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Introduction
Lattice QCD

Lattice is a nonperturbative formulation of QCD.

Lattice uses a hard regulator:

ψ̄ /pψ → ψ̄ /W (p)ψ ,

where W (p) is a periodic function:

W (p) = W (p+ 2πa−1) .

Hard regulators introduce a scale and allow mixing with lower
dimensional operators.

Hard regulators are unambiguous: no renormalon problem.
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Ultraviolet divergence regulated by the periodicity:∫ ∞
−∞

dp =

∞∑
m=−∞

∫ π(m+1)/a

π(m−1)/a
dp→

∫ π/a

−π/a
dp

Infrared controlled by calculating in a finite universe.∫
dpf(p)→

∑
n

(
2π

L
)f(

2πn

L
+ p0)

Real world reached by
lim
L→∞
a→0

.

Current calculations a ∼ 0.05–0.15 fm and L ∼ 3–5 fm.
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Introduction
Euclidean Space

Lattice can calculate equal time vacuum matrix elements:
To extract 〈n|O|n〉, one starts with

Tr e−βH n̂e−HTfOe−HTi n̂†

= e−βEs〈s|n̂e−HTfOe−HTi n̂†|s〉
−→
β→∞ 〈Ω|n̂|nf 〉e−MfTf 〈nj |O|ni〉e−MiTi〈ni|n̂†|Ω〉
−→

Ti,Tf→∞ 〈n|O|n〉e−M0(Ti+Tf )

Vacuum and states chosen by the theory: can only calculate
‘physical’ matrix elements.

Tanmoy Bhattacharya Renormalization of Lattice Operators I



Introduction
nEDM
Mixing

Renormalization
Conclusions

Lattice Basics
Topological charge
Quark Electric Dipole Moment
Quark Chromoelectric Moment
State of the Art

nEDM
Lattice Basics

We can extract nEDM in two ways.
As the difference of the energies of spin-aligned and
anti-aligned neutron states:

dn =
1

2
(Mn↓ −Mn↑)|E=E↑

By extracting the CP violating form factor of the
electromagnetic current.

〈n|JEM
µ |n〉 ∼ F3(q

2)

2Mn
n̄ qνσ

µνγ5 n

dn = lim
q2→0

F3(q
2)

2Mn
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Difficult to perform simulations with complex ��CP action

Expand and calculate correlators of the ��CP operator:

〈 C��CP(x, y, . . .) 〉CP+��CP =

∫
[DA] exp

[
−
∫
d4x(LCP + L��CP)

]
× C��CP(x, y, . . .)

≈
∫

[DA] exp

[
−
∫
d4xLCP

]
×
(

1−
∫
d4xL��CP

)
C��CP(x, y, . . .)

= 〈 C��CP(x, y, . . .) L��CP(pµ = 0) 〉CP
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nEDM
Topological charge

To find the contribution of Θ̄, we note that
∫
d4xGG̃ = Q, the

topological charge. So, we need the correlation between the
electric current and the topological charge.〈

n

∣∣∣∣(2

3
ūγµu−

1

3
d̄γµd)Q

∣∣∣∣n〉 =

1

2

〈
n
∣∣(ūγµu+ d̄γµd)Q

∣∣n〉 +
1

6

〈
n
∣∣(ūγµu− d̄γµd)Q

∣∣n〉
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nEDM
Quark Electric Dipole Moment

Since the quark electric dipole moment directly couples to the
electric field, we just need to calculate its matrix elements in the
neutron state.〈

n
∣∣dγu ūσµνu+ dγd d̄σ

µνd
∣∣〉 =

dγu + dγd
2

〈
n
∣∣ūσµνu+ d̄σµνd

∣∣n〉+
dγu − dγd

2

〈
n
∣∣ūσµνu− d̄σµνd∣∣n〉
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nEDM
Quark Chromoelectric Moment

nEDM from quark chromoelectric moment is a four-point
function:〈

n

∣∣∣∣(2

3
ūγµu−

1

3
d̄γµd)

∫
d4x (dGu ūσ

νκu+ dGd d̄σ
νκd) G̃νκ

∣∣∣∣n〉
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Four-point functions can be calculated using noise sources. No
experience yet with these.

Alternatively, we can simplify using Feynman-Hellmann
Theorem:

〈
n

∣∣∣∣Jµ ∫ d4x(dGu ūσ
νκu+ dGd d̄σ

νκd) G̃νκ

∣∣∣∣n〉
=

∂

∂Aµ

〈
n

∣∣∣∣∫ d4x(dGu ūσ
νκu+ dGd d̄σ

νκd) G̃νκ

∣∣∣∣n〉
E

where the subscript E refers to the correlator calculated in the
presence of a background electric field.
Needs dynamical configurations with electric fields. Can use
reweighting.
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nEDM
State of the Art

Neutron electric dipole moment from

Topological charge:
Limits exist from lattie calculations

Quark Electric Dipole Moment:
Same as the tensor charge of the nucleon
Preliminary results available

Quark Chromoelectric Dipole Moment:
not yet calculated
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Mixing
Pattern of mixing

Renormalization of the lattice operators can be performed
non-perturbatively.

Topological charge is well studied and understood.
Electric current and Quark Elecric Dipole moment
operators are quark bilinears: well understood
renormalization procedure.
Quark Chromoelectric Moment operator mixes with Quark
Elecric Dipole moment: need to disentangle.
Quark Chromoelectric Moment operator has divergent
mixing with lower dimensional operators: need high
precision.

Also need to calculate the influence of Chromoelectric moment
of the quark on the PQ potential for Θ.
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Mixing
Electric dipole moment

The operator is ψ̄σµνF̃µνψ.
It is a CP-violating quark-quark-photon vertex.

At lowest order in electroweak perturbation theory, does
not mix with any lower-or-same-dimension operators.
At one loop in electroweak,

chirally unsuppressed power-divergent mixing with ψ̄γ5ψ,
log-divergent mixing with ψ̄σµνG̃µνψ, and
doubly chirally suppressed log-divergent mixing with ψ̄γ5ψ

At two loops (mixed strong and electroweak), chirally
suppressed, power-divergent mixing with GG̃.

Other mixings vanish onshell at zero four momentum, but not
necessarily at zero three momentum.
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If we handle electroweak perturbatively on the lattice, we can
work at lowest order and avoid this mixing. In this case, all we
need is the tensor charge.

Depending on accuracy needed, continuum running from high
scale to hadronic scales need to account for mixing. MS does
not see power divergence.
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Mixing
Vacuum Alignment and Phase Choice

CP and chiral symmetry do not commute. Outer
automorphism: CPχ ≡ χ−1CPχ also a CP.

ψCPL = iγ4Cψ̄
T
L and ψCPR = iγ4Cψ̄

T
R.

ψχL = eiχψL and ψχR = e−iχψR

ψ
CPχ

L = e−2iχiγ4Cψ̄
T
L and ψCPχ

R = e+2iχiγ4Cψ̄
T
R

In chirally symmetric theory, vacuum degenerate:
spontaneously breaks all but one CPχ.
Addition of explicit chiral symmetry breaking breaks
degeneracy of vacuum.
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Need degenerate perturbation theory unless perturbing
around the right vacuum.
Phase choice for fermions allows the preserved CPχ to be
the ‘standard’ CP.
This phase choice is the one that gives

〈Ω|L�CP |π〉 = 0.

where L�CP is identified with the standard definition of CP ,
and |Ω〉 is the true vacuum.

Consider the chiral and CP violating parts of the action

L ⊃ dαi Oαi

where i is flavor and α is operator index.
Consider only one chiral symmetric CP violating term: ΘGG̃
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Convert to polar basis

di ≡ |di|eiφi ≡
∑

α d
α
i 〈Ω| ImOαi |π〉∑

α〈Ω| ImOαi |π〉

Then CP violation is proportional to:

d̄Θ̄Re d
α
i

di
− |di| Im

dαi
di

with
1

d̄
≡
∑
i

1

di
Θ̄ = Θ−

∑
i

φi

CP violation depends on Θ̄ and on a mismatch of phases
between dαi and di.
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This is because the total chiral violation di is chosing the
vacuum, and relative phase of dαi with respect to this gives the
CP violation.

Only when

〈Ω|mψ̄γ5ψ|π〉 � 〈Ω|dGi ψ̄γ5σ ·Gψ|π〉

we can forget about this complication and treat ψ̄γ5σ ·Gψ as
the CP violating chromoelectric dipole moment operator.

Calculation needs nonzero mass (or hold vacuum fixed).
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Mixing
Lower dimensional operator

Most divergent mixing with αs
a2
ψ̄γ5ψ.

nEDM due to this same as due to αs
ma2

G · G̃.

Current estimates of nEDM due to
CEDMMS ⇒ O(1)

αs
ma2

ΘG · G̃⇒ O(0.1)

5MeVa2
O(10−3)e-fm = O(1)

at a ≈ 0.1fm.

Expect O(1–10) cancellation.

Tanmoy Bhattacharya Renormalization of Lattice Operators I



Introduction
nEDM
Mixing

Renormalization
Conclusions

Perturbation Theory
Ward identity methods
Gradient flow method
Position space methods
Momentum space methods

Renormalization
Perturbation Theory

Lattice perturbation theory can be used.

Extra vertices: multi gauge-boson vertices.
Periodic functions are infinite power series.
Wilson lines are exponentials of gauge fields.

Bubbles (self-loops) give large contribution.
Explicit scale allows bubbles to give constant non-zero
contribution.

Can choose combination of quantities that cancel ”bubble
contribution”.
Perturbation theory reasonably well behaved for these
quantities.
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Renormalization
Ward identity methods

Lattice QCD preserves or restores all symmetries in the
continuum limit.

Ward identities lead to relations that can be tested on the
lattice:

δAO = δO ⇒ 〈
(∫

d4x(∂µAµ − 2mP )O

)
O′〉 = 〈δOO′〉 .

Can be used to calculate ZA, ZV , ZS/ZP etc.

Cannot renormalize operators with anomalous dimensions.
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Renormalization
Gradient flow method

Appropriately smeared operators are automatically
renormalized.

Define the smearing equation
d

dt
Aµ(t) = Dν(t)Gνµ(t) Aµ(0) = Aµ

d

dt
ψ(t) = Dµ(t)Dµ(t)ψ(t) ψ(0) = ψ

Any limt→0O(Aµ(t), ψ(t)) is automatically renormalized at the
scale of µ = 1/

√
8t with only fermion wavefunction

renormalization.

To avoid cutoff effects, one needs µa� 1.

To make contact with perturbation theory, one needs
µ� ΛQCD.

New method: not much experience with these yet.
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Renormalization
Position space methods

Match 〈O(x)O(0)〉 at fixed x.

Need x� a to avoid cutoff effects.

Need xΛQCD � 1 to be perturbative.

Needs higher loop calculations.
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Renormalization
Momentum space methods

Match quark/gluon matrix elements 〈q|O(p)|q〉.

Needs gauge fixing to define external states.
Can mix with gauge variant operators.
BRST symmetry restricts these.
Does not contribute to physical matrix elements.

Involve contact terms
Equation-of-motion operators do not vanish.

Needs pa� 1 to avoid cutoff effects.

Needs p� ΛQCD to be perturbative.

Successfully carried out for dim 3 quark bilinears.
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Conclusions
Needed Calculations

Preliminary calculations needed before one can estimate errors
and resource requirements.
For preliminary calculations

Use previously generated lattices
Study

Statistical signal
Chiral behavior
Dependence on lattice spacing
Excited state contamination
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Conclusions
Outlook

Currently Quark Electric Dipole Moment ME has about 10%
precision.

The calculation of chromoEDM ME need more study.

Divergent mixing leads to higher precision requirement

Remaining systematic errors not expected to be major.
nEDM not overly sensitive to neglected EM and
isospin-breaking
Modern calculations include dynamical charm
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