

Tensor current limits from the betaneutrino correlation in mass 8 systems

Guy Savard

Argonne National Laboratory

&

University of Chicago

UMass, November 03 2018

Using ⁸Li β decay to measure $a_{\beta v}$

- Has an essentially pure G-T decay (only A & T interactions).
- ✓ High Q-value/light mass allow for easy-to-measure recoils.
- ✓ Immediately decays into 2 alphas ($<E_{\alpha}> ~ 1.5$ MeV) making a clean "triple" event with almost no background
- ✓ Has a mirror nucleus: ⁸B that can be used to compare systematics

$$a_{\beta\nu} = -\frac{1}{3} \frac{|C_A|^2 - |C_T|^2}{|C_A|^2 + |C_T|^2}$$

Q=16.004 MeV, $t_{1/2}$ =0.84 s

CHICAGO

Production of ⁸B and ⁸Li at ATLAS

The Beta Decay Paul Trap

- RF fields (1.33 MHz, ~400 Vpp), a DC gradient (60V depth), and 25 µTorr of helium gas are used to trap ions.
- Cooled with liquid nitrogen.
- Capture Efficiency close to 100%.
- Electrodes designed to minimize scattering.
- lons are held within a 1mm³ volume.

The Detector System

- The trap is surrounded by a set of 4 32x32 Double Sided Silicon Strip Detectors (DSSSD's) backed by plastic scintillator detectors.
- 2° spatial resolution and 25% solid angle coverage.
- For a "triple" event, kinematic reconstruction is overdetermined.
- Outfitted with 8 sets of ¹⁴⁸Gd and ²⁴⁴Cm *in situ* calibration sources.

Picture courtesy of Dr. Perez Galvan, M.G Sternberg's thesis

The Data

$$W(\theta_{\beta\nu}) = 1 + a_{\beta\nu} \frac{v_{\beta}}{c} \cos(\theta_{\beta\nu})$$

Axial Vector: $a_{\beta\nu} = -\frac{1}{3}$, Tensor: $a_{\beta\nu} = \frac{1}{3}$

- Axial Vector events favor lepton emissions in the opposite direction.
- Tensor events favor lepton emissions in the same direction.
- $\Delta E(\alpha's)$ is larger and more sensitive to $a_{\beta\nu}$ when the β is emitted roughly parallel to an α
- We only use "triple" events where the β and an α hit the same detector.

$$\Gamma(E_e)dE_e \propto p_e E_e (E_0 - E_e)^2 dE_e \left(g_1 + g_2 \frac{(\boldsymbol{p_e} \cdot \boldsymbol{p_\nu})}{|E_e||E_\nu|} + g_{12} \left(\frac{(\boldsymbol{p_e} \cdot \boldsymbol{p_\alpha})(\boldsymbol{p_\nu} \cdot \boldsymbol{p_\alpha})}{|E_e||E_\nu|} - \frac{1}{3} \frac{(\boldsymbol{p_e} \cdot \boldsymbol{p_\nu})}{|E_e||E_\nu|} \right) + \dots \right)$$

Picture courtesy of M.G Sternberg's thesis

Our previous experiments

Matt Sternberg: Graduated 2013 Phys. Rev. Lett. **115**, 182501 (2015)

2015 PRL Experiment:

- Utilized 72,000 "triple" events alongside simulated tensor and axial-vector data to limit $|C_T/C_A|^2$ to < 0.011 (95.5 C.L) with a statistical error of 0.0038 (1 σ).
- Plenty of room for improvement, both statistically and systematically.

Source	$\Delta C_T/C_A ^2$
Energy calibration	0.0013
α line shape	0.0018
Dead layer thickness	0.0008
β scattering	0.0020
Backgrounds	0.0011
Recoil and radiative	0.0026
Nondominant systematics	0.0007
Total	0.0043

TABLE I. Dominant sources of systematic uncertainty at 1σ .

Pictures from PRL 115, 182501 (2015)

Our Most Recent Experiment

- Updated the beamline to produce higher yields of Lithium-8
- RF pickup was completely removed from data using tunable notch filters applied to the front strips.
- August, 2016: over 2 weeks, obtained **10x** the statistics used in the 2015 PRL.
- Result: $|C_T/C_A|^2$ statistical error reduced to **0.0013**.

Updated Calibration:

- ✓ Replaced in-house made sources with commercial, spectroscopy-grade sources (¹⁴⁸Gd, 3182.69 keV and ²⁴⁴Cm 5804.77 keV, 76.9%)
- \checkmark Added the Lithium-8 beta spectrum as a third low-energy point.
- Energies corrected for pulse height defect, nonionizing energy loss, and the detector dead layer.
- ✓ Reduced $|C_T/C_A|^2$ calibration systematic error from 0.0013 to **0.0005**.

Simulated α Lineshape:

- Fully calculated lineshape includes:
 - Individual detector/strip electronic noise
 - Nonionizing energy loss
 - Fano factor resolution
 - Dispersion through dead layers

Decreased $|C_T/C_A|^2$ lineshape systematic from 0.0018 to **0.0006**.

Discrepancies between the spectra and calculations are due to a source dead layer.

Dead layer thickness:

New calibration sources revealed previously overlooked dead layer systematic: the thicker dead layers on the edge of each strip.

In progress: new dead layer calculation using calibration sources with confirmation with from ⁸Li alpha spectra.

We anticipate that the error bar will remain unchanged, but the dead layer thickness will be more accurate.

Beta Scattering with Geant4

- ~20% of detected β's are scattered into the silicon detectors.
- All generated events are run through a Geant4 simulation.
- Includes a full AutoCad geometry of the trap and chamber.

Pictures courtesy of M.G Sternberg's thesis

Beta Scattering:

- Geant4 itself is updated now and the physics packages are more complete.
- Plastic Scintillators allow for extra crosschecking
- Current benchmarks (triples/doubles and backscattered/triples fractions) are met even with higher statistics

Decreasing scattering systematic error from 0.0020 to < 0.0010.

Guy Savard, Argonne National Laboratory UAmherst, November 03, 2018

The Event Generator Simulation

- Based on code written by Scielzo et al. for ²¹Na decay.
- Includes/features:
 - I. Final State distributions from Bhattacharya *et al.*
 - II. Recoil order terms (Gluck (1997) & Holstein (1974))
 - III. Ion cloud distribution
 - IV. Easy to switch between ⁸B and ⁸Li
 - V. Event acceptance/rejection based on strip functionality

$$d^{T}\Gamma = F_{\mp}(Z, E) \frac{G_{*}^{2} \cos^{2}\theta_{e}}{2(2\pi)^{6}} (E_{0} - E)^{2}pE dE d\Omega_{e} d\Omega_{e} d\Omega_{e} d\Omega_{n} \\ \times \left(g_{1}(E) + g_{2}(E) \frac{\mathbf{p}}{E} \cdot \hat{k} + g_{3}(E) \left[\left(\frac{\mathbf{p}}{E} \cdot \hat{k}\right)^{2} - \frac{1}{3} \frac{\mathbf{p}^{2}}{E^{2}}\right] \\ + \delta_{1}(E, v^{*}, \tau_{J', J''}(L)) \hat{n} \cdot \frac{\mathbf{p}}{E} \frac{\mathbf{p}}{E} \cdot \hat{k} \\ + \delta_{2}(E, v^{*}, \tau_{J', J''}(L)) \hat{n} \cdot \hat{k} \frac{\mathbf{p}}{E} \cdot \hat{k} \\ + \delta_{3}(E, v^{*}, \tau_{J', J''}(L)) \hat{n} \cdot \hat{k} \frac{\mathbf{p}}{E} \cdot \hat{k} \\ + \delta_{4}(E, v^{*}, \tau_{J', J''}(L)) \hat{n} \cdot \hat{k} \frac{\mathbf{p}}{E} \cdot \hat{k} \\ + \frac{1}{10} \tau_{J', J''}(L) T^{(2)}(\hat{n}) : \left\{g_{10}(E)[\mathbf{p}/E, \mathbf{p}/E] \right\} \\ + g_{11}(E)[\mathbf{p}/E, \mathbf{p}/E] \frac{\mathbf{p}}{E} \cdot \hat{k} + g_{11}(E)[\mathbf{p}/E, \hat{k}] \\ + g_{12}(E)[\mathbf{p}/E, \hat{k}] \frac{\mathbf{p}}{E} \cdot \hat{k} + g_{13}(E)[\hat{k}, \hat{k}] \\ + g_{15}(E)[\hat{k}, \hat{k}] \frac{\mathbf{p}}{E} \cdot \hat{k} + g_{16}(E) \left[\frac{\mathbf{p}}{E}, \frac{\mathbf{p}}{E} \times \hat{k}\right] \\ + \delta_{8}(E, v^{*}, \tau_{J'J''}(L)) T^{(3)}(\hat{n}) : [\mathbf{p}/E, \mathbf{p}/E, \hat{k}] \\ + \delta_{9}(E, v^{*}, \tau_{J'J''}(L)) T^{(3)}(\hat{n}) : [\mathbf{p}/E, \mathbf{p}/E, \hat{k}] \\ + g_{26}(E)[\mathbf{p}/E, \hat{k}, \hat{k}] \right\}$$
(53)

B. Holstein Rev. Mod. Phys., Vol 46, No. 4 (1974) and M. Bhattacharya *et al.* Phys Rev C 73:055802 (2006)

Recoil and Radiative terms:

T. Sumikama. Phys. Rev. C **83** 065501 (2011) and B. Holstein Rev. Mod. Phys., Vol 46, No. 4 (1974) Measured second class currents come with error bars. Some terms contribute differently based on decay type (β^{\pm}) , can use ⁸B data to compare.

Proportional to: $j_2 = -31000 \pm 4000 \ j_3 = -63000 \pm 18000$

Currently working to set a smaller error on j_3 with unused data

Total systematic error is still uncertain.

Background:

- Un-trapped ⁸Li poses a concern for contaminating the data.
- Solution: measure more background in trap empty-cycle (x4).
- 25 un-trapped triples detected, scales to ~300 for the whole run (0.03% of total)
- Background systematic error has been eliminated.

Non-dominant systematics:

- Smaller systematics that are harder to get rid of:
 - Magnetic field and trap voltages perturbing the particle trajectories
 - Cuts to the data (threshold between β and α spectra)
 - Ion cloud behavior
 - Normal dead layer uniformity

List almost complete!

Source	$\Delta C_T/C_A ^2$
Energy calibration	- <u>0.0013</u> 0.0005
α line shape	-0.0018 - 0.0006
Dead layer thickness More accurate value	0.0008
β scattering	-0.0020 - 0.0010
Backgrounds	0.0011
Recoil and radiative	0.0026 ?
Nondominant systematics Not expected to change	0.0007
Total Still in progress.	-0.0043- ~ 0.0029 *

TABLE I. Dominant sources of systematic uncertainty at 1σ .

Our dominating systematics

Pictures from PRL 115, 182501 (2015)

Almost there:

Guy Savard, Argonne National Laboratory UAmherst, November 03, 2018

Ongoing: ⁸B in the works

- Analysis of a dataset similar to the 2015 PRL is almost complete.
- Plans for another data-taking campaign this winter.
- Graphs courtesy of Aaron Gallant.

Possible improvements:

- More statistics?
- Stable linearity calibration
- Remove RF shielding to reduce scattering
- Solve the mystery surrounding the g_{>20}(E) terms

Summary and Outlook

- $a_{\beta\nu}$ is sensitive to tensor contributions/new physics in the weak interaction.
- The BPT is well-equipped to precisely measure the kinematics of β -decay reactions.
- We obtained 10x the data from our 2015 PRL ⁸Li experiment with a new statistical error of: $\Delta |C_T / C_A|^2 < 0.0013$, a 2.5x improvement to the existing statistical tensor limit.
- All major systematic errors have or are being addressed.
- Our goal is to eventually limit $|C_T/C_A|^2$ with relative precision below 0.1% ... if we can control the theoretical corrections, the experiment can probably go below 0.05%, i.e. to $\Delta a \sim 0.0004$

Collaborators and Acknowledgements

JCIRVINE

Northwestern University N.D. Scielzo, A. Gallant B. Wang, S. Padgett, Kay Kolos,

- E. Heckmaier
- R. Segel

- K.S. Sharma,
- D. Burdette, M. Brodeur

R. Orford, F. Buchinger

- T. Hirsh, D. Gazit
- S. Marley, G. Morgan

We would like to acknowledge NSERC, Canada, App. No. 216974, the U.S. DOE Contract No. DEAC0206CH11357 [ANL] and DEAC5207NA27344 [LLNL], NSF grant no. 1144082 and the ANL ATLAS facility.