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✤ The discrepancy of ~4σ between 
different methods is still 
unresolved.


✤ Experiments are trying to reduce 
all their systematics and provide 
robust estimates for their 
uncertainties


✤ Neutron decays to “dark” or 
“exotic” particles have been 
invoked to explain the 
discrepancy
[Fornal&Grinstein, PRL120(191801)2018]
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✴ Experiments are already putting 
constraints on decays including photons 
and invisible particles 

✴ Theorists are putting bounds on exotic 
decays by using neutron stars 
observations 

✴ What else can we do?

“beam” method 
only sees this

“bottle” 
method also 

accounts for this



Neutron beta decay

✦ In the Standard Model, beta 
decay is driven by the 
electroweak sector


✦ The master formula includes 
the quark mixing matrix 
element, the neutron lifetime 
and the axial coupling:

Art by Bart-W. van Lith

|Vud |2 τn(1 + 3gA2) = 4908.6(1.9)s
[Czarnecki, Marciano and Sirlin, Phys. Rev. Lett. 120, 202002 (2018)]
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Lattice QCD

[Czarnecki, Marciano and Sirlin, Phys. Rev. Lett. 120, 202002 (2018)]
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Exponentially bad 
signal-to-noise problem
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✴ Increasing cost 
requires using 
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a ! 0 V ! 1
m⇡ ! mphys.

⇡

★ 16 ensembles with Nf=2+1+1 Highly Improved Staggered Quarks (HISQ) 
★ 5 pion masses, 3 lattice spacings, multiple volumes 
★  High statistics ensembles, publicly available
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gA from LQCD

✤ Matrix element of the axial 
current between nucleon 
ground states

✤ Calculate a 3-point correlation 
function:

✤ 2 independent time variables

✤ Statistical noise increases 
rapidly with tsep

✤ Excited states contributions 
disappear at large (tsep,τ)

N

N

Aμ

h0|N(t)Aµ(⌧)N(t0)|0i

(tsep = t0 � t, ⌧)
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FIG. 8. The 2-state fit to the unrenormalized axial charge gu�d
A data for the seven ensembles at di↵erent values of the lattice

spacing and pion mass. The grey error band and the solid line within it is the tsep ! 1 estimate obtained using the 2-state
fit. The result of the fit for each individual tsep is shown by a solid line with the same color as the data points. Note that the
data with tsep = 16 in the two a06 ensembles are not used in the fit.

up to n excited states are included in the fit Ansatz). Our
additional tests on the a06 ensembles discussed in Sec. VI
show that increasing the smearing size � over the range
simulated reduces A1/A0 and the excited-state contami-
nation, most notably in the axial and scalar charges. On
the other hand, beyond a certain size �, the statistical
errors based on a given number of gauge configurations
start to increase. Also, when calculating the form fac-
tors, one expects the optimal � to decrease with increas-
ing momentum. Thus, one has to compromise between
obtaining a good statistical signal and reducing excited-
state contamination in both the charges and the form
factors, when all these quantities are being calculated
with a single choice of the smearing parameters.

The data in Tables III and IV show an increase in the
ratio A1/A0 as the lattice spacing is decreased. This
suggests that the smearing parameter � (see Table II)

should have been scaled with the lattice spacing a. The
dependence of the ratio on the two choices of tmin used
in the fits (estimates in Table III versus Table IV) and
between the HP and AMA estimates for each choice is
much smaller. Based on these trends and additional tests
discussed in Sec. VI, a better choice for the smearing pa-
rameters when calculating the matrix elements at zero-
momentum transfer is estimated to be {5, 70}, {7, 120}
and {9, 200} for the a = 0.12, 0.09 and 0.06 fm ensem-
bles, respectively. In physical units, a rule-of-thumb es-
timate for tuning the smearing size is �a ⇡ 0.55 fm.

To extract the three matrix elements h0|O�|0i,
h1|O�|0i and h1|O�|1i, for each operator O� = OA,S,T,V ,
from the 3-point functions, we make one overall fit using
the data at all values of the operator insertion time ⌧ and
the various source-sink separations tsep using Eq (10).
From such fits we extract the tsep ! 1 estimates un-

[PNDME Phys. Rev. D94 (2016) arXiv:1606.07049] [LHPC arXiv:1703.06703]

Different lattice discretizations and gauge configurations
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up to n excited states are included in the fit Ansatz). Our
additional tests on the a06 ensembles discussed in Sec. VI
show that increasing the smearing size � over the range
simulated reduces A1/A0 and the excited-state contami-
nation, most notably in the axial and scalar charges. On
the other hand, beyond a certain size �, the statistical
errors based on a given number of gauge configurations
start to increase. Also, when calculating the form fac-
tors, one expects the optimal � to decrease with increas-
ing momentum. Thus, one has to compromise between
obtaining a good statistical signal and reducing excited-
state contamination in both the charges and the form
factors, when all these quantities are being calculated
with a single choice of the smearing parameters.

The data in Tables III and IV show an increase in the
ratio A1/A0 as the lattice spacing is decreased. This
suggests that the smearing parameter � (see Table II)

should have been scaled with the lattice spacing a. The
dependence of the ratio on the two choices of tmin used
in the fits (estimates in Table III versus Table IV) and
between the HP and AMA estimates for each choice is
much smaller. Based on these trends and additional tests
discussed in Sec. VI, a better choice for the smearing pa-
rameters when calculating the matrix elements at zero-
momentum transfer is estimated to be {5, 70}, {7, 120}
and {9, 200} for the a = 0.12, 0.09 and 0.06 fm ensem-
bles, respectively. In physical units, a rule-of-thumb es-
timate for tuning the smearing size is �a ⇡ 0.55 fm.

To extract the three matrix elements h0|O�|0i,
h1|O�|0i and h1|O�|1i, for each operator O� = OA,S,T,V ,
from the 3-point functions, we make one overall fit using
the data at all values of the operator insertion time ⌧ and
the various source-sink separations tsep using Eq (10).
From such fits we extract the tsep ! 1 estimates un-
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up to n excited states are included in the fit Ansatz). Our
additional tests on the a06 ensembles discussed in Sec. VI
show that increasing the smearing size � over the range
simulated reduces A1/A0 and the excited-state contami-
nation, most notably in the axial and scalar charges. On
the other hand, beyond a certain size �, the statistical
errors based on a given number of gauge configurations
start to increase. Also, when calculating the form fac-
tors, one expects the optimal � to decrease with increas-
ing momentum. Thus, one has to compromise between
obtaining a good statistical signal and reducing excited-
state contamination in both the charges and the form
factors, when all these quantities are being calculated
with a single choice of the smearing parameters.

The data in Tables III and IV show an increase in the
ratio A1/A0 as the lattice spacing is decreased. This
suggests that the smearing parameter � (see Table II)

should have been scaled with the lattice spacing a. The
dependence of the ratio on the two choices of tmin used
in the fits (estimates in Table III versus Table IV) and
between the HP and AMA estimates for each choice is
much smaller. Based on these trends and additional tests
discussed in Sec. VI, a better choice for the smearing pa-
rameters when calculating the matrix elements at zero-
momentum transfer is estimated to be {5, 70}, {7, 120}
and {9, 200} for the a = 0.12, 0.09 and 0.06 fm ensem-
bles, respectively. In physical units, a rule-of-thumb es-
timate for tuning the smearing size is �a ⇡ 0.55 fm.

To extract the three matrix elements h0|O�|0i,
h1|O�|0i and h1|O�|1i, for each operator O� = OA,S,T,V ,
from the 3-point functions, we make one overall fit using
the data at all values of the operator insertion time ⌧ and
the various source-sink separations tsep using Eq (10).
From such fits we extract the tsep ! 1 estimates un-
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up to n excited states are included in the fit Ansatz). Our
additional tests on the a06 ensembles discussed in Sec. VI
show that increasing the smearing size � over the range
simulated reduces A1/A0 and the excited-state contami-
nation, most notably in the axial and scalar charges. On
the other hand, beyond a certain size �, the statistical
errors based on a given number of gauge configurations
start to increase. Also, when calculating the form fac-
tors, one expects the optimal � to decrease with increas-
ing momentum. Thus, one has to compromise between
obtaining a good statistical signal and reducing excited-
state contamination in both the charges and the form
factors, when all these quantities are being calculated
with a single choice of the smearing parameters.

The data in Tables III and IV show an increase in the
ratio A1/A0 as the lattice spacing is decreased. This
suggests that the smearing parameter � (see Table II)

should have been scaled with the lattice spacing a. The
dependence of the ratio on the two choices of tmin used
in the fits (estimates in Table III versus Table IV) and
between the HP and AMA estimates for each choice is
much smaller. Based on these trends and additional tests
discussed in Sec. VI, a better choice for the smearing pa-
rameters when calculating the matrix elements at zero-
momentum transfer is estimated to be {5, 70}, {7, 120}
and {9, 200} for the a = 0.12, 0.09 and 0.06 fm ensem-
bles, respectively. In physical units, a rule-of-thumb es-
timate for tuning the smearing size is �a ⇡ 0.55 fm.

To extract the three matrix elements h0|O�|0i,
h1|O�|0i and h1|O�|1i, for each operator O� = OA,S,T,V ,
from the 3-point functions, we make one overall fit using
the data at all values of the operator insertion time ⌧ and
the various source-sink separations tsep using Eq (10).
From such fits we extract the tsep ! 1 estimates un-

[PNDME Phys. Rev. D94 (2016) arXiv:1606.07049] [LHPC arXiv:1703.06703]
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up to n excited states are included in the fit Ansatz). Our
additional tests on the a06 ensembles discussed in Sec. VI
show that increasing the smearing size � over the range
simulated reduces A1/A0 and the excited-state contami-
nation, most notably in the axial and scalar charges. On
the other hand, beyond a certain size �, the statistical
errors based on a given number of gauge configurations
start to increase. Also, when calculating the form fac-
tors, one expects the optimal � to decrease with increas-
ing momentum. Thus, one has to compromise between
obtaining a good statistical signal and reducing excited-
state contamination in both the charges and the form
factors, when all these quantities are being calculated
with a single choice of the smearing parameters.

The data in Tables III and IV show an increase in the
ratio A1/A0 as the lattice spacing is decreased. This
suggests that the smearing parameter � (see Table II)

should have been scaled with the lattice spacing a. The
dependence of the ratio on the two choices of tmin used
in the fits (estimates in Table III versus Table IV) and
between the HP and AMA estimates for each choice is
much smaller. Based on these trends and additional tests
discussed in Sec. VI, a better choice for the smearing pa-
rameters when calculating the matrix elements at zero-
momentum transfer is estimated to be {5, 70}, {7, 120}
and {9, 200} for the a = 0.12, 0.09 and 0.06 fm ensem-
bles, respectively. In physical units, a rule-of-thumb es-
timate for tuning the smearing size is �a ⇡ 0.55 fm.

To extract the three matrix elements h0|O�|0i,
h1|O�|0i and h1|O�|1i, for each operator O� = OA,S,T,V ,
from the 3-point functions, we make one overall fit using
the data at all values of the operator insertion time ⌧ and
the various source-sink separations tsep using Eq (10).
From such fits we extract the tsep ! 1 estimates un-

[PNDME Phys. Rev. D94 (2016) arXiv:1606.07049]
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FIG. 8. The 2-state fit to the unrenormalized axial charge gu�d
A data for the seven ensembles at di↵erent values of the lattice

spacing and pion mass. The grey error band and the solid line within it is the tsep ! 1 estimate obtained using the 2-state
fit. The result of the fit for each individual tsep is shown by a solid line with the same color as the data points. Note that the
data with tsep = 16 in the two a06 ensembles are not used in the fit.

up to n excited states are included in the fit Ansatz). Our
additional tests on the a06 ensembles discussed in Sec. VI
show that increasing the smearing size � over the range
simulated reduces A1/A0 and the excited-state contami-
nation, most notably in the axial and scalar charges. On
the other hand, beyond a certain size �, the statistical
errors based on a given number of gauge configurations
start to increase. Also, when calculating the form fac-
tors, one expects the optimal � to decrease with increas-
ing momentum. Thus, one has to compromise between
obtaining a good statistical signal and reducing excited-
state contamination in both the charges and the form
factors, when all these quantities are being calculated
with a single choice of the smearing parameters.

The data in Tables III and IV show an increase in the
ratio A1/A0 as the lattice spacing is decreased. This
suggests that the smearing parameter � (see Table II)

should have been scaled with the lattice spacing a. The
dependence of the ratio on the two choices of tmin used
in the fits (estimates in Table III versus Table IV) and
between the HP and AMA estimates for each choice is
much smaller. Based on these trends and additional tests
discussed in Sec. VI, a better choice for the smearing pa-
rameters when calculating the matrix elements at zero-
momentum transfer is estimated to be {5, 70}, {7, 120}
and {9, 200} for the a = 0.12, 0.09 and 0.06 fm ensem-
bles, respectively. In physical units, a rule-of-thumb es-
timate for tuning the smearing size is �a ⇡ 0.55 fm.

To extract the three matrix elements h0|O�|0i,
h1|O�|0i and h1|O�|1i, for each operator O� = OA,S,T,V ,
from the 3-point functions, we make one overall fit using
the data at all values of the operator insertion time ⌧ and
the various source-sink separations tsep using Eq (10).
From such fits we extract the tsep ! 1 estimates un-
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FIG. 8. The 2-state fit to the unrenormalized axial charge gu�d
A data for the seven ensembles at di↵erent values of the lattice

spacing and pion mass. The grey error band and the solid line within it is the tsep ! 1 estimate obtained using the 2-state
fit. The result of the fit for each individual tsep is shown by a solid line with the same color as the data points. Note that the
data with tsep = 16 in the two a06 ensembles are not used in the fit.

up to n excited states are included in the fit Ansatz). Our
additional tests on the a06 ensembles discussed in Sec. VI
show that increasing the smearing size � over the range
simulated reduces A1/A0 and the excited-state contami-
nation, most notably in the axial and scalar charges. On
the other hand, beyond a certain size �, the statistical
errors based on a given number of gauge configurations
start to increase. Also, when calculating the form fac-
tors, one expects the optimal � to decrease with increas-
ing momentum. Thus, one has to compromise between
obtaining a good statistical signal and reducing excited-
state contamination in both the charges and the form
factors, when all these quantities are being calculated
with a single choice of the smearing parameters.

The data in Tables III and IV show an increase in the
ratio A1/A0 as the lattice spacing is decreased. This
suggests that the smearing parameter � (see Table II)

should have been scaled with the lattice spacing a. The
dependence of the ratio on the two choices of tmin used
in the fits (estimates in Table III versus Table IV) and
between the HP and AMA estimates for each choice is
much smaller. Based on these trends and additional tests
discussed in Sec. VI, a better choice for the smearing pa-
rameters when calculating the matrix elements at zero-
momentum transfer is estimated to be {5, 70}, {7, 120}
and {9, 200} for the a = 0.12, 0.09 and 0.06 fm ensem-
bles, respectively. In physical units, a rule-of-thumb es-
timate for tuning the smearing size is �a ⇡ 0.55 fm.

To extract the three matrix elements h0|O�|0i,
h1|O�|0i and h1|O�|1i, for each operator O� = OA,S,T,V ,
from the 3-point functions, we make one overall fit using
the data at all values of the operator insertion time ⌧ and
the various source-sink separations tsep using Eq (10).
From such fits we extract the tsep ! 1 estimates un-
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FIG. 8. The 2-state fit to the unrenormalized axial charge gu�d
A data for the seven ensembles at di↵erent values of the lattice

spacing and pion mass. The grey error band and the solid line within it is the tsep ! 1 estimate obtained using the 2-state
fit. The result of the fit for each individual tsep is shown by a solid line with the same color as the data points. Note that the
data with tsep = 16 in the two a06 ensembles are not used in the fit.

up to n excited states are included in the fit Ansatz). Our
additional tests on the a06 ensembles discussed in Sec. VI
show that increasing the smearing size � over the range
simulated reduces A1/A0 and the excited-state contami-
nation, most notably in the axial and scalar charges. On
the other hand, beyond a certain size �, the statistical
errors based on a given number of gauge configurations
start to increase. Also, when calculating the form fac-
tors, one expects the optimal � to decrease with increas-
ing momentum. Thus, one has to compromise between
obtaining a good statistical signal and reducing excited-
state contamination in both the charges and the form
factors, when all these quantities are being calculated
with a single choice of the smearing parameters.

The data in Tables III and IV show an increase in the
ratio A1/A0 as the lattice spacing is decreased. This
suggests that the smearing parameter � (see Table II)

should have been scaled with the lattice spacing a. The
dependence of the ratio on the two choices of tmin used
in the fits (estimates in Table III versus Table IV) and
between the HP and AMA estimates for each choice is
much smaller. Based on these trends and additional tests
discussed in Sec. VI, a better choice for the smearing pa-
rameters when calculating the matrix elements at zero-
momentum transfer is estimated to be {5, 70}, {7, 120}
and {9, 200} for the a = 0.12, 0.09 and 0.06 fm ensem-
bles, respectively. In physical units, a rule-of-thumb es-
timate for tuning the smearing size is �a ⇡ 0.55 fm.

To extract the three matrix elements h0|O�|0i,
h1|O�|0i and h1|O�|1i, for each operator O� = OA,S,T,V ,
from the 3-point functions, we make one overall fit using
the data at all values of the operator insertion time ⌧ and
the various source-sink separations tsep using Eq (10).
From such fits we extract the tsep ! 1 estimates un-
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A data for the seven ensembles at di↵erent values of the lattice

spacing and pion mass. The grey error band and the solid line within it is the tsep ! 1 estimate obtained using the 2-state
fit. The result of the fit for each individual tsep is shown by a solid line with the same color as the data points. Note that the
data with tsep = 16 in the two a06 ensembles are not used in the fit.

up to n excited states are included in the fit Ansatz). Our
additional tests on the a06 ensembles discussed in Sec. VI
show that increasing the smearing size � over the range
simulated reduces A1/A0 and the excited-state contami-
nation, most notably in the axial and scalar charges. On
the other hand, beyond a certain size �, the statistical
errors based on a given number of gauge configurations
start to increase. Also, when calculating the form fac-
tors, one expects the optimal � to decrease with increas-
ing momentum. Thus, one has to compromise between
obtaining a good statistical signal and reducing excited-
state contamination in both the charges and the form
factors, when all these quantities are being calculated
with a single choice of the smearing parameters.

The data in Tables III and IV show an increase in the
ratio A1/A0 as the lattice spacing is decreased. This
suggests that the smearing parameter � (see Table II)

should have been scaled with the lattice spacing a. The
dependence of the ratio on the two choices of tmin used
in the fits (estimates in Table III versus Table IV) and
between the HP and AMA estimates for each choice is
much smaller. Based on these trends and additional tests
discussed in Sec. VI, a better choice for the smearing pa-
rameters when calculating the matrix elements at zero-
momentum transfer is estimated to be {5, 70}, {7, 120}
and {9, 200} for the a = 0.12, 0.09 and 0.06 fm ensem-
bles, respectively. In physical units, a rule-of-thumb es-
timate for tuning the smearing size is �a ⇡ 0.55 fm.

To extract the three matrix elements h0|O�|0i,
h1|O�|0i and h1|O�|1i, for each operator O� = OA,S,T,V ,
from the 3-point functions, we make one overall fit using
the data at all values of the operator insertion time ⌧ and
the various source-sink separations tsep using Eq (10).
From such fits we extract the tsep ! 1 estimates un-
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Extracting gA from LQCD data

[CalLat Nature 558, 91-94 (2018), arxiv:1805.12130]

0 5 10 15
t/a

1.15

1.20

1.25

1.30

1.35

1.40

g̊ef
f

A

a09m220

4 6 8 10 12 14
t/a

1.01

1.02

1.03

1.04

1.05

g̊ef
f

V

a09m220

8 10 12 14 16
t/a

0.40

0.42

0.44

0.46

0.48

0.50

m
ef

f

a09m220

1.22

1.26
g̊ A

/
g̊ V

a09m220

meff tmin geff
A tmin geff

V tmin

8 9 10 11 2 3 4 5 5 6 7 8
10�2

10�1

100

P



0.00 0.05 0.10 0.15 0.20 0.25 0.30
✏⇡ = m⇡/(4⇡F⇡)

1.10

1.15

1.20

1.25

1.30

1.35

g A

a ' 0.15 fm

a ' 0.12 fm

a ' 0.09 fm
gPDG

A = 1.2723(23)
a ' 0.15 fm

a ' 0.12 fm

a ' 0.09 fm
gPDG

A = 1.2723(23)

130 220 310 350 400

Extracting gA from LQCD data - extrapolations

[CalLat Nature 558, 91-94 (2018), arxiv:1805.12130]

mπ[MeV] ≈



Chiral and Continuum Extrapolations

★ Try different chiral, continuum and infinite volume extrapolations, averaged under 
Bayes framework


★ Based on ChPT, MAEFT, and a Taylor expansion around the physical point


★ Fits with parameters that can not be constrained are neglected


★ Study stability of fits, including variations of Bayes priors, additional 
discretization effects and cutting data
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Extrapolation stability
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statistical 0.81%
chiral extrapolation 0.31%
a ! 0 0.12%
L ! 1 0.15%
isospin 0.03%
model selection 0.43%
total 0.99%
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statistical 0.81%
chiral extrapolation 0.31%
a ! 0 0.12%
L ! 1 0.15%
isospin 0.03%
model selection 0.43%
total 0.99%
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determination of gA from LQCD

✴ result is limited by statistics

✴ new supercomputers help!

✴ all data is publicly available
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LQCD neutron lifetime

• Use LQCD values of the axial 
coupling and the light quark 
mixing matrix element

τn =
4908.6(1.9)s

|Vud |2 (1 + 3gA2)

Art by Bart-W. van Lith

|Vud | = 0.97438(12)
[MILC, Phys.Rev. D90, 074509 (2014) ]

gA = 1.271(13)
[CalLat Nature 558, 91-94 (2018), arxiv:1805.12130]

[Czarnecki, Marciano and Sirlin, Phys. Rev. Lett. 120, 202002 (2018)]



LQCD neutron lifetime

• Use LQCD values of the axial 
coupling and the light quark 
mixing matrix element

τn =
4908.6(1.9)s

|Vud |2 (1 + 3gA2)

Art by Bart-W. van Lith

|Vud | = 0.97438(12)
[MILC, Phys.Rev. D90, 074509 (2014) ]

gA = 1.271(13)
[CalLat Nature 558, 91-94 (2018), arxiv:1805.12130]

τn = 884(15)s

[Czarnecki, Marciano and Sirlin, Phys. Rev. Lett. 120, 202002 (2018)]
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2018 Gordon Bell Finalist
sc18.supercomputing.org/
presentation/?
id=gb101&sess=sess467

Simulating the weak death of the neutron in a femtoscale universe with near-Exascale computing
Evan Berkowitz, M.A. Clark, Arjun Gambhir, Ken McElvain, Amy Nicholson, Enrico Rinaldi, Pavlos Vranas, André Walker-Loud, Chia Cheng Chang, 

Bálint Joó, Thorsten Kurth, Kostas Orginos
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Published

Code development from Gordon Bell + initial Sierra Early Science time result.
Increase 0.12 fm physical mass statistics by ~ 5x, 50% reduction in uncertainty.
New 0.09 fm physical mass 322 configs x 4 sources.
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Summary

✓ The neutron lifetime is showing a discrepancy of ~4σ between different 
experimental methods 

✓ The Standard Model predicts a precise relation which allows us to obtain a 
theoretical value of the neutron lifetime using Lattice QCD non-
perturbative calculations 

✓ The first percent-level calculations of the nucleon axial coupling has been 
obtained this year, ahead of expectations https://www.nature.com/
articles/s41586-018-0161-8  

✓ Statistical uncertainties ~0.8%  can be reduced with the next generation of supercomputers 
(we “only” used the no. 7 and 33 of the June 2018 top500 list of supercomputers: https://
www.top500.org/lists/2018/06/) 

✓ A more accurate calculation at the physical point using the no. 1 and 3 top500 has been 
accepted as one of the six finalists in the Gordon Bell competition, recognizing outstanding 
achievement in high-performance computing (https://awards.acm.org/bell)

https://www.nature.com/articles/s41586-018-0161-8
https://www.nature.com/articles/s41586-018-0161-8
https://www.top500.org/lists/2018/06/
https://www.top500.org/lists/2018/06/
https://awards.acm.org/bell


Software References

METAQ Berkowitz arXiv:1702.06122 github.com/evanberkowitz/metaq

Berkowitz et al. EPJ (LATTICE2017) 175 09007 (2018)

chroma
QDP++

Edwards and Joo (SciDAC, LHPC and UKQCD Collaborations) Nucl. Phys. 
Proc. Suppl 140, 832 (2005)

QUDA Clark et al. Comput. Phys. Commun. 181 1517 (2010)

Babich et al. Supercomputing 11, 70

hdf5 in QDP++ Kurth et al PoS LATTICE2014 045 (2015)

qmp Chen, Edwards, and Watson et al.

https://github.com/usqcd-software/qmp

mpi_jm Berkowitz et al. EPJ (LATTICE2017) 175 09007 (2018)

McElvain et al. https://github.com/kenmcelvain/mpi_jm/

QMP
QDP++/QIO QUDA

chroma
our applications

libxml2 hdf5

METAQ

mpi_jm

FFTW
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Axial coupling, gA

✤ Describes the strength of the 
interaction between the weak axial 
current and the nucleon

✤ Determines the nuclear potential 
as the coupling between pions 
and nucleons

✤ Relates the nucleon spin to its 
contribution from light quarks

✤ Fundamental property in low-
energy nuclear physics that 
dictates how the neutron decays 
(via β decay)

✤ Very well determined 
experimentally ~0.2%                         
(from angular correlations in 
cold neutron decays)

gPDG
A = 1.2723(23)



Practical implementation

2

element we are interested in, summed over all time in-
sertions. For 0 < t0 < t, this is in fact the quantity
R(t) defined in the summation method summed over all

time insertions and the other time regions will contribute
systematic contaminations.

Z
dt0h⌦|T{O(t)J(t0)O†(0)}|⌦i =

Z 1

t
dt0h⌦|J(t0)O(t)O†(0)|⌦i

+
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dt0h⌦|O(t)J(t0)O†(0)|⌦i

+

Z t

�1
dt0h⌦|O(t)O†(0)J(t0)|⌦i (7)

The FHT relates matrix elements to derivatives of the
spectrum. The e↵ective mass is a derived quantity which
asymptotes to the ground state mass in the long Eu-
clidean time limit,

meff (t, ⌧) =
1

⌧
ln

✓
C(t)

C(t+ ⌧)

◆
�!
t!1

1

⌧
ln(eE0⌧ ) (8)

Consider the derivative of the e↵ective mass in the pres-
ence of the external current

@meff
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�=0

=
1

⌧


�@�C�(t+ ⌧)

C(t+ ⌧)
�

�@�C�(t)

C(t)

�
(9)

From Eq. (6), we observe the term proportional to the
vacuum matrix element exactly cancels in the di↵erence
in Eq. (9) even for scalar currents, leaving us with terms
only proportional to the matrix elements of interest

@meff
� (t, ⌧)
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=
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Z
dt0
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C(t+ ⌧)

�
h0|T{O(t)J(t0)O†(0)}|0i

C(t)

�

=
R(t+ ⌧)�R(t)

⌧
(10)

where

R(t) =

R
dt0h0|T{O(t)J(t0)O(0)}|0i

C(t)
(11)

Relation to other methods:
derivative of e↵ective mass
Implementation:
Systematics:

An application: the nucleon axial charge:

Conclusions:

⇤ bedaque@umd.edu

† cmbouchard@wm.edu
‡ kostas@wm.edu
§ awalker-loud@lbl.gov

= SFH(y, x) =
X

z

S(y, z)�(z)S(z, x)

Feynman-Hellmann propagator

[Bouchard, Chang, Kurt, Orginos, Walker-Loud, PRD96(014504) - arxiv:1612.06963]
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Feynman-Hellmann propagator

NJ(t) =
X

t0

h⌦|T{O(t)J(t0)O†(0)}|⌦i

3-pt function becomes a 2-
pt function with FH-prop

[Bouchard, Chang, Kurt, Orginos, Walker-Loud, PRD96(014504) - arxiv:1612.06963]
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“valence” DWF
✓ Mixed Action (MA) Lattice QCD
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“economical” gauge 
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precision

✓ Good chiral symmetry 
properties:
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Typical 2-pt function: 
used to calculate energy levels



Smeared Möbius Domain Wall fermions - II

✓ Gradient flow smeared gauge 
links


➡ parametrized by tgf 


✓ Reduces sources of residual 
chiral symmetry breaking 


➡ mres is exponentially damped 
with L5   


➡ ZA has suppressed lattice 
spacing dependence and is 
close to unity


✓ Dependence on tgf is removed 
when performing the continuum 
limit for physical observables
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Smeared Möbius Domain Wall fermions - III

[CalLat PRD96(054513) - arxiv:1701.07559]
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meson decay constants
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and results are 
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Extracting gA from LQCD data

[CalLat Nature 558, 91-94 (2018), arxiv:1805.12130]
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✤ Handle the next major source of 
systematic effects: excited states 
contamination.

✤ Based on the Feynman-Hellmann 
theorem

[Bouchard, Chang, Kurt, Orginos, Walker-Loud, PRD96(014504) - arxiv:1612.06963]
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A New Method for Computing Matrix Elements

(Inspired by the Feynman-Hellman Theorem)

Paulo Bedaque,1, ⇤ Chris Bouchard,2, † Kostas Orginos,2, 3, ‡ and André Walker-Loud2, 3, 4, §

1Maryland Center for Fundamental Physics, Department of Physics,
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2Department of Physics, The College of William & Mary Williamsburg, VA 23187-8795, USA
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Motivated by the Feynman-Hellman Theorem, we derive an improved method for computing ma-

trix elements of external currents utilizing only two-point correlation functions. The contamination

from excited states is shown to be Euclidean-time dependent allowing for a significantly improved

ability to reliably determine and control the systematics. We demonstrate the utility of our method

with a calculation of the nucleon axial-charge, performed at a single lattice spacing and a moderate

unphysical pion mass. The Feynman-Hellman Theorem can be derived from the long Euclidean-time

limit of correlation functions determined with functional derivatives of the partition function. This

elucidates the generic applicability of our new method: one can determine matrix elements of any

external current by computing only two-point correlation functions, including non-zero momentum

transfer and flavor-changing matrix elements.

Introduction:

The Feynman-Hellman Theorem and QFT: The
Feynman-Hellman Theorem (FHT) in quantum mechan-
ics relates matrix elements to variations in the spectrum:

@En

@�
= hn|H�|ni (1)

where the Hamiltonian is given by H = H0 + �H�. This
simple relation is easily derived at first order in pertur-
bation theory but is applicable more generally. The FHT
is often invoked in lattice QCD calculations to determine
the scalar quark matrix elements in the nucleon

mq
@mN

@mq

����
mq=mphy

q

= hN |mq q̄q|Ni , (2)

for both the light (q = {u, d}) and strange (q = s) quark
matrix elements.

The important observation about the FHT is that it
relates a three-point correlation function to a change in
a two-point correlation function due to some perturb-
ing source. The lattice calculation of three point func-
tions, particularly those involving nucleons and other
baryons, are particularly challenging for a number of rea-
sons, while there are now many highly advanced methods
developed for computing two-point correlation functions
and the spectrum. The calculation of three point func-
tions are stochastically noisy and often su↵er from con-
tamination from excited states. Controlling these sys-
tematics requires a significant increase in the numerical
cost of the calculations making full calculations often pro-
hibitively expensive. If we can invoke the FHT to com-
pute matrix elements using only two-point correlation
functions, then we can apply our sophisticated meth-
ods for spectroscopy to these important non-perturbative
quantities with reduced systematics.

The FHT has already been utilized to compute certain
matrix elements of the nucleon cite[Adelaidians]

Can we provide more insight on the connection be-
tween the FHT and QFT?

A New Method: Consider a two point correlation func-
tion computed in the presence of some external source

C�(t) = h0|Ô(t)Ô†(0)|0i�

=
1

Z

Z
DUµe

�S�S�O(t)O†(0) (3)

with

S� = �

Z
d4xj(x) (4)

with j(x) some bi-linear current density. The derivative
of the correlation function is related to the matrix ele-
ments of the current

�
@C�
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@�Z�

Z�
C�(t)+

1

Z�

Z
D�e�S�S�

Z
d4x0j(x0)O(t)O†(0)

(5)
The first term is proportional vacuum matrix element of
the current and vanishes unless the current has vacuum
quantum numbers. The second term involves an integral
over the the matrix elements and we have

�
@C�(t)
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�=0

= �

Z
d4x0

h0|j(x0)|0iC�(t)

+

Z
dt0h0|T{O(t)J(t0)O†(0)}|0i (6)

where we have defined J(t) =
R
d3xj(t, ~x). We see ex-

plicitly now that the second term contains the matrix
element we are interested in, summed over all time in-
sertions. For 0 < t0 < t, this is in fact the quantity

[Bouchard, Chang, Kurt, Orginos, Walker-Loud, PRD96(014504) - arxiv:1612.06963]
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1Maryland Center for Fundamental Physics, Department of Physics,
University of Maryland, College Park, MD 20742-4111, USA

2Department of Physics, The College of William & Mary Williamsburg, VA 23187-8795, USA
3Thomas Je↵erson National Accelerator Facility Newport News, VA 23606, USA

4Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Motivated by the Feynman-Hellman Theorem, we derive an improved method for computing ma-

trix elements of external currents utilizing only two-point correlation functions. The contamination

from excited states is shown to be Euclidean-time dependent allowing for a significantly improved

ability to reliably determine and control the systematics. We demonstrate the utility of our method

with a calculation of the nucleon axial-charge, performed at a single lattice spacing and a moderate

unphysical pion mass. The Feynman-Hellman Theorem can be derived from the long Euclidean-time

limit of correlation functions determined with functional derivatives of the partition function. This

elucidates the generic applicability of our new method: one can determine matrix elements of any

external current by computing only two-point correlation functions, including non-zero momentum

transfer and flavor-changing matrix elements.

Introduction:

The Feynman-Hellman Theorem and QFT: The
Feynman-Hellman Theorem (FHT) in quantum mechan-
ics relates matrix elements to variations in the spectrum:

@En

@�
= hn|H�|ni (1)

where the Hamiltonian is given by H = H0 + �H�. This
simple relation is easily derived at first order in pertur-
bation theory but is applicable more generally. The FHT
is often invoked in lattice QCD calculations to determine
the scalar quark matrix elements in the nucleon

mq
@mN

@mq

����
mq=mphy

q

= hN |mq q̄q|Ni , (2)

for both the light (q = {u, d}) and strange (q = s) quark
matrix elements.

The important observation about the FHT is that it
relates a three-point correlation function to a change in
a two-point correlation function due to some perturb-
ing source. The lattice calculation of three point func-
tions, particularly those involving nucleons and other
baryons, are particularly challenging for a number of rea-
sons, while there are now many highly advanced methods
developed for computing two-point correlation functions
and the spectrum. The calculation of three point func-
tions are stochastically noisy and often su↵er from con-
tamination from excited states. Controlling these sys-
tematics requires a significant increase in the numerical
cost of the calculations making full calculations often pro-
hibitively expensive. If we can invoke the FHT to com-
pute matrix elements using only two-point correlation
functions, then we can apply our sophisticated meth-
ods for spectroscopy to these important non-perturbative
quantities with reduced systematics.

The FHT has already been utilized to compute certain
matrix elements of the nucleon cite[Adelaidians]

Can we provide more insight on the connection be-
tween the FHT and QFT?

A New Method: Consider a two point correlation func-
tion computed in the presence of some external source

C�(t) = h�|Ô(t)Ô†(0)|�i
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1Maryland Center for Fundamental Physics, Department of Physics,
University of Maryland, College Park, MD 20742-4111, USA

2Department of Physics, The College of William & Mary Williamsburg, VA 23187-8795, USA
3Thomas Je↵erson National Accelerator Facility Newport News, VA 23606, USA

4Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Motivated by the Feynman-Hellman Theorem, we derive an improved method for computing ma-

trix elements of external currents utilizing only two-point correlation functions. The contamination

from excited states is shown to be Euclidean-time dependent allowing for a significantly improved

ability to reliably determine and control the systematics. We demonstrate the utility of our method

with a calculation of the nucleon axial-charge, performed at a single lattice spacing and a moderate

unphysical pion mass. The Feynman-Hellman Theorem can be derived from the long Euclidean-time

limit of correlation functions determined with functional derivatives of the partition function. This

elucidates the generic applicability of our new method: one can determine matrix elements of any

external current by computing only two-point correlation functions, including non-zero momentum

transfer and flavor-changing matrix elements.

Introduction:

The Feynman-Hellman Theorem and QFT: The
Feynman-Hellman Theorem (FHT) in quantum mechan-
ics relates matrix elements to variations in the spectrum:

@En

@�
= hn|H�|ni (1)

where the Hamiltonian is given by H = H0 + �H�. This
simple relation is easily derived at first order in pertur-
bation theory but is applicable more generally. The FHT
is often invoked in lattice QCD calculations to determine
the scalar quark matrix elements in the nucleon

mq
@mN

@mq

����
mq=mphy

q

= hN |mq q̄q|Ni , (2)

for both the light (q = {u, d}) and strange (q = s) quark
matrix elements.

The important observation about the FHT is that it
relates a three-point correlation function to a change in
a two-point correlation function due to some perturb-
ing source. The lattice calculation of three point func-
tions, particularly those involving nucleons and other
baryons, are particularly challenging for a number of rea-
sons, while there are now many highly advanced methods
developed for computing two-point correlation functions
and the spectrum. The calculation of three point func-
tions are stochastically noisy and often su↵er from con-
tamination from excited states. Controlling these sys-
tematics requires a significant increase in the numerical
cost of the calculations making full calculations often pro-
hibitively expensive. If we can invoke the FHT to com-
pute matrix elements using only two-point correlation
functions, then we can apply our sophisticated meth-
ods for spectroscopy to these important non-perturbative
quantities with reduced systematics.

The FHT has already been utilized to compute certain
matrix elements of the nucleon cite[Adelaidians]

Can we provide more insight on the connection be-
tween the FHT and QFT?

A New Method: Consider a two point correlation func-
tion computed in the presence of some external source

C�(t) = h�|Ô(t)Ô†(0)|�i
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limit of correlation functions determined with functional derivatives of the partition function. This
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=
1

Z�

Z
D�e�S�S�O(t)O†(0) (3)

with

S� = �

Z
d4xj(x) (4)

with j(x) some bi-linear current density. The derivative
of the correlation function is related to the matrix ele-
ments of the current

�
@C�

@�
=

@�Z�

Z�
C�(t) +

1

Z�

Z
D�e�S�S�

Z
d4x0j(x0) O(t)O†(0)

(5)

The first term is proportional vacuum matrix element of
the current and vanishes unless the current has vacuum
quantum numbers. The second term involves an integral
over the the matrix elements and we have

�
@C�(t)

@�

����
�=0

= � C�(t)

Z
d4x0

h⌦|j(x0)|⌦i

+

Z
dt0h⌦|T{O(t)J(t0)O†(0)}|⌦i (6)

where we have defined J(t) =
R
d3xj(t, ~x). We see ex-

plicitly now that the second term contains the matrix

A New Method for Computing Matrix Elements

(Inspired by the Feynman-Hellman Theorem)

Paulo Bedaque,1, ⇤ Chris Bouchard,2, † Kostas Orginos,2, 3, ‡ and André Walker-Loud2, 3, 4, §
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