First-principles QCD calculation of the neutron lifetime

Enrico Rinaldi

Jefferson Lab

14. University

Berkeley David Brantley, Chia Cheng Chang, Ken McElvain, LBL André Walker-Loud

RBRC ER

FZJ Evan Berkowitz
JLab Bálint Jóo
Liverepooi oi Liverpool Nicolas Garron
LNL Pavlos Vranas
Arjun Gambhir
NERSC Thorsten Kurth
UNC Amy Nicholson
Henry Monge Camacho
nVidia Kate Clark

collaboration (Cal-ifornia Lat-tice)

Glasgow Chris Bouchard
INT Chris Monahan
William \& Mary

Kostas Orginos

Neutron Lifetime Measurements

$$
\tau_{n}^{\mathrm{beam}}=888.0 \pm 2.0 \mathrm{~s}
$$

Neutron lifetime "puzzle"

$$
\tau_{n}^{\text {bottle }}=879.6 \pm 0.6 \mathrm{~s}
$$

Serebrov et al. Phys. Rev. C 97 (055503) 2018
Weighted average
879.5 ± 0.8 (error scaled by 1.5)

* The discrepancy of $\sim 4 \sigma$ between different methods is still unresolved.
* Experiments are trying to reduce all their systematics and provide robust estimates for their uncertainties
* Neutron decays to "dark" or "exotic" particles have been invoked to explain the discrepancy
[Fornal\&Grinstein, PRL120(191801)2018]

Exotic decays of the neutron

neutron
 proton

Exotic decays of the neutron

Exotic decays of the neutron

Exotic decays of the neutron

Exotic decays of the neutron

proton

"bottle"
method also
accounts for this
or

+ ??
* Experiments are already putting constraints on decays including photons and invisible particles
* Theorists are putting bounds on exotic decays by using neutron stars observations
* What else can we do?

Neutron beta decay

- In the Standard Model, beta decay is driven by the electroweak sector
- The master formula includes the quark mixing matrix element, the neutron lifetime and the axial coupling:

Neutron beta decay

- In the Standard Model, beta decay is driven by the electroweak sector
* The master formula includes the quark mixing matrix element, the neutron lifetime and the axial coupling:

Neutron beta decay

- In the Standard Model, beta decay is driven by the electroweak sector
- The master formula includes the quark mixing matrix element, the neutron lifetime and the axial coupling:

[Czarnecki, Marciano and Sirlin, Phys. Rev. Lett. 120, 202002 (2018)]

Neutron beta decay

- In the Standard Model, beta decay is driven by the electroweak sector
- The master formula includes the quark mixing matrix element, the neutron lifetime and the axial coupling:

[Czarnecki, Marciano and Sirlin, Phys. Rev. Lett. 120, 202002 (2018)]

Challenges in LQCD

Challenges in LQCD

- it is a lattice QCD calculation (requires access to HPC) 상

Challenges in LQCD

- it is a lattice QCD calculation (requires access to HPC) 상
- need to carefully understand all the systematic errors

Challenges in LQCD

- it is a lattice QCD calculation (requires access to HPC) 상
- need to carefully understand all the systematic errors
- continuum extrapolation (always!)
$a \rightarrow 0$

Challenges in LQCD

- it is a lattice QCD calculation (requires access to HPC) 상
- need to carefully understand all the systematic errors
- continuum extrapolation (always!)
$a \rightarrow 0$
- infinite volume extrapolation (always!)
$V \rightarrow \infty$

Challenges in LQCD

- it is a lattice QCD calculation (requires access to HPC) 상
- need to carefully understand all the systematic errors
- continuum extrapolation (always!) $a \rightarrow 0$
- infinite volume extrapolation (always!)
$V \rightarrow \infty$
- physical pion extrapolation (if any)

$$
m_{\pi} \rightarrow m_{\pi}^{\text {phys. }}
$$

Challenges in LQCD

- it is a lattice QCD calculation (requires access to HPC) 상
- need to carefully understand all the systematic errors
- continuum extrapolation (always!) $a \rightarrow 0$
- infinite volume extrapolation (always!)
$V \rightarrow \infty$
- physical pion extrapolation (if any)

$$
m_{\pi} \rightarrow m_{\pi}^{\text {phys. }}
$$

- effects due to excited states contaminations (tricky)

Challenges in LQCD

- it is a lattice QCD calculation (requires access to HPC) 상
- need to carefully understand all the systematic errors
- continuum extrapolation (always!)

$$
a \rightarrow 0
$$

- infinite volume extrapolation (always!)
$V \rightarrow \infty$
- physical pion extrapolation (if any) $m_{\pi} \rightarrow m_{\pi}^{\text {phys. }}$
- effects due to excited states contaminations (tricky)

Challenges in LQCD

- it is a lattice QCD calculation (requires access to HPC) 상
- need to carefully understand all the systematic errors
- continuum extrapolation (always!) $a \rightarrow 0$
- infinite volume extrapolation (always!)
$V \rightarrow \infty$
- physical pion extrapolation (if any) $m_{\pi} \rightarrow m_{\pi}^{\text {phys. }}$
- effects due to excited states contaminations (tricky)

Challenging systematics

Exponentially bad signal-to-noise problem

Challenging systematics

Lattice QCD gauge configurations

HISQ gauge configuration parameters							valence parameters							
abbr.	$N_{\text {cfg }}$	volume	$\begin{gathered} \sim a \\ {[\mathrm{fm}]} \end{gathered}$	m_{l} / m_{s}	$\begin{gathered} \sim m_{\pi_{5}} \\ {[\mathrm{MeV}]} \end{gathered}$	$\sim m_{\pi_{5}} L$	$N_{\text {src }}$	L_{5} / a	$a M_{5}$	b_{5}	c_{5}	$a m_{l}^{\text {val. }}$	$\sigma_{\text {smr }}$	$N_{\text {smr }}$
a15m400	1000	$16^{3} \times 48$	0.15	0.334	400	4.8	8	12	1.3	1.5	0.5	0.0278	3.0	30
a15m350	1000	$16^{3} \times 48$	0.15	0.255	350	4.2	16	12	1.3	1.5	0.5	0.0206	3.0	30
a15m310	1960	$16^{3} \times 48$	0.15	0.2	310	3.8	24	12	1.3	1.5	0.5	0.01580	4.2	60
a15m220	1000	$24^{3} \times 48$	0.15	0.1	220	4.0	12	16	1.3	1.75	0.75	0.00712	4.5	60
a15m130	1000	$32^{3} \times 48$	0.15	0.036	130	3.2	5	24	1.3	2.25	1.25	0.00216	4.5	60
a12m400	1000	$24^{3} \times 64$	0.12	0.334	400	5.8	8	8	1.2	1.25	0.25	0.02190	3.0	30
a12m350	1000	$24^{3} \times 64$	0.12	0.255	350	5.1	8	8	1.2	1.25	0.25	0.01660	3.0	30
a12m310	1053	$24^{3} \times 64$	0.12	0.2	310	4.5	8	8	1.2	1.25	0.25	0.01260	3.0	30
a12m220S	1000	$24^{3} \times 64$	0.12	0.1	220	3.2	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220	1000	$32^{3} \times 64$	0.12	0.1	220	4.3	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220L	1000	$40^{3} \times 64$	0.12	0.1	220	5.4	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m130	1000	$48^{3} \times 64$	0.12	0.036	130	3.9	3	20	1.2	2.0	1.0	0.00195	7.0	150
a09m400	1201	$32^{3} \times 64$	0.09	0.335	400	5.8	8	6	1.1	1.25	0.25	0.0160	3.5	45
a09m350	1201	$32^{3} \times 64$	0.09	0.255	350	5.1	8	6	1.1	1.25	0.25	0.0121	3.5	45
a09m310	784	$32^{3} \times 96$	0.09	0.2	310	4.5	8	6	1.1	1.25	0.25	0.00951	7.5	167
a09m220	1001	$48^{3} \times 96$	0.09	0.1	220	4.7	6	8	1.1	1.25	0.25	0.00449	8.0	150

Lattice QCD gauge configurations

HISQ gauge configuration parameters							valence parameters							
abbr.	$N_{\text {cfg }}$	volume	$\begin{gathered} \sim a \\ {[\mathrm{fm}]} \end{gathered}$	m_{l} / m_{s}	$\sim m_{\pi_{5}}$ [MeV]	$\sim m_{\pi_{5}} L$	$N_{\text {src }}$	L_{5} / a	$a M_{5}$	b_{5}	c_{5}	$a m_{l}^{\text {val. }}$	$\sigma_{\text {smr }}$	$N_{\text {smr }}$
a15m400	1000	$16^{3} \times 48$	0.15	0.334	400	4.8	8	12	1.3	1.5	0.5	0.0278	3.0	30
a15m350	1000	$16^{3} \times 48$	0.15	0.255	350	4.2	16	12	1.3	1.5	0.5	0.0206	3.0	30
a15m310	1960	$16^{3} \times 48$	0.15	0.2	310	3.8	24	12	1.3	1.5	0.5	0.01580	4.2	60
a15m220	1000	$24^{3} \times 48$	0.15	0.1	220	4.0	12	16	1.3	1.75	0.75	0.00712	4.5	60
a15m130	1000	$32^{3} \times 48$	0.15	0.036	130	3.2	5	24	1.3	2.25	1.25	0.00216	4.5	60
a12m400	1000	$24^{3} \times 64{ }^{1}$	0.12	0.334	400	5.8	8	8	1.2	1.25	0.25	0.02190	3.0	30
a12m350	1000	$24^{3} \times 64$	0.12	0.255	350	5.1	8	8	1.2	1.25	0.25	0.01660	3.0	30
a12m310	1053	$24^{3} \times 64$	0.12	0.2	310	4.5	8	8	1.2	1.25	0.25	0.01260	3.0	30
a12m220S	1000	$24^{3} \times 64$	0.12	0.1	220	3.2	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220	1000	$32^{3} \times 64$	0.12	0.1	220	4.3	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220L	1000	$40^{3} \times 64$	0.12	0.1	220	5.4	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m130	1000	$48^{3} \times 64$	0.12	0.036	130	3.9	3	20	1.2	2.0	1.0	0.00195	7.0	150
a09m400	1201	$32^{3} \times 64$	0.09	0.335	400	5.8	8	6	1.1	1.25	0.25	0.0160	3.5	45
a09m350	1201	$32^{3} \times 64$	0.09	0.255	350	5.1	8	6	1.1	1.25	0.25	0.0121	3.5	45
a09m310	784	$32^{3} \times 96$	0.09	0.2	310	4.5	8	6	1.1	1.25	0.25	0.00951	7.5	167
a 09 m 220	1001	$48^{3} \times 96$	0.09	0.1	220	4.7	6	8	1.1	1.25	0.25	0.00449	8.0	150

Lattice QCD gauge configurations

Lattice QCD gauge configurations

Lattice QCD gauge configurations

HISQ gauge configuration parameters							valence parameters							
abbr.	$N_{\text {cfg }}$	volume	$\begin{gathered} \sim a \\ {[\mathrm{fm}]} \end{gathered}$	m_{l} / m_{s}	$\sim m_{\pi_{5}}$ $[\mathrm{MeV}]$	$m_{\pi_{5}} L$	$N_{\text {src }}$	L_{5} / a	$a M_{5}$	b_{5}	c_{5}	$a m_{l}^{\text {val. }}$	$\sigma_{\text {smr }}$	$N_{\text {smr }}$
a15m400	1000	$16^{3} \times 48$	0.15	0.334	400	4.8	8	12	1.3	1.5	0.5	0.0278	3.0	30
a15m350	1000	$16^{3} \times 48$	0.15	0.255	350	4.2	16	12	1.3	1.5	0.5	0.0206	3.0	30
a15m310	1960	$16^{3} \times 48$	0.15	0.2	310	3.8	24	12	1.3	1.5	0.5	0.01580	4.2	60
a15m220	1000	$24^{3} \times 48$	0.15	0.1	220	4.0	12	16	1.3	1.75	0.75	0.00712	4.5	60
a15m130	1000	$32^{3} \times 48$	0.15	0.036	130	3.2	5	24	1.3	2.25	1.25	0.00216	4.5	60
a12m400	1000	$24^{3} \times 64$	0.12	0.334	400	5.8	8	8	1.2	1.25	0.25	0.02190	3.0	30
a12m350	1000	$24^{3} \times 64$	0.12	0.255	350	5.1	8	8	1.2	1.25	0.25	0.01660	3.0	30
a12m310	1053	$24^{3} \times 64$	0.12	0.2	310	4.5	8	8	1.2	1.25	0.25	0.01260	3.0	30
a12m220S	1000	$24^{3} \times 64$	0.12	0.1	220	3.2	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220	1000	$32^{3} \times 64$	0.12	0.1	220	4.3	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220L	1000	$40^{3} \times 64$	0.12	0.1	220	5.4	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m130	1000	$48^{3} \times 64$	0.12	0.036	130	3.9	3	20	1.2	2.0	1.0	0.00195	7.0	150
a09m400	1201	$32^{3} \times 64$	0.09	0.335	400	5.8	8	6	1.1	1.25	0.25	0.0160	3.5	45
a09m350	1201	$32^{3} \times 64$	0.09	0.255	350	5.1	8	6	1.1	1.25	0.25	0.0121	3.5	45
a09m310	784	$32^{3} \times 96$	0.09		310		8	6	1.1	1.25	0.25	0.00951	7.5	167
a09m220	1001	$48^{3} \times 96$	0.09	0.1	220	4.7	6	8	1.1	1.25	0.25	0.00449	8.0	150

16 ensembles with $\mathrm{N}_{\mathrm{f}}=2+1+1$ Highly Improved Staggered Quarks (HISQ) 5 pion masses, 3 lattice spacings, multiple volumes High statistics ensembles, publicly available

(1) SciDAC

g_{A} from LQCD

g_{A} from LQCD

\because Matrix element of the axial current between nucleon ground states

g_{A} from LQCD

\because Matrix element of the axial current between nucleon ground states

g_{A} from LQCD

\because Matrix element of the axial current between nucleon ground states

$\langle 0| N(t) A_{\mu}(\tau) N\left(t^{\prime}\right)|0\rangle$

g_{A} from LQCD

$\langle 0| N(t) A_{\mu}(\tau) N\left(t^{\prime}\right)|0\rangle$

\because Matrix element of the axial current between nucleon ground states

* Calculate a 3-point correlation function:

g_{A} from LQCD

\because Matrix element of the axial current between nucleon ground states

* Calculate a 3-point correlation function:
$\div 2$ independent time variables

$$
\left(t_{\mathrm{sep}}=t^{\prime}-t, \tau\right)
$$

g_{A} from LQCD

\because Matrix element of the axial current between nucleon ground states

* Calculate a 3-point correlation function:
$\div 2$ independent time variables

$$
\left(t_{\mathrm{sep}}=t^{\prime}-t, \tau\right)
$$

* Statistical noise increases rapidly with $\mathrm{t}_{\text {sep }}$

g_{A} from LQCD

\because Matrix element of the axial current between nucleon ground states

* Calculate a 3-point correlation function:
$\div 2$ independent time variables

$$
\left(t_{\mathrm{sep}}=t^{\prime}-t, \tau\right)
$$

\% Statistical noise increases rapidly with $\mathrm{t}_{\text {sep }}$
※ Excited states contributions disappear at large ($\mathrm{t}_{\text {sep }}, \tau$)

Example of excited states contaminations

Different lattice discretizations and gauge configurations

[LHPC arXiv:1703.06703]

Example of excited states contaminations

Different lattice discretizations and gauge configurations

[LHPC arXiv:1703.06703]

Should have a plateau at each $t_{\text {sep }}$ if no exc. states

Example of excited states contaminations

Different lattice discretizations and gauge configurations

[LHPC arXiv:1703.06703]

Should have a plateau at each $t_{\text {sep }}$ if no exc. states

Example of excited states contaminations

Different lattice discretizations and gauge configurations

[LHPC arXiv:1703.06703]

Need to fit in 2 variables: increased systematics

Should have a plateau at each $t_{\text {sep }}$ if no exc. states

Improved method to reduce excited states

Improved method to reduce excited states

Improved method to reduce excited states

Improved method to reduce excited states

Simple functional form to isolate ground state at small times

Improved method to reduce excited states

\checkmark Only one time variable parametrizes exc. states

Simple functional form

 to isolate ground state at small times$=$ Reduced fitting systematics

- Extract exponentially better signal
\checkmark Improved method contains summation of vertex over all space-time:
- Improved statistical sampling

Extracting g_{A} from LQCD data

Extracting ga from LQCD data - extrapolations

Chiral and Continuum Extrapolations

SU(2) NNLO baryon xPT

 m_{π}^{2} analytic $\quad g_{0}+c_{2} \epsilon_{\pi}^{2}+c_{4} \epsilon_{\pi}^{4}$ non-analytic $\quad-\epsilon_{\pi}^{2}\left(g_{0}+2 g_{0}^{3}\right) \ln \left(\epsilon_{\pi}^{2}\right)+g_{0} c_{3} \epsilon_{\pi}^{3}$ a^{2} analytic $\quad a_{2} \epsilon_{a}^{2}+b_{4} \epsilon_{\pi}^{2} \epsilon_{a}^{2}+a_{4} \epsilon_{a}^{4}$$$
\text { NLO FV } \quad(8 / 3) \epsilon_{\pi}^{2}\left[g_{0}^{3} F_{1}\left(m_{\pi} L\right)+g_{0} F_{3}\left(m_{\pi} L\right)\right]
$$

* Try different chiral, continuum and infinite volume extrapolations, averaged under Bayes framework
* Based on ChPT, MAEFT, and a Taylor expansion around the physical point
* Fits with parameters that can not be constrained are neglected
\star Study stability of fits, including variations of Bayes priors, additional discretization effects and cutting data

Chiral and Continuum Extrapolations

SU(2) NNLO baryon XPT

m_{π}^{2} analytic $\quad g_{0}+c_{2} \epsilon_{\pi}^{2}+c_{4} \epsilon_{\pi}^{4}$
non-analytic $\quad-\epsilon_{\pi}^{2}\left(g_{0}+2 g_{0}^{3}\right) \ln \left(\epsilon_{\pi}^{2}\right)+g_{0} c_{3} \epsilon_{\pi}^{3}$
a^{2} analytic $\quad a_{2} \epsilon_{a}^{2}+b_{4} \epsilon_{\pi}^{2} \epsilon_{a}^{2}+a_{4} \epsilon_{a}^{4}$

$$
\text { NLO FV } \quad(8 / 3) \epsilon_{\pi}^{2}\left[g_{0}^{3} F_{1}\left(m_{\pi} L\right)+g_{0} F_{3}\left(m_{\pi} L\right)\right]
$$

* Try different chiral, continuum and infinite volume extrapolations, averaged under Bayes framework
* Based on ChPT, MAEFT, and a Taylor expansion around the physical point
* Fits with parameters that can not be constrained are neglected
\star Study stability of fits, including variations of Bayes priors, additional discretization effects and cutting data

Chiral and Continuum Extrapolations

SU(2) NNLO baryon XPT

m_{π}^{2} analytic $\quad g_{0}+c_{2} \epsilon_{\pi}^{2}+c_{4} \epsilon_{\pi}^{4}$
non-analytic $\quad-\epsilon_{\pi}^{2}\left(g_{0}+2 g_{0}^{3}\right) \ln \left(\epsilon_{\pi}^{2}\right)+g_{0} c_{3} \epsilon_{\pi}^{3}$
$\epsilon_{\pi}=\frac{m_{\pi}}{4 \pi F_{\pi}} \quad \epsilon_{a}^{2}=\frac{1}{4 \pi} \frac{a^{2}}{\omega_{0}^{2}}$
e.g. Taylor exp. in quark mass
a^{2} analytic $\quad a_{2} \epsilon_{a}^{2}+b_{4} \epsilon_{\pi}^{2} \epsilon_{a}^{2}+a_{4} \epsilon_{a}^{4}$

$$
\text { NLO FV } \quad(8 / 3) \epsilon_{\pi}^{2}\left[g_{0}^{3} F_{1}\left(m_{\pi} L\right)+g_{0} F_{3}\left(m_{\pi} L\right)\right]
$$

* Try different chiral, continuum and infinite volume extrapolations, averaged under Bayes framework
* Based on ChPT, MAEFT, and a Taylor expansion around the physical point
* Fits with parameters that can not be constrained are neglected
\star Study stability of fits, including variations of Bayes priors, additional discretization effects and cutting data

Chiral and Continuum Extrapolations

SU(2) NNLO baryon XPT

m_{π}^{2} analytic $\quad g_{0}+c_{2} \epsilon_{\pi}^{2}+c_{4} \epsilon_{\pi}^{4}$

$\epsilon_{\pi}=\frac{m_{\pi}}{4 \pi F_{\pi}}$

$$
\epsilon_{a}^{2}=\frac{1}{4 \pi} \frac{a^{2}}{\omega_{0}^{2}}
$$

non-analytic $\quad-\epsilon_{\pi}^{2}\left(g_{0}+2 g_{0}^{3}\right) \ln \left(\epsilon_{\pi}^{2}\right)+g_{0} c_{3} \epsilon_{\pi}^{3}$
e.g. Taylor exp. in quark mass
a^{2} analytic
$a_{2} \epsilon_{a}^{2}+b_{4} \epsilon_{\pi}^{2} \epsilon_{a}^{2}+a_{4} \epsilon_{a}^{4}$
NLO FV
$(8 / 3) \epsilon_{\pi}^{2}\left[g_{0}^{3} F_{1}\left(m_{\pi} L\right)+g_{0} F_{3}\left(m_{\pi} L\right)\right]$

* Try different chiral, continuum and infinite volume extrapolations, averaged under Bayes framework
* Based on ChPT, MAEFT, and a Taylor expansion around the physical point
* Fits with parameters that can not be constrained are neglected
\star Study stability of fits, including variations of Bayes priors, additional discretization effects and cutting data

Extrapolation stability

$$
g_{A}^{\mathrm{QCD}}=1.2711(103)^{s}(39)^{\chi}(15)^{a}(19)^{V}(04)^{I}(55)^{M}
$$

statistical	0.81%
chiral extrapolation	0.31%
$a \rightarrow 0$	0.12%
$L \rightarrow \infty$	0.15%
isospin	0.03%
model selection	0.43%
total	0.99%

$$
g_{A}^{\mathrm{QCD}}=1.2711(103)^{s}(39)^{\chi}(15)^{a}(19)^{V}(04)^{I}(55)^{M}
$$

statistical	0.81%
chiral extrapolation	0.31%
$a \rightarrow 0$	0.12%
$L \rightarrow \infty$	0.15%
isospin	0.03%
model selection	0.43%
total	0.99%

First percent-level * result is limited by statistics determination of g_{A} from LQCD

* new supercomputers help!
* all data is publicly available https://github.com/callat-qcd/project gA

LQCD neutron lifetime

- Use LQCD values of the axial coupling and the light quark mixing matrix element

$$
\tau_{n}=\frac{4908.6(1.9) s}{\left|V_{u d}\right|^{2}\left(1+3 g_{A}{ }^{2}\right)}
$$

[Czarnecki, Marciano and Sirlin, Phys. Rev. Lett. 120, 202002 (2018)]

$$
\left|V_{u d}\right|=0.97438(12)
$$

[mLLC, Phys.Rev. D90, 077500 (2014)]

$$
g_{A}=1.271(13)
$$

[CalLat Nature 558, 91-94 (2018), arxiv:1805.12130]

LQCD neutron lifetime

- Use LQCD values of the axial coupling and the light quark mixing matrix element

$$
\tau_{n}=\frac{4908.6(1.9) s}{\left|V_{u d}\right|^{2}\left(1+3 g_{A}{ }^{2}\right)}
$$

[Czarnecki, Marciano and Sirlin, Phys. Rev. Lett. 120, 202002 (2018)]

$$
\left|V_{u d}\right|=0.97438(12)
$$

[mLLC, Phys.Rev. D90, 077509 (2014)]

$$
g_{A}=1.271(13)
$$

[CalLat Nature 558, 91-94 (2018), arxiv:1805.12130]

$\tau_{n}=884(15) s$

2018 Gordon Bell Finalist sc18.supercomputing.org/ presentation/?
id=gb101\&sess=sess467

Simulating the weak death of the neutron in a femtoscale universe with near-Exascale computing Evan Berkowitz, M.A. Clark, Arjun Gambhir, Ken McElvain, Amy Nicholson, Enrico Rinaldi, Pavlos Vranas, André Walker-Loud, Chia Cheng Chang, Bálint Joó, Thorsten Kurth, Kostas Orginos

Code development from Gordon Bell + initial Sierra Early Science time result. Increase 0.12 fm physical mass statistics by $\sim 5 x, 50 \%$ reduction in uncertainty. New 0.09 fm physical mass 322 configs $\times 4$ sources.
Preliminary update for $\mathrm{g}_{\mathrm{A}}=1.2670(97)$ 23% reduction in uncertainty $\rightarrow 0.77 \%$ relative error

Code development from Gordon Bell + initial Sierra Early Science time result. Increase 0.12 fm physical mass statistics by $\sim 5 x, 50 \%$ reduction in uncertainty. New 0.09 fm physical mass 322 configs $\times 4$ sources.
Preliminary update for $g_{A}=1.2670(97)$ 23% reduction in uncertainty $\rightarrow 0.77 \%$ relative error

Summary

\checkmark The neutron lifetime is showing a discrepancy of $\sim 4 \sigma$ between different experimental methods
\checkmark The Standard Model predicts a precise relation which allows us to obtain a theoretical value of the neutron lifetime using Lattice QCD nonperturbative calculations
\checkmark The first percent-level calculations of the nucleon axial coupling has been obtained this year, ahead of expectations https://www.nature.com/ articles/s41586-018-0161-8
\checkmark Statistical uncertainties $\sim 0.8 \%$ can be reduced with the next generation of supercomputers (we "only" used the no. 7 and 33 of the June 2018 top500 list of supercomputers: https:// www.top500.org/lists/2018/061)
\checkmark A more accurate calculation at the physical point using the no. 1 and 3 top500 has been accepted as one of the six finalists in the Gordon Bell competition, recognizing outstanding achievement in high-performance computing (https://awards.acm.org/bell)

thank you

extra slides

background and more plots

Taylor in m_{π}

Taylor in $\left(m_{\pi}\right)^{2}$

XPT

Different models for extrapolation

Fit				
$\chi^{2} /$ dof	$\mathcal{L}\left(D \mid M_{k}\right)$	$P\left(M_{k} \mid D\right)$	$P\left(g_{A} \mid M_{k}\right)$	
NNLO χ PT	0.727	22.734	0.033	$1.273(19)$
NNLO+ct χ PT	0.726	22.729	0.033	$1.273(19)$
NLO Taylor ϵ_{π}^{2}	0.792	24.887	0.287	$1.266(09)$
NNLO Taylor ϵ_{π}^{2}	0.787	24.897	0.284	$1.267(10)$
NLO Taylor ϵ_{π}	0.700	24.855	0.191	$1.276(10)$
NNLO Taylor ϵ_{π}	0.674	24.848	0.172	$1.280(14)$
average				
			$1.271(11)(06)$	

Axial coupling, g_{A}

Axial coupling, g_{A}

* Describes the strength of the interaction between the weak axial current and the nucleon

Axial coupling, g_{A}

* Describes the strength of the interaction between the weak axial current and the nucleon
\% Determines the nuclear potential as the coupling between pions and nucleons

Axial coupling, gA

\because Describes the strength of the interaction between the weak axial current and the nucleon
\% Determines the nuclear potential as the coupling between pions and nucleons

Axial coupling, gA

\because Describes the strength of the interaction between the weak axial current and the nucleon
\% Determines the nuclear potential as the coupling between pions and nucleons

* Relates the nucleon spin to its contribution from light quarks
\because Fundamental property in lowenergy nuclear physics that dictates how the neutron decays (via β decay)

Axial coupling, gA

\because Describes the strength of the interaction between the weak axial current and the nucleon
\% Determines the nuclear potential as the coupling between pions and nucleons

* Relates the nucleon spin to its contribution from light quarks
\because Fundamental property in lowenergy nuclear physics that dictates how the neutron decays (via β decay)

Axial coupling, gA

* Describes the strength of the interaction between the weak axial current and the nucleon
\% Determines the nuclear potential as the coupling between pions and nucleons
* Relates the nucleon spin to its contribution from light quarks
\because Fundamental property in lowenergy nuclear physics that dictates how the neutron decays (via β decay)
* Very well determined experimentally $\sim 0.2 \%$ (from angular correlations in cold neutron decays)

Practical implementation

$$
\left.\frac{\partial m_{\lambda}^{e f f}(t, \tau)}{\partial \lambda}\right|_{\lambda=0}=\frac{1}{\tau}\left[\frac{-\partial_{\lambda} C_{\lambda}(t+\tau)}{C(t+\tau)}-\frac{-\partial_{\lambda} C_{\lambda}(t)}{C(t)}\right]
$$

Feynman-Hellmann propagator

$$
\mathcal{O}=S_{F H}(y, x)=\sum_{z} S(y, z) \Gamma(z) S(z, x)
$$

Practical implementation

$$
\left.\frac{\partial m_{\lambda}^{e f f}(t, \tau)}{\partial \lambda}\right|_{\lambda=0}=\frac{1}{\tau}\left[\frac{-\partial_{\lambda} C_{\lambda}(t+\tau)}{C(t+\tau)}-\frac{-\partial_{\lambda} C_{\lambda}(t)}{C(t)}\right]
$$

Feynman-Hellmann propagator

$$
=S_{F H}(y, x)=\sum_{z} S(y, z) \Gamma(z) S(z, x)
$$

$$
N_{J}(t)=\sum_{t^{\prime}}\langle\Omega| T\left\{O(t) J\left(t^{\prime}\right) O^{\dagger}(0)\right\}|\Omega\rangle
$$

3-pt function becomes a 2pt function with FH-prop

Smeared Möbius Domain Wall fermions - I

\checkmark Mixed Action (MA) Lattice QCD

- tradeoff between
"economical" gauge
configurations and good precision

Smeared Möbius Domain Wall fermions - I

\checkmark Mixed Action (MA) Lattice QCD

- tradeoff between
"economical" gauge configurations and good precision

HISQ in the "sea"

Smeared Möbius Domain Wall fermions - I

\checkmark Mixed Action (MA) Lattice QCD

- tradeoff between "economical" gauge configurations and good precision
"valence" DWF

HISQ in the "sea"

Smeared Möbius Domain Wall fermions - ।

\checkmark Mixed Action (MA) Lattice QCD

- tradeoff between "economical" gauge configurations and good precision
\checkmark Good chiral symmetry properties:
- reduce sources of systematics (small lattice artifacts)
- simplify treatment of the EFT needed to extrapolate to the continuum and physical pion limit

Smeared Möbius Domain Wall fermions - I

\checkmark Mixed Action (MA) Lattice QCD

- tradeoff between

"valence" DWF

 "economical" gauge configurations and good precision

HISQ in the "sea"

Smeared Möbius Domain Wall fermions - II

\checkmark Gradient flow smeared gauge links

- parametrized by $\mathrm{tgf}_{\mathrm{gf}}$
\checkmark Reduces sources of residual chiral symmetry breaking
- mres is exponentially damped with L_{5}
- Z_{A} has suppressed lattice spacing dependence and is
 close to unity
\checkmark Dependence on $t_{g f}$ is removed when performing the continuum limit for physical observables

Smeared Möbius Domain Wall fermions - II

\checkmark Gradient flow smeared gauge links

- parametrized by t_{gf}
\checkmark Reduces sources of residual chiral symmetry breaking
$\Rightarrow m_{\text {res }}$ is exponentially damped with L_{5}
- Z_{A} has suppressed lattice spacing dependence and is
 close to unity
\checkmark Dependence on $t_{g f}$ is removed when performing the continuum limit for physical observables

Smeared Möbius Domain Wall fermions - II

\checkmark Gradient flow smeared gauge links

- parametrized by tgf
\checkmark Reduces sources of residual chiral symmetry breaking
$\Rightarrow m_{r e s}$ is exponentially damped with L_{5}
- Z_{A} has suppressed lattice spacing dependence and is close to unity

\checkmark Dependence on $t_{g f}$ is removed when performing the continuum limit for physical observables

Smeared Möbius Domain Wall fermions - II

\checkmark Gradient flow smeared gauge links

- parametrized by tgf
\checkmark Reduces sources of residual chiral symmetry breaking
\Rightarrow mres is exponentially damped with L_{5}
- Z_{A} has suppressed lattice spacing dependence and is
 close to unity

Improvement of statistical and extrapolation uncertainties

Smeared Möbius Domain Wall fermions - III

\checkmark Chiral and continuum extrapolation at various t_{gf} values:

- 3 lattice spacings, 2 pion masses
- include a^{2} effects and NLO ChiralPT terms
- negligible finite volume effects
\checkmark No dependence on t_{gf} and results are consistent with "world average" from FLAG

Extracting ga from LQCD data

New method for matrix elements

* Handle the next major source of systematic effects: excited states contamination.
\therefore Based on the Feynman-Hellmann theorem

New method for matrix elements

* Handle the next major source of systematic effects: excited states contamination.
\therefore Based on the Feynman-Hellmann theorem
*relates matrix elements to linear variations in the energy spectrum with respect to external source

$$
\begin{aligned}
& \frac{\partial E_{n}}{\partial \lambda}=\langle n| H_{\lambda}|n\rangle \\
& H=H_{0}+\lambda H_{\lambda}
\end{aligned}
$$

New method for matrix elements

* Handle the next major source of systematic effects: excited states contamination.
\therefore Based on the Feynman-Hellmann theorem
*relates matrix elements to linear variations in the energy spectrum with respect to external source

$$
\begin{aligned}
& \frac{\partial E_{n}}{\partial \lambda}=\langle n| H_{\lambda}|n\rangle \\
& H=H_{0}+\lambda H_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
C_{\lambda}(t) & =\langle\lambda| \hat{O}(t) \hat{O}^{\dagger}(0)|\lambda\rangle \\
& =\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S-S_{\lambda}} O(t) O^{\dagger}(0)
\end{aligned}
$$

New method for matrix elements

* Handle the next major source of systematic effects: excited states contamination.
* Based on the Feynman-Hellmann theorem
*relates matrix elements to linear variations in the energy spectrum with respect to external source
- rewording: relates a 3-point correlation function to a change in correlation function to a change in
a 2-point function induced by an external source

$$
\begin{aligned}
-\left.\frac{\partial C_{\lambda}(t)}{\partial \lambda}\right|_{\lambda=0}= & -C_{\lambda}(t) \int d^{4} x^{\prime}\langle\Omega| j\left(x^{\prime}\right)|\Omega\rangle \\
& +\int d t^{\prime}\langle\Omega| T\left\{\mathcal{O}(t) J\left(t^{\prime}\right) \mathcal{O}^{\dagger}(0)\right\}|\Omega\rangle
\end{aligned}
$$

$$
\begin{aligned}
C_{\lambda}(t) & =\langle\lambda| \hat{O}(t) \hat{O}^{\dagger}(0)|\lambda\rangle \\
& =\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S-S_{\lambda}} O(t) O^{\dagger}(0)
\end{aligned}
$$

$$
-\frac{\partial C_{\lambda}}{\partial \lambda}=\frac{\partial_{\lambda} \mathcal{Z}_{\lambda}}{\mathcal{Z}_{\lambda}} C_{\lambda}(t)+\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S-S_{\lambda}} \int d^{4} x^{\prime} j\left(x^{\prime}\right) \mathcal{O}(t) \mathcal{O}^{\dagger}(0)
$$

$$
\begin{aligned}
& \frac{\partial E_{n}}{\partial \lambda}=\langle n| H_{\lambda}|n\rangle \\
& H=H_{0}+\lambda H_{\lambda}
\end{aligned}
$$

New method for matrix elements

* Handle the next major source of systematic effects: excited states contamination.
\therefore Based on the Feynman-Hellmann theorem
*relates matrix elements to linear variations in the energy spectrum with respect to external source
- rewording: relates a 3-point correlation function to a change in a 2-point function induced by an external source

$$
\begin{aligned}
& \frac{\partial E_{n}}{\partial \lambda}=\langle n| H_{\lambda}|n\rangle \\
& H=H_{0}+\lambda H_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
C_{\lambda}(t) & =\langle\lambda| \hat{O}(t) \hat{O}^{\dagger}(0)|\lambda\rangle \\
& =\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S-S_{\lambda}} O(t) O^{\dagger}(0)
\end{aligned}
$$

$$
-\frac{\partial C_{\lambda}}{\partial \lambda}=\frac{\partial_{\lambda} \mathcal{Z}_{\lambda}}{\mathcal{Z}_{\lambda}} C_{\lambda}(t)+\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S-S_{\lambda}} \int d^{4} x^{\prime} j\left(x^{\prime}\right) \mathcal{O}(t) \mathcal{O}^{\dagger}(0)
$$

$$
\begin{aligned}
-\left.\frac{\partial C_{\lambda}(t)}{\partial \lambda}\right|_{\lambda=0}= & -C_{\lambda}(t) \int d^{4} x^{\prime}\langle\Omega| j\left(x^{\prime}\right)|\Omega\rangle \\
& +\int d t^{\prime}\langle\Omega| T\left\{\mathcal{O}(t) J\left(t^{\prime}\right) \mathcal{O}^{\dagger}(0)\right\}|\Omega\rangle
\end{aligned}
$$

New method for matrix elements

\% Handle the next major source of systematic effects: excited states contamination.
\therefore Based on the Feynman-Hellmann theorem
*relates matrix elements to linear variations in the energy spectrum with respect to external source

- rewording: relates a 3-point correlation function to a change in a 2-point function induced by an external source

$$
\begin{aligned}
& \frac{\partial E_{n}}{\partial \lambda}=\langle n| H_{\lambda}|n\rangle \\
& H=H_{0}+\lambda H_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
C_{\lambda}(t) & =\langle\lambda| \hat{O}(t) \hat{O}^{\dagger}(0)|\lambda\rangle \\
& =\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S-S_{\lambda}} O(t) O^{\dagger}(0)
\end{aligned}
$$

$$
\begin{aligned}
-\left.\frac{\partial C_{\lambda}(t)}{\partial \lambda}\right|_{\lambda=0}= & -C_{\lambda}(t) \int d^{4} x^{\prime}\langle\Omega| j\left(x^{\prime}\right)|\Omega\rangle \\
& +\int d t^{\prime}\langle\Omega| T\left\{\mathcal{O}(t) J\left(t^{\prime}\right) \mathcal{O}^{\dagger}(0)\right\}|\Omega\rangle
\end{aligned}
$$

New method for matrix elements

* Handle the next major source of systematic effects: excited states contamination.
\therefore Based on the Feynman-Hellmann theorem
*relates matrix elements to linear variations in the energy spectrum with respect to external source
- rewording: relates a 3-point correlation function to a change in a 2-point function induced by an external source

$$
\begin{aligned}
& \frac{\partial E_{n}}{\partial \lambda}=\langle n| H_{\lambda}|n\rangle \\
& H=H_{0}+\lambda H_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
C_{\lambda}(t) & =\langle\lambda| \hat{O}(t) \hat{O}^{\dagger}(0)|\lambda\rangle \\
& =\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S-S_{\lambda}} O(t) O^{\dagger}(0)
\end{aligned}
$$

New method for matrix elements

* Handle the next major source of systematic effects: excited states contamination.
* Based on the Feynman-Hellmann theorem
*relates matrix elements to linear variations in the energy spectrum with respect to external source
- rewording: relates a 3-point correlation function to a change in a 2-point function induced by an external source

$$
\begin{aligned}
& \frac{\partial E_{n}}{\partial \lambda}=\langle n| H_{\lambda}|n\rangle \\
& H=H_{0}+\lambda H_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
C_{\lambda}(t) & =\langle\lambda| \hat{O}(t) \hat{O}^{\dagger}(0)|\lambda\rangle \\
& =\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S-S_{\lambda}} O(t) O^{\dagger}(0)
\end{aligned}
$$

New method for matrix elements

* Handle the next major source of systematic effects: excited states contamination.
\therefore Based on the Feynman-Hellmann theorem
*relates matrix elements to linear variations in the energy spectrum with respect to external source
- rewording: relates a 3-point correlation function to a change in a 2-point function induced by an external source
* related to the background field method (but no need for multiple field values) [NPLQCD arxiv:1610.04545]

$$
\begin{aligned}
& \frac{\partial E_{n}}{\partial \lambda}=\langle n| H_{\lambda}|n\rangle \\
& H=H_{0}+\lambda H_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
C_{\lambda}(t) & =\langle\lambda| \hat{O}(t) \hat{O}^{\dagger}(0)|\lambda\rangle \\
& =\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S-S_{\lambda}} O(t) O^{\dagger}(0)
\end{aligned}
$$

References related to the new method

Similar methods (other FH / GEVP):

J. Bulava et. al. JHEP 01,140 (2012)
F. Bernardoni et. al. Phys. Lett. B740, 278-284 (2015)
A.J. Chambers et. al. Phys. Rev. D 90, 014510
A.J. Chambers et. al. Phys. Rev. D 92, 114517
M.J. Savage et. al. Phys. Rev. Lett. 119, 062002

Similar fit function:
S. Capitani et. al. Phys. Rev. D 86, 074502

Similar propagator construction:
L. Maiani et. al. Nucl. Phys. B293 (1987)
G.M. de Divitiis et. al. Phys. Lett. B718 (2012)

Lattice QCD - basics

- Discretize space and time
- lattice spacing "a"
- lattice size "L"
- Keep all d.o.f. of the theory
- not a model!
- no simplifications
- Amenable to numerical methods
- Monte Carlo sampling
- use supercomputers
- Precisely quantifiable and improvable errors
- Systematic
- Statistical

Lattice QCD - basics

- Discretize space and time
- lattice spacing "a"
- lattice size "L"
- Keep all d.o.f. of the theory
- not a model!
- no simplifications
- Amenable to numerical methods
- Monte Carlo sampling
- use supercomputers
- Precisely quantifiable and improvable errors
- Systematic
- Statistical

