EM}} \mid \theta\right]
$$

Multi-messenger constraints

$$
P[\theta \mid d] \sim P[\theta] P[d \mid \theta]=P[\theta] P\left[d_{\mathrm{GW}} \mid \theta\right] P\left[d_{\mathrm{EM}} \mid \theta\right]
$$

GW modeling and data analysis

Isotropic ejecta
Anisotropic ejecta

Perego+, ApJL 850:L37 (2017)

Multi-messenger constraints

$$
P[\theta \mid d] \sim P[\theta] P[d \mid \theta]=P[\theta] P\left[d_{\mathrm{GW}} \mid \theta\right] P\left[d_{\mathrm{EM}} \mid \theta\right]
$$

GW modeling and data analysis

Isotropic ejecta Anisotropic ejecta

Nedora+, CQG 39:015008 (2022)

Multi-messenger constraints

$$
P[\theta \mid d] \sim P[\theta] P[d \mid \theta]=P[\theta] P\left[d_{\mathrm{GW}} \mid \theta\right] P\left[d_{\mathrm{EM}} \mid \theta\right]
$$

Multi-messenger EOS constraints

- Potential to also constrain the mass ratio
- Error dominated by modeling uncertainty, but well understood
- Constraints set by the merger and early post-merger dynamics
- Parameter exploration and inclusion of long-term disk winds from remnant needed

NS mergers roadmap

From Radice+, Ann. Rev. Nucl. Part. Sci. 70:95 (2020)

High-density physics

Prakash+, PRD 104:083029 (2021)

Blh: hadrons only
BLQ: deconfined quarks

- Phase transitions impact the life time of the remnant and the GWs
- Phase transition also cause more violent centrifugal bounce
- These effects are difficult to disentangle from other physics (eg., turbulence)

See also: Bauswein+ 2019, 2020; Most+ 2019, Weigh+ 2019; Blacker+ 2020; Liebling+ 2021; ...

Postmerger GW signal

- Postmerger signal characterized by dominant frequency $f_{\text {peak }}$
- Need next gen. GW experiments, or very close (rare) events
- What can we learn from $f_{\text {peak }}$?
- Many ideas in the literature

Universal relations

From Breschi+ PRL 128:161102 (2022)

NS mergers roadmap

From Radice+, Ann. Rev. Nucl. Part. Sci. 70:95 (2020)

Common wisdom

Common wisdom

Angular momentum transport

- SMNS are born with significant excess of angular momentum
- Thermal effects could facilitate the collapse
- Outcome depends on competition between viscous effects and cooling

A stable HMNS?

- Targeted simulations to GW170817 reveal cases in which the spiral-wave wind could be sufficiently intense to stabilize the remnant
- Need longer simulations with MHD and real neutrino transport

Challenges

- Need O(few seconds) full physics simulations
- Capture MHD turbulence and dynamo processes in the remnant
- Neutrino interactions in dense matter
- Non-LTE radiation-hydrodynamics effect
- Neutrino flavor conversion

Summary

- Many avenues to constrain the physics of dense matter from mergers
- Systematic uncertainties increase in the postmerger
1)Inspiral: well understood, but need higher precision models

2) Early merger dynamics: physics understood, but large portions of parameter space to explore
3)Late postmerger: large systematic uncertainties

- Post-merger GW signal would constrain the EOS at the highest densities

WhiskyTHC

http://personal.psu.edu/~dur566/whiskythc.html

- Full-GR dynamical spacetime
- Nuclear EOS
- M0 \& M1 neutrino transport
- Subgrid turbulence modeling
- Builds on top of the Einstein Toolkit and open source

THC: Templated Hydrodynamics Code

Skip Ad $>$

Bulk viscosity?

From Alford+ 2017

- When dense matter is compressed it undergoes strong and weak reactions
- $\mathrm{t}_{\text {strong }} \ll \mathrm{t}_{\text {hydro }}$, so strong reactions are always in equilibrium
- $\mathrm{t}_{\text {weak }} \approx 10^{-3} \mathrm{~ms} \approx \mathrm{t}_{\text {hydro: }}$: potentially out of equilibrium
- Analogous to ε-mechanism in stars
- First simulations with trapped neutrinos in Radice+ 2021 do not reveal strong bulk viscosity

