ACFI - Amherst

11/03/2018

Nature 558, 91-94 (2018) + updates

First-principles QCD calculation of the neutron lifetime

Enrico Rinaldi

Neutron Lifetime Measurements

Serebrov et al. Phys. Rev. C 97 (055503) 2018

Weighted average

- The discrepancy of ~4σ between different methods is still unresolved.
- Experiments are trying to reduce all their systematics and provide robust estimates for their uncertainties
- Neutron decays to "dark" or "exotic" particles have been invoked to explain the discrepancy [Fornal&Grinstein, PRL120(191801)2018]

	author	year	value	stat	error sys	Σ	χ^2	Ref	
	Serebrov	2017	881.5	0.7	0.6	1.3	2.4		_
	Pattie	2017	877.7	0.7	0.3	1.0	3.2	[21]	Science 11 May 2018: Vol. 360, Issue 6389, pp. 627-632
	Arzumanov	2015	880.2	1.2		1.2	0.4	[22]	vol. 000, 10000 0000, pp. 027 002
	Ezhov	2014	878.3	1.9		1.9	0.4	[23]	
	Yue	2013	887.7	1.2	1.9	3.1	7.0	[24]	
	Steyerl	2012	882.5	1.4	1.5	2.9	1.1	[25]	
	Pichlmaier	2010	880.7	1.3	1.2	2.5	0.2	[26]	
	Serebrov	2004	878.5	0.7	0.3	1.0	1.0	[15, 16]	
_									
892	894 896	1							
ver	$age \tau_n(s)$)							

Neutron beta decay

- In the Standard Model, beta decay is driven by the electroweak sector
- The master formula includes the quark mixing matrix element, the neutron lifetime and the axial coupling:

$$V_{ud}|^2 \tau_n (1 + 3g_A^2) = 4908.6(1.9)s$$

Neutron beta decay

- In the Standard Model, beta decay is driven by the electroweak sector
- The master formula includes the quark mixing matrix element, the neutron lifetime and the axial coupling:

$$V_{ud}|^2 \tau_n (1 + 3g_A^2) = 4908.6(1.9)s$$

Neutron beta decay

- In the Standard Model, beta decay is driven by the electroweak sector
- The master formula includes the quark mixing matrix element, the neutron lifetime and the axial coupling:

$$V_{ud}|^2 \tau_n (1 + 3g_A^2) = 4908.6(1.9)s$$

Neutron beta decay

- In the Standard Model, beta decay is driven by the electroweak sector
- The master formula includes the quark mixing matrix element, the neutron lifetime and the axial coupling:

$$V_{ud}|^2 \tau_n (1 + 3g_A^2) = 4908.6(1.9)s$$

it is a lattice QCD calculation (requires access to HPC)

- it is a lattice QCD calculation (requires access to HPC)
- need to carefully understand all the systematic errors $\widehat{\mathbf{W}}$

- it is a lattice QCD calculation (requires access to HPC)
- need to carefully understand all the systematic errors $\overline{\Omega}$
 - continuum extrapolation (always!) $a \rightarrow 0$

- it is a lattice QCD calculation (requires access to HPC)
- need to carefully understand all the systematic errors $\overline{\Omega}$
 - continuum extrapolation (always!) $a \rightarrow 0$
 - infinite volume extrapolation (always!) $V \to \infty$

- it is a lattice QCD calculation (requires access to HPC)
- need to carefully understand all the systematic errors $\widehat{\mathbf{W}}$
 - continuum extrapolation (always!) $a \rightarrow 0$
 - infinite volume extrapolation (always!) $V \to \infty$
 - physical pion extrapolation (if any) $m_{\pi} \rightarrow m_{\pi}^{\rm phys.}$

- it is a lattice QCD calculation (requires access to HPC)
- need to carefully understand all the systematic errors $\widehat{\mathbf{W}}$
 - continuum extrapolation (always!) $a \rightarrow 0$
 - infinite volume extrapolation (always!) $V \to \infty$
 - physical pion extrapolation (if any) $m_{\pi} \rightarrow m_{\pi}^{\rm phys.}$
 - effects due to excited states contaminations (tricky)

- it is a lattice QCD calculation (requires access to HPC)
- need to carefully understand all the systematic errors $\overline{\Omega}$
 - continuum extrapolation (always!) $a \to 0$
 - infinite volume extrapolation (always!) $V \to \infty$
 - physical pion extrapolation (if any) $m_{\pi} \rightarrow m_{\pi}^{\text{phys.}}$
 - effects due to excited states contaminations (tricky)

- it is a lattice QCD calculation (requires access to HPC)
- need to carefully understand all the systematic errors $\overline{\Omega}$
 - continuum extrapolation (always!) $a \to 0$
 - infinite volume extrapolation (always!) $V \to \infty$
 - physical pion extrapolation (if any) $m_{\pi} \rightarrow m_{\pi}^{\text{phys.}}$
 - effects due to excited states contaminations (tricky)

Challenging systematics

Challenging systematics

H	valence parameters													
abbr.	$N_{ m cfg}$	volume	$\sim a$ [fm]	m_l/m_s	$\sim m_{\pi_5}$ [MeV]	$\sim m_{\pi_5} L$	$N_{ m src}$	L_5/a	aM_5	b_5	c_5	$am_l^{ m val.}$	$\sigma_{ m smr}$	$N_{ m smr}$
a15m400	1000	$16^3 \times 48$	0.15	0.334	400	4.8	8	12	1.3	1.5	0.5	0.0278	3.0	30
a15m350	1000	$16^{3} \times 48$	0.15	0.255	350	4.2	16	12	1.3	1.5	0.5	0.0206	3.0	30
a15m310	1960	$16^3 \times 48$	0.15	0.2	310	3.8	24	12	1.3	1.5	0.5	0.01580	4.2	60
a15m220	1000	$24^3 \times 48$	0.15	0.1	220	4.0	12	16	1.3	1.75	0.75	0.00712	4.5	60
a15m130	1000	$32^3 \times 48$	0.15	0.036	130	3.2	5	24	1.3	2.25	1.25	0.00216	4.5	60
a12m400	1000	$24^3 \times 64$	0.12	0.334	400	5.8	8	8	1.2	1.25	0.25	0.02190	3.0	30
a12m350	1000	$24^3 \times 64$	0.12	0.255	350	5.1	8	8	1.2	1.25	0.25	0.01660	3.0	30
a12m310	1053	$24^3 \times 64$	0.12	0.2	310	4.5	8	8	1.2	1.25	0.25	0.01260	3.0	30
a12m220S	1000	$24^3 \times 64$	0.12	0.1	220	3.2	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220	1000	$32^3 \times 64$	0.12	0.1	220	4.3	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220L	1000	$40^3 \times 64$	0.12	0.1	220	5.4	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m130	1000	$48^3 \times 64$	0.12	0.036	130	3.9	3	20	1.2	2.0	1.0	0.00195	7.0	150
a09m400	1201	$32^{3} \times 64$	0.09	0.335	400	5.8	8	6	1.1	1.25	0.25	0.0160	3.5	45
a09m350	1201	$32^3 \times 64$	0.09	0.255	350	5.1	8	6	1.1	1.25	0.25	0.0121	3.5	45
a09m310	784	$32^{3} \times 96$	0.09	0.2	310	4.5	8	6	1.1	1.25	0.25	0.00951	7.5	167
a09m220	1001	$48^3 \times 96$	0.09	0.1	220	4.7	6	8	1.1	1.25	0.25	0.00449	8.0	150

H	HSQ g	auge con	figurati	on para	meters	valence parameters								
abbr.	$N_{ m cfg}$	volume	$\sim a$ [fm]	m_l/m_s	$\sim m_{\pi_5}$ [MeV]	$\sim m_{\pi_5} L$	$N_{ m src}$	L_5/a	aM_5	b_5	c_5	$am_l^{ m val.}$	$\sigma_{ m smr}$	$N_{ m smr}$
a15m400	1000	$16^{3} \times 48$	0.15	0.334	400	4.8	8	12	1.3	1.5	0.5	0.0278	3.0	30
a15m350	1000	$16^{3} \times 48$	0.15	0.255	350	4.2	16	12	1.3	1.5	0.5	0.0206	3.0	30
a15m310	1960	$16^{3} \times 48$	0.15	0.2	310	3.8	24	12	1.3	1.5	0.5	0.01580	4.2	60
a15m220	1000	$24^3 \times 48$	0.15	0.1	220	4.0	12	16	1.3	1.75	0.75	0.00712	4.5	60
a15m130	1000	$32^3 \times 48$	0.15	0.036	130	3.2	5	24	1.3	2.25	1.25	0.00216	4.5	60
a12m400	1000	$24^{3} \times 64$	0.12	0.334	400	5.8	8	8	1.2	1.25	0.25	0.02190	3.0	30
a12m350	1000	$24^3 \times 64$	0.12	0.255	350	5.1	8	8	1.2	1.25	0.25	0.01660	3.0	30
a12m310	1053	$24^3 \times 64$	0.12	0.2	310	4.5	8	8	1.2	1.25	0.25	0.01260	3.0	30
a12m220S	1000	$24^3 \times 64$	0.12	0.1	220	3.2	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220	1000	$32^{3} \times 64$	0.12	0.1	220	4.3	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220L	1000	$40^{3} \times 64$	0.12	0.1	220	5.4	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m130	1000	$48^3 \times 64$	0.12	0.036	130	3.9	3	20	1.2	2.0	1.0	0.00195	7.0	150
a09m400	1201	$32^{3} \times 64$	0.09	0.335	400	5.8	8	6	1.1	1.25	0.25	0.0160	3.5	45
a09m350	1201	$32^{3} \times 64$	0.09	0.255	350	5.1	8	6	1.1	1.25	0.25	0.0121	3.5	45
a09m310	784	$32^3 \times 96$	0.09	0.2	310	4.5	8	6	1.1	1.25	0.25	0.00951	7.5	167
a09m220	1001	$48^{3} \times 96$	0.09	0.1	220	4.7	6	8	1.1	1.25	0.25	0.00449	8.0	150

 $a \rightarrow 0$

······	HSQ g	auge con	figurati	on para	meters	valence parameters								
abbr.	$N_{ m cfg}$	volume	$\sim a$ [fm]	m_l/m_s	$\sim m_{\pi_5}$ [MeV]	$\sim m_{\pi_5} L$	$N_{ m src}$	L_5/a	aM_5	b_5	c_5	$am_l^{ m val.}$	$\sigma_{ m smr}$	$N_{ m smr}$
a15m400	1000	$16^{3} \times 48$	0.15	0.334	400	4.8	8	12	1.3	1.5	0.5	0.0278	3.0	30
a15m350	1000	$16^{3} \times 48$	0.15	0.255	350	4.2	16	12	1.3	1.5	0.5	0.0206	3.0	30
a15m310	1960	$16^{3} \times 48$	0.15	0.2	310	3.8	24	12	1.3	1.5	0.5	0.01580	4.2	60
a15m220	1000	$24^3 \times 48$	0.15	0.1	220	4.0	12	16	1.3	1.75	0.75	0.00712	4.5	60
a15m130	1000	$32^3 \times 48$	0.15	0.036	130	3.2	5	24	1.3	2.25	1.25	0.00216	4.5	60
a12m400	1000	$24^{3} \times 64$	0.12	0.334	400	5.8	8	8	1.2	1.25	0.25	0.02190	3.0	30
a12m350	1000	$24^3 \times 64$	0.12	0.255	350	5.1	8	8	1.2	1.25	0.25	0.01660	3.0	30
a12m310	1053	$24^3 \times 64$	0.12	0.2	310	4.5	8	8	1.2	1.25	0.25	0.01260	3.0	30
a12m220S	1000	$24^{3} \times 64$	0.12	0.1	220	3.2	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220	1000	$32^{3} \times 64$	0.12	0.1	220	4.3	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220L	1000	$40^{3} \times 64$	0.12	0.1	220	5.4	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m130	1000	$48^{3} \times 64$	0.12	0.036	130	3.9	3	20	1.2	2.0	1.0	0.00195	7.0	150
a09m400	1201	$32^{3} \times 64$	0.09	0.335	400	5.8	8	6	1.1	1.25	0.25	0.0160	3.5	45
a09m350	1201	$32^{3} \times 64$	0.09	0.255	350	5.1	8	6	1.1	1.25	0.25	0.0121	3.5	45
a09m310	784	$32^{3} \times 96$	0.09	0.2	310	4.5	8	6	1.1	1.25	0.25	0.00951	7.5	167
a09m220	1001	$48^{3} \times 96$	0.09	0.1	220	4.7	6	8	1.1	1.25	0.25	0.00449	8.0	150
			•				H.							

 $a \to 0 \quad V \to \infty$

H	HSQ g	auge con	figurati	on para	ameters	valence parameters								
abbr.	$N_{ m cfg}$	volume	$\sim a$ [fm]	m_l/m_s	$\sim m_{\pi_5} \ [{ m MeV}]$	$\sim m_{\pi_5} L$	$N_{ m src}$	L_5/a	aM_5	b_5	c_5	$am_l^{ m val.}$	$\sigma_{ m smr}$	$N_{ m smr}$
a15m400	1000	$16^{3} \times 48$	0.15	0.334	400	4.8	8	12	1.3	1.5	0.5	0.0278	3.0	30
a15m350	1000	$16^{3} \times 48$	0.15	0.255	350	4.2	16	12	1.3	1.5	0.5	0.0206	3.0	30
a15m310	1960	$16^{3} \times 48$	0.15	0.2	310	3.8	24	12	1.3	1.5	0.5	0.01580	4.2	60
a15m220	1000	$24^{3} \times 48$	0.15	0.1	220	4.0	12	16	1.3	1.75	0.75	0.00712	4.5	60
a15m130	1000	$32^{3} \times 48$	0.15	0.036	130	3.2	5	24	1.3	2.25	1.25	0.00216	4.5	60
a12m400	1000	$24^{3} \times 64$	0.12	0.334	400	5.8	8	8	1.2	1.25	0.25	0.02190	3.0	30
a12m350	1000	$24^{3} \times 64$	0.12	0.255	350	5.1	8	8	1.2	1.25	0.25	0.01660	3.0	30
a12m310	1053	$24^{3} \times 64$	0.12	0.2	310	4.5	8	8	1.2	1.25	0.25	0.01260	3.0	30
a12m220S	1000	$24^{3} \times 64$	0.12	0.1	220	3.2	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220	1000	$32^{3} \times 64$	0.12	0.1	220	4.3	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220L	1000	$40^3 \times 64$	0.12	0.1	220	5.4	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m130	1000	$48^{3} \times 64$	0.12	0.036	130	3.9	3	20	1.2	2.0	1.0	0.00195	7.0	150
a09m400	1201	$32^3 \times 64$	0.09	0.335	400	5.8	8	6	1.1	1.25	0.25	0.0160	3.5	45
a09m350	1201	$32^{3} \times 64$	0.09	0.255	350	5.1	8	6	1.1	1.25	0.25	0.0121	3.5	45
a09m310	784	$32^{3} \times 96$	0.09	0.2	310	4.5	8	6	1.1	1.25	0.25	0.00951	7.5	167
a09m220	1001	$48^3 \times 96$	0.09	0.1	220	4.7	6	8	1.1	1.25	0.25	0.00449	8.0	150
		1		ł)	4		11							

$$a \to 0 \quad V \to \infty$$

 $m_{\pi} \to m_{\pi}^{\text{phys.}}$

F	HSQ g	auge con	figurati	on para	ameters	valence parameters								
abbr.	$N_{ m cfg}$	volume	~ <i>a</i> [fm]	m_l/m_s	$\sim m_{\pi_5} \ [{ m MeV}]$	$\sim m_{\pi_5} L$	$N_{ m src}$	L_5/a	aM_5	b_5	c_5	$am_l^{ m val.}$	$\sigma_{ m smr}$	$N_{ m smr}$
a15m400	1000	$16^{3} \times 48$	0.15	0.334	400	4.8	8	12	1.3	1.5	0.5	0.0278	3.0	30
a15m350	1000	$16^{3} \times 48$	0.15	0.255	350	4.2	16	12	1.3	1.5	0.5	0.0206	3.0	30
a15m310	1960	$16^{3} \times 48$	0.15	0.2	310	3.8	24	12	1.3	1.5	0.5	0.01580	4.2	60
a15m220	1000	$24^3 \times 48$	0.15	0.1	220	4.0	12	16	1.3	1.75	0.75	0.00712	4.5	60
a15m130	1000	$32^3 \times 48$	0.15	0.036	130	3.2	5	24	1.3	2.25	1.25	0.00216	4.5	60
a12m400	1000	$24^{3} \times 64$	0.12	0.334	400	5.8	8	8	1.2	1.25	0.25	0.02190	3.0	30
a12m350	1000	$24^3 \times 64$	0.12	0.255	350	5.1	8	8	1.2	1.25	0.25	0.01660	3.0	30
a12m310	1053	$24^3 \times 64$	0.12	0.2	310	4.5	8	8	1.2	1.25	0.25	0.01260	3.0	30
a12m220S	1000	$24^{3} \times 64$	0.12	0.1	220	3.2	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220	1000	$32^{3} \times 64$	0.12	0.1	220	4.3	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220L	1000	$40^{3} \times 64$	0.12	0.1	220	5.4	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m130	1000	$48^{3} \times 64$	0.12	0.036	130	3.9	3	20	1.2	2.0	1.0	0.00195	7.0	150
a09m400	1201	$32^{3} \times 64$	0.09	0.335	400	5.8	8	6	1.1	1.25	0.25	0.0160	3.5	45
a09m350	1201	$32^{3} \times 64$	0.09	0.255	350	5.1	8	6	1.1	1.25	0.25	0.0121	3.5	45
a09m310	784	$32^3 \times 96$	0.09	0.2	310	4.5	8	6	1.1	1.25	0.25	0.00951	7.5	167
a09m220	1001	$48^3 \times 96$	0.09	0.1	220	4.7	6	8	1.1	1.25	0.25	0.00449	8.0	150
			•	N .	1		1							

★ ★ ★ 16 ensembles with N_f=2+1+1 Highly Improved Staggered Quarks (HISQ) 5 pion masses, 3 lattice spacings, multiple volumes High statistics ensembles, publicly available

 Matrix element of the axial current between nucleon ground states

 Matrix element of the axial current between nucleon ground states

 Matrix element of the axial current between nucleon ground states

$\langle 0|N(t)A_{\mu}(\tau)N(t')|0\rangle$

- Matrix element of the axial current between nucleon ground states
- Calculate a 3-point correlation function:

$\langle 0|N(t)A_{\mu}(\tau)N(t')|0\rangle$

- Matrix element of the axial current between nucleon ground states
- Calculate a 3-point correlation function:
 - 2 independent time variables

$$(t_{\rm sep} = t' - t, \tau)$$

g_A from LQCD

- Matrix element of the axial current between nucleon ground states
- Calculate a 3-point correlation function:
 - * 2 independent time variables $(t_{
 m sep}=t'-t,\ au)$
 - Statistical noise increases
 rapidly with t_{sep}

g_A from LQCD

- Matrix element of the axial current between nucleon ground states
- Calculate a 3-point correlation function:
 - * 2 independent time variables $(t_{
 m sep}=t'-t,\ au)$
 - Statistical noise increases
 rapidly with t_{sep}
- Excited states contributions disappear at large (t_{sep},τ)

Different lattice discretizations and gauge configurations

Need to fit in 2 variables: increased systematics Should have a plateau at each t_{sep} if no exc. states

=20 **----**

Extracting g_A from LQCD data

Extracting g_A from LQCD data - extrapolations

SU(2) NNL(Ο baryon χΡΤ	$\epsilon_{\pi} = \frac{m_{\pi}}{4\pi F_{\pi}}$	$\epsilon_a^2 = \frac{1}{4\pi} \frac{a^2}{\omega_a^2}$	
m_{π}^2 analytic	$g_0 + c_2 \epsilon_\pi^2 + c_4 \epsilon_\pi^4$	1/1 /	1	
non-analytic	$-\epsilon_{\pi}^{2}(g_{0}+2g_{0}^{3})\ln(\epsilon_{\pi}^{2})+g_{0}c_{3}\epsilon_{\pi}^{3}$			
a^2 analytic	$a_2\epsilon_a^2 + b_4\epsilon_\pi^2\epsilon_a^2 + a_4\epsilon_a^4$			
NLO FV	$(8/3)\epsilon_{\pi}^{2}[g_{0}^{3}F_{1}(m_{\pi}L) + g_{0}F_{3}(m_{\pi}L)]$			
Try different ch	iral continuum and infinite volume extranc	olations av	veraged unde	

- ★ Try different chiral, continuum and infinite volume extrapolations, averaged under Bayes framework
- * Based on ChPT, MAEFT, and a Taylor expansion around the physical point
- ★ Fits with parameters that can not be constrained are neglected
- ★ Study stability of fits, including variations of Bayes priors, additional discretization effects and cutting data

- ★ Try different chiral, continuum and infinite volume extrapolations, averaged under Bayes framework
- ★ Based on ChPT, MAEFT, and a Taylor expansion around the physical point
- ★ Fits with parameters that can not be constrained are neglected
- ★ Study stability of fits, including variations of Bayes priors, additional discretization effects and cutting data

- ★ Try different chiral, continuum and infinite volume extrapolations, averaged under Bayes framework
- * Based on ChPT, MAEFT, and a Taylor expansion around the physical point
- ★ Fits with parameters that can not be constrained are neglected
- ★ Study stability of fits, including variations of Bayes priors, additional discretization effects and cutting data

NLO FV $(8/3)\epsilon_{\pi}^{2}[g_{0}^{3}F_{1}(m_{\pi}L) + g_{0}F_{3}(m_{\pi}L)]$

- ★ Try different chiral, continuum and infinite volume extrapolations, averaged under Bayes framework
- * Based on ChPT, MAEFT, and a Taylor expansion around the physical point
- ★ Fits with parameters that can not be constrained are neglected
- ★ Study stability of fits, including variations of Bayes priors, additional discretization effects and cutting data

Extrapolation stability

$$g_A^{\text{QCD}} = 1.2711(103)^s (39)^{\chi} (15)^a (19)^V (04)^I (55)^M$$

statistical	0.81%
chiral extrapolation	0.31%
$a \rightarrow 0$	0.12%
$L \to \infty$	0.15%
isospin	0.03%
model selection	0.43%
total	0.99%

$$g_A^{\text{QCD}} = 1.2711(103)^s (39)^{\chi} (15)^a (19)^V (04)^I (55)^M$$

Art by Bart-W. van Lith

LQCD neutron lifetime

 Use LQCD values of the axial coupling and the light quark mixing matrix element

$$\tau_n = \frac{4908.6(1.9)s}{|V_{ud}|^2(1+3g_A^2)}$$

[Czarnecki, Marciano and Sirlin, Phys. Rev. Lett. 120, 202002 (2018)]

$$|V_{ud}| = 0.97438(12)$$

[MILC, Phys.Rev. D90, 074509 (2014)]

 $g_A = 1.271(13)$

[CalLat Nature 558, 91-94 (2018), arxiv:1805.12130]

Art by Bart-W. van Lith

LQCD neutron lifetime

 Use LQCD values of the axial coupling and the light quark mixing matrix element

$$\tau_n = \frac{4908.6(1.9)s}{|V_{ud}|^2(1+3g_A^2)}$$

[Czarnecki, Marciano and Sirlin, Phys. Rev. Lett. 120, 202002 (2018)]

$$|V_{ud}| = 0.97438(12)$$

[MILC, Phys.Rev. D90, 074509 (2014)]

$$g_A = 1.271(13)$$

[CalLat Nature 558, 91-94 (2018), arxiv:1805.12130]

2018 Gordon Bell Finalist sc18.supercomputing.org/ presentation/? id=gb101&sess=sess467

Simulating the weak death of the neutron in a femtoscale universe with near-Exascale computing Evan Berkowitz, M.A. Clark, Arjun Gambhir, Ken McElvain, Amy Nicholson, Enrico Rinaldi, Pavlos Vranas, André Walker-Loud, Chia Cheng Chang, Bálint Joó, Thorsten Kurth, Kostas Orginos

Code development from Gordon Bell + initial Sierra Early Science time result. Increase 0.12 fm physical mass statistics by ~ 5x, 50% reduction in uncertainty. New 0.09 fm physical mass 322 configs x 4 sources. Preliminary update for $g_A = 1.2670(97)$ 23% reduction in uncertainty $\rightarrow 0.77\%$ relative error

Code development from Gordon Bell + initial Sierra Early Science time result. Increase 0.12 fm physical mass statistics by ~ 5x, 50% reduction in uncertainty. New 0.09 fm physical mass 322 configs x 4 sources. Preliminary update for $g_A = 1.2670(97)$ 23% reduction in uncertainty $\rightarrow 0.77\%$ relative error

Summary

- ✓ The neutron lifetime is showing a discrepancy of ~4σ between different experimental methods
- The Standard Model predicts a precise relation which allows us to obtain a theoretical value of the neutron lifetime using Lattice QCD nonperturbative calculations
- ✓ The first percent-level calculations of the nucleon axial coupling has been obtained this year, ahead of expectations <u>https://www.nature.com/</u> <u>articles/s41586-018-0161-8</u>
 - ✓ Statistical uncertainties ~0.8% can be reduced with the next generation of supercomputers (we "only" used the no. 7 and 33 of the June 2018 *top500* list of supercomputers: <u>https://www.top500.org/lists/2018/06/</u>)
 - ✓ A more accurate calculation at the physical point using the no. 1 and 3 top500 has been accepted as one of the six finalists in the Gordon Bell competition, recognizing outstanding achievement in high-performance computing (<u>https://awards.acm.org/bell</u>)

Software	References
METAQ	Berkowitz arXiv:1702.06122 <u>github.com/evanberkowitz/metaq</u> Berkowitz et al. EPJ (LATTICE2017) 175 09007 (2018)
chroma QDP++	Edwards and Joo (SciDAC, LHPC and UKQCD Collaborations) Nucl. Phys. Proc. Suppl 140, 832 (2005)
QUDA	Clark et al. Comput. Phys. Commun. 181 1517 (2010) Babich et al. Supercomputing 11, 70
hdf5 in QDP++	Kurth et al PoS LATTICE2014 045 (2015)
qmp	Chen, Edwards, and Watson et al. https://github.com/usqcd-software/qmp
	Berkowitz et al. FPJ (LATTICE2017) 175 09007 (2018)

mpi_jm McElvain et al. <u>https://github.com/kenmcelvain/mpi_jm/</u>

thank you

extra slides

background and more plots

Taylor in m_{π}

Taylor in $(m_{\pi})^2$

Different models for extrapolation

Fit	$\chi^2/{ m dof}$	$\mathcal{L}(D M_k)$	$P(M_k D)$	$P(g_A M_k)$
NNLO χ PT	0.727	22.734	0.033	1.273(19)
NNLO+ct χPT	0.726	22.729	0.033	1.273(19)
NLO Taylor ϵ_{π}^2	0.792	24.887	0.287	1.266(09)
NNLO Taylor ϵ_{π}^2	0.787	24.897	0.284	1.267(10)
NLO Taylor ϵ_{π}	0.700	24.855	0.191	1.276(10)
NNLO Taylor ϵ_{π}	0.674	24.848	0.172	1.280(14)
average				1.271(11)(06)

χΡΤ

Axial coupling, g_A

Axial coupling, g_A

 Describes the strength of the interaction between the weak axial current and the nucleon

Axial coupling, g_A

- Describes the strength of the interaction between the weak axial current and the nucleon
- Determines the nuclear potential as the coupling between pions and nucleons

- Describes the strength of the interaction between the weak axial current and the nucleon
- Determines the nuclear potential as the coupling between pions and nucleons
- Relates the nucleon spin to its contribution from light quarks

- Describes the strength of the interaction between the weak axial current and the nucleon
- Determines the nuclear potential as the coupling between pions and nucleons
- Relates the nucleon spin to its contribution from light quarks
- Fundamental property in lowenergy nuclear physics that dictates how the neutron decays (via β decay)

- Describes the strength of the interaction between the weak axial current and the nucleon
- Determines the nuclear potential as the coupling between pions and nucleons
- Relates the nucleon spin to its contribution from light quarks
- Fundamental property in lowenergy nuclear physics that dictates how the neutron decays (via β decay)

- Describes the strength of the interaction between the weak axial current and the nucleon
- Determines the nuclear potential as the coupling between pions and nucleons
- Relates the nucleon spin to its contribution from light quarks
- Fundamental property in lowenergy nuclear physics that dictates how the neutron decays (via β decay)
 - Very well determined experimentally ~0.2% (from angular correlations in cold neutron decays)

Practical implementation

[Bouchard, Chang, Kurt, Orginos, Walker-Loud, PRD96(014504) - arxiv:1612.06963]

$$\frac{\partial m_{\lambda}^{eff}(t,\tau)}{\partial \lambda}\Big|_{\lambda=0} = \frac{1}{\tau} \left[\frac{-\partial_{\lambda}C_{\lambda}(t+\tau)}{C(t+\tau)} - \frac{-\partial_{\lambda}C_{\lambda}(t)}{C(t)} \right]$$

Feynman-Hellmann propagator

$$= S_{FH}(y, x) = \sum S(y, z) \Gamma(z) S(z, x)$$

Practical implementation

[Bouchard, Chang, Kurt, Orginos, Walker-Loud, PRD96(014504) - arxiv:1612.06963]

$$\frac{\partial m_{\lambda}^{eff}(t,\tau)}{\partial \lambda}\Big|_{\lambda=0} = \frac{1}{\tau} \left[\frac{-\partial_{\lambda}C_{\lambda}(t+\tau)}{C(t+\tau)} - \frac{-\partial_{\lambda}C_{\lambda}(t)}{C(t)} \right]$$

Feynman-Hellmann propagator

$$= S_{FH}(y, x) = \sum_{z} S(y, z) \Gamma(z) S(z, x)$$

$$N_J(t) = \sum_{t'} \langle \Omega | T\{O(t)J(t')O^{\dagger}(0)\} | \Omega \rangle$$

3-pt function becomes a 2pt function with FH-prop

- ✓ Mixed Action (MA) Lattice QCD
 - tradeoff between
 "economical" gauge
 configurations and good
 precision

- ✓ Mixed Action (MA) Lattice QCD
 - tradeoff between
 "economical" gauge
 configurations and good
 precision

- ✓ Mixed Action (MA) Lattice QCD
 - tradeoff between
 "economical" gauge
 configurations and good
 precision

- ✓ Mixed Action (MA) Lattice QCD
 - tradeoff between
 "economical" gauge
 configurations and good
 precision
- ✓ <u>Good chiral symmetry</u> properties:
 - reduce sources of systematics (small lattice artifacts)
 - simplify treatment of the EFT needed to extrapolate to the continuum and physical pion limit

"valence" DWF

- ✓ Mixed Action (MA) Lattice QCD
 - tradeoff between
 "economical" gauge
 configurations and good
 precision
- ✓ Good chiral symmetry properties:
 - reduce sources of systematics (small lattice artifacts)
 - simplify treatment of the EFT needed to extrapolate to the continuum and physical pion limit

"valence" DWF

- ✓ Gradient flow smeared gauge links
 - parametrized by t_{gf}
- Reduces sources of residual chiral symmetry breaking
 - m_{res} is exponentially damped with L₅
 - Z_A has suppressed lattice spacing dependence and is close to unity
- ✓ Dependence on t_{gf} is removed when performing the continuum limit for physical observables

- ✓ Gradient flow smeared gauge links
 - parametrized by t_{gf}
- Reduces sources of residual chiral symmetry breaking
 - m_{res} is exponentially damped with L₅
 - Z_A has suppressed lattice spacing dependence and is close to unity
- ✓ Dependence on t_{gf} is removed when performing the continuum limit for physical observables

- ✓ Gradient flow smeared gauge links
 - parametrized by t_{gf}
- Reduces sources of residual chiral symmetry breaking
 - m_{res} is exponentially damped with L₅
 - Z_A has suppressed lattice spacing dependence and is close to unity
- ✓ Dependence on t_{gf} is removed when performing the continuum limit for physical observables

- ✓ Gradient flow smeared gauge links
 - parametrized by t_{gf}
- Reduces sources of residual chiral symmetry breaking
 - m_{res} is exponentially damped with L₅
 - Z_A has suppressed lattice spacing dependence and is close to unity

Improvement of statistical and extrapolation uncertainties

- ✓ Chiral and continuum extrapolation at various t_{gf} values:
 - 3 lattice spacings, 2 pion masses
 - include a² effects and NLO ChiralPT terms
 - negligible finite
 volume effects
- ✓ No dependence on t_{gf} and results are consistent with "world average" from FLAG

Benchmark calculation of meson decay constants

Extracting g_A from LQCD data

- Handle the next major source of systematic effects: excited states contamination.
- Based on the Feynman-Hellmann theorem

- Handle the next major source of systematic effects: excited states contamination.
- Based on the Feynman-Hellmann theorem
 - relates matrix elements to linear variations in the energy spectrum with respect to external source

$$\frac{\partial E_n}{\partial \lambda} = \langle n | H_\lambda | n \rangle$$
$$H = H_0 + \lambda H_\lambda$$

- Handle the next major source of systematic effects: excited states contamination.
- Based on the Feynman-Hellmann theorem
 - relates matrix elements to linear variations in the energy spectrum with respect to external source

$$\frac{\partial E_n}{\partial \lambda} = \langle n | H_\lambda | n \rangle$$
$$H = H_0 + \lambda H_\lambda$$

$$C_{\lambda}(t) = \langle \lambda | \hat{O}(t) \hat{O}^{\dagger}(0) | \lambda \rangle$$
$$= \frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S - S_{\lambda}} O(t) O^{\dagger}(0)$$

- Handle the next major source of systematic effects: excited states contamination.
- Based on the Feynman-Hellmann theorem
 - relates matrix elements to linear variations in the energy spectrum with respect to external source
 - rewording: relates a 3-point correlation function to a change in a 2-point function induced by an external source

$$\frac{\partial E_n}{\partial \lambda} = \langle n | H_\lambda | n \rangle$$
$$H = H_0 + \lambda H_\lambda$$

$$C_{\lambda}(t) = \langle \lambda | \hat{O}(t) \hat{O}^{\dagger}(0) | \lambda \rangle$$
$$= \frac{1}{\mathcal{Z}_{\lambda}} \int D\Phi e^{-S - S_{\lambda}} O(t) O^{\dagger}(0)$$

$$-\frac{\partial C_{\lambda}}{\partial \lambda} = \frac{\partial_{\lambda} \mathcal{Z}_{\lambda}}{\mathcal{Z}_{\lambda}} C_{\lambda}(t) + \frac{1}{\mathcal{Z}_{\lambda}} \int D\Phi e^{-S-S_{\lambda}} \int d^{4}x' j(x') \ \mathcal{O}(t)\mathcal{O}^{\dagger}(0)$$

$$-\frac{\partial C_{\lambda}(t)}{\partial \lambda}\Big|_{\lambda=0} = -C_{\lambda}(t) \int d^{4}x' \langle \Omega | j(x') | \Omega \rangle + \int dt' \langle \Omega | T \{ \mathcal{O}(t) J(t') \mathcal{O}^{\dagger}(0) \} | \Omega \rangle$$

- Handle the next major source of systematic effects: excited states contamination.
- Based on the Feynman-Hellmann theorem
 - relates matrix elements to linear variations in the energy spectrum with respect to external source
 - rewording: relates a 3-point correlation function to a change in a 2-point function induced by an external source

$$\frac{\partial E_n}{\partial \lambda} = \langle n | H_\lambda | n \rangle$$
$$H = H_0 + \lambda H_\lambda$$

$$C_{\lambda}(t) = \langle \lambda | \hat{O}(t) \hat{O}^{\dagger}(0) | \lambda \rangle$$
$$= \frac{1}{\mathcal{Z}_{\lambda}} \int D\Phi e^{-S - S_{\lambda}} O(t) O^{\dagger}(0)$$

$$-\frac{\partial C_{\lambda}}{\partial \lambda} = \frac{\partial_{\lambda} \mathcal{Z}_{\lambda}}{\mathcal{Z}_{\lambda}} C_{\lambda}(t) + \frac{1}{\mathcal{Z}_{\lambda}} \int D\Phi e^{-S-S_{\lambda}} \int d^{4}x' j(x') \ \mathcal{O}(t)\mathcal{O}^{\dagger}(0)$$

$$\begin{split} -\frac{\partial C_{\lambda}(t)}{\partial \lambda}\Big|_{\lambda=0} &= -C_{\lambda}(t) \int d^{4}x' \langle \Omega | j(x') | \Omega \rangle \\ &+ \int dt' \langle \Omega | T \{ \mathcal{O}(t) J(t') \mathcal{O}^{\dagger}(0) \} | \Omega \rangle \end{split}$$

- Handle the next major source of systematic effects: excited states contamination.
- Based on the Feynman-Hellmann theorem
 - relates matrix elements to linear variations in the energy spectrum with respect to external source
 - rewording: relates a 3-point correlation function to a change in a 2-point function induced by an external source

$$\frac{\partial E_n}{\partial \lambda} = \langle n | H_\lambda | n \rangle$$
$$H = H_0 + \lambda H_\lambda$$

$$\begin{split} C_{\lambda}(t) &= \langle \lambda | \hat{O}(t) \hat{O}^{\dagger}(0) | \lambda \rangle \\ &= \frac{1}{Z_{\lambda}} \int D \Phi e^{-S - S_{\lambda}} O(t) O^{\dagger}(0) \\ - \frac{\partial C_{\lambda}}{\partial \lambda} &= \frac{\partial_{\lambda} Z_{\lambda}}{Z_{\lambda}} C_{\lambda}(t) + \frac{1}{Z_{\lambda}} \int D \Phi e^{-S - \delta_{\lambda}} \int d^{4}x' j(x') \ \mathcal{O}(t) \mathcal{O}^{\dagger}(0) \\ &- \frac{\partial C_{\lambda}(t)}{\partial \lambda} \Big|_{\lambda=0} = - C_{\lambda}(t) \int d^{4}x' \langle \Omega | j(x') | \Omega \rangle \\ &+ \int dt' \langle \Omega | T \{ \mathcal{O}(t) J(t') \mathcal{O}^{\dagger}(0) \} | \Omega \rangle \end{split}$$

- Handle the next major source of systematic effects: excited states contamination.
- Based on the Feynman-Hellmann theorem
 - relates matrix elements to linear variations in the energy spectrum with respect to external source
 - rewording: relates a 3-point correlation function to a change in a 2-point function induced by an external source

$$\frac{\partial E_n}{\partial \lambda} = \langle n | H_\lambda | n \rangle$$
$$H = H_0 + \lambda H_\lambda$$

$$\begin{split} C_{\lambda}(t) &= \langle \lambda | \hat{O}(t) \hat{O}^{\dagger}(0) | \lambda \rangle \\ &= \frac{1}{Z_{\lambda}} \int D \Phi e^{-S - S_{\lambda}} O(t) O^{\dagger}(0) \\ - \frac{\partial C_{\lambda}}{\partial \lambda} &= \frac{\partial_{\lambda} Z_{\lambda}}{Z_{\lambda}} C_{\lambda}(t) + \frac{1}{Z_{\lambda}} \int D \Phi e^{-S - S_{\lambda}} \int d^{4}x' j(x') \ \mathcal{O}(t) \mathcal{O}^{\dagger}(0) \\ &- \frac{\partial C_{\lambda}(t)}{\partial \lambda} \Big|_{\lambda = 0} = -C_{\lambda}(t) \int d^{4}x' \langle \Omega | j(x') | \Omega \rangle \\ &+ \int dt' \langle \Omega | T \{ \mathcal{O}(t) J(t') \mathcal{O}^{\dagger}(0) \} | \Omega \rangle \end{split}$$

- Handle the next major source of systematic effects: excited states contamination.
- Based on the Feynman-Hellmann theorem
 - relates matrix elements to linear variations in the energy spectrum with respect to external source
 - rewording: relates a 3-point correlation function to a change in a 2-point function induced by an external source

$$\frac{\partial E_n}{\partial \lambda} = \langle n | H_\lambda | n \rangle$$
$$H = H_0 + \lambda H_\lambda$$

$$\begin{split} C_{\lambda}(t) &= \langle \lambda | \hat{O}(t) \hat{O}^{\dagger}(0) | \lambda \rangle \\ &= \frac{1}{Z_{\lambda}} \int D \Phi e^{-S - S_{\lambda}} O(t) O^{\dagger}(0) \\ - \frac{\partial C_{\lambda}}{\partial \lambda} &= \frac{\partial_{\lambda} Z_{\lambda}}{Z_{\lambda}} C_{\lambda}(t) + \frac{1}{Z_{\lambda}} \int D \Phi e^{-S - S_{\lambda}} \int d^{4}x' j(x') \ \mathcal{O}(t) \mathcal{O}^{\dagger}(0) \\ &- \frac{\partial C_{\lambda}(t)}{\partial \lambda} \Big|_{\lambda = 0} = -C_{\lambda}(t) \int d^{4}x' \langle \Omega | j(x') | \Omega \rangle \\ &+ \langle dt' \langle \Omega | T \{ \mathcal{O}(t) J(t') \mathcal{O}^{\dagger}(0) \} | \Omega \rangle \end{split}$$

- Handle the next major source of systematic effects: excited states contamination.
- Based on the Feynman-Hellmann theorem
 - relates matrix elements to linear variations in the energy spectrum with respect to external source
 - rewording: relates a 3-point correlation function to a change in a 2-point function induced by an external source
 - related to the background field method (but no need for multiple field values) [NPLQCD arxiv:1610.04545]

$$\frac{\partial E_n}{\partial \lambda} = \langle n | H_\lambda | n \rangle$$
$$H = H_0 + \lambda H_\lambda$$

$$\begin{split} C_{\lambda}(t) &= \langle \lambda | \hat{O}(t) \hat{O}^{\dagger}(0) | \lambda \rangle \\ &= \frac{1}{Z_{\lambda}} \int D \Phi e^{-S - S_{\lambda}} O(t) O^{\dagger}(0) \\ - \frac{\partial C_{\lambda}}{\partial \lambda} &= \frac{\partial_{\lambda} Z_{\lambda}}{Z_{\lambda}} C_{\lambda}(t) + \frac{1}{Z_{\lambda}} \int D \Phi e^{-S - \Omega_{\lambda}} \int d^{4}x' j(x') \ \mathcal{O}(t) \mathcal{O}^{\dagger}(0) \\ &- \frac{\partial C_{\lambda}(t)}{\partial \lambda} \Big|_{\lambda = 0} = -C_{\lambda}(t) \int d^{4}x' \langle \Omega | j(x') | \Omega \rangle \\ &+ \langle dt' \langle \Omega | T \{ \mathcal{O}(t) J(t') \mathcal{O}^{\dagger}(0) \} | \Omega \rangle \end{split}$$

References related to the new method

Similar methods (other FH / GEVP):

- J. Bulava et. al. JHEP 01,140 (2012)
- F. Bernardoni et. al. Phys. Lett. B740, 278-284 (2015)
- A.J. Chambers et. al. Phys. Rev. D 90, 014510
- A.J. Chambers et. al. Phys. Rev. D 92, 114517
- M.J. Savage *et. al.* Phys. Rev. Lett. 119, 062002 **Similar fit function:**
- S. Capitani et. al. Phys. Rev. D 86, 074502

Similar propagator construction:

- L. Maiani et. al. Nucl. Phys. B293 (1987)
- G.M. de Divitiis et. al. Phys. Lett. B718 (2012)

Lattice QCD - basics

- Discretize space and time
 - lattice spacing "a"
 - lattice size "L"
- Keep all d.o.f. of the theory
 - not a model!
 - no simplifications
- Amenable to numerical methods
 - Monte Carlo sampling
 - use supercomputers
- Precisely quantifiable and improvable errors
 - Systematic
 - Statistical

[KEK-Japan]

Lattice QCD - basics

