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Generic structure of diagrammatic expansions:

Example:

These functions are visualized 

with diagrams.
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Diagrammatic MC: Random walk in the diagrammatic space

The space =  diagram order + topology + internal/external continuous variables 

Not to be confused with the diagram-by-diagram evaluation! 
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Convergence of the series. Fermionic sign blessing



Q. How can a series with factorially growing number of 
diagrams within a given order converge?

A. Fermionic sign blessing: Factorially accurate cancellation 
of different diagrams within a given order.

But why should we expect the miracle of the fermionic sign blessing ?...



Dyson’s collapse as the guiding principle

Dyson’s argument (1952): A perturbative series has zero convergence radius 
if changing the sign of interaction renders the system pathological.

A conjecture:    Finite convergence radius if no Dyson’s collapse.

Pauli principle protects lattice and momentum-truncated fermions from 
Dyson’s collapse. 



Computational complexity of diagrammatic Monte Carlo

t(ε ) the computational time needed to achieve the relative accuracy ε

Rossi, Prokof'ev, Svistunov, Van Houcke, and Werner, EPL 118, 10004 (2017)

t(ε ) ∼ ε −# ln(lnε −1)

t(ε ) ∼ ε −α

with standard DiagMC: quasi-polynomial

with Rossi’s determinant trick: polynomial
Rossi, PRL, 119, 045701 (2017)



c ∼ n1/3 ∼ kF ⇒

c = 0 ⇒

Model of Resonant Fermions

BCS regime

BEC regime

unitarity point: scale invariance

No explicit interactions—just the boundary conditions:

(In the two-body problem, the parameter c defines the s-scattering length:  a = -1/c .)

from ultra-cold atoms to (dilute) neutron matter
Works whenever                   ,

where          is the range 

of interaction.

the crossover
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Bold Diag MC protocol







Number density EoS

Bold DiagMC

MIT expt. (w/ systematic error)

Virial expansion (first 3 terms)

K. Van Houcke, F. Werner, E. Kozik, N. Prokofev, B. Svistunov, M. Ku, A. Sommer, L. W. Cheuk, A. Schirotzek, and M. W. Zwierlein,   
Nat. Phys. 8, 366 (2012).





R. Rossi, T. Ohgoe, K. Van Houcke, and F. Werner,  PRL 121, 130405 (2018)



Non-Fermi-liquid behavior of unitary Fermi gas

R. Rossi, T. Ohgoe, E. Kozik, N. Prokof’ev, B. Svistunov, K. Van Houcke, and F. Werner,  PRL 121, 130406 (2018)



Homotopic action





Homotopic action S(w)

A controlled way of (most broadly understood) regrouping of 
diagrammatic contributions; ultimately resulting in a convergent Taylor 
series in powers of homotopic parameter     .w

For our purposes, by the homotopy we mean an analytic transformation of a 
certain bilinear action             into a physical one,           ,  controlled by a 
single parameter    .

S(w = 0) S(w = 1)
w

Example 1.     S(w) = (1 − w) S(0)
eff + w Sphys

Example 2.     S(w) = (1 − w) S(0)
eff + w(1 − w) S(int)

eff + w Sphys



Important example



More examples



Shifted action as a simple example of homotopic action

S[Ψ]= S0[Ψ]+ gSint[Ψ]

!S[Ψ;ξ]= !S0[Ψ]+ Λ[Ψ;ξ]+ ξgSint[Ψ]

Still problematic if       is large. Would need a conformal map                   . g ξ = ξ(w)

Expand in      rather  than     .ξ g

original action

shifted action

Λ =
j=1

∞

∑ ξ jΛ j[Ψ], !S0[Ψ]+ Λ[Ψ;ξ = 1]= S0[Ψ]The shift:



Standard routine:  shifted action + conformal map



Conformal map as a homotopy

7 = 3+ 2+1+ 1
2 + 1

4 + 1
8 +…

g(w = 1) = 7

Adding interactions by appropriately small pieces

g(w) = 3w+ 2w2 + w3 + 1
2 w

4 + 1
4 w

5 + 1
8 w

6 +…

= 3w + 4w2

2− w
equivalence with a conformal map

g = 7Let us take               .

no large terms

Quite physical and very illustrative of the general idea of homotopic expansion



Proof-of-principle simulation for the Hubbard model

efficiency gain

inverse relative error

T = 0.2, U = 7, µ = 0.18959, α = 2.5568

H = − aσ i
+

<ij>,σ =↑,↓
∑ aσ j + ξU n↑i

i
∑ n↓i − (µ +αξ ) (n↑i

i
∑ + n↓i ), nσ i = aσ i

+ aσ i

density

inverse order of expansion

ξ(w) = 12w
7(1− w)2

conformal map:



“Ultraviolet” regularization. Option 1

Along the shifted-action lines (cf. the symmetry-breaking-restoring trick)

ε(k) → ε(k) + α (1− w)k 4 modified dispersion

The quartic term prevents a fermionic system from Dyson-collapsing 
into dense droplets.



“Ultraviolet” regularization. Option 2

Adding interaction by momentum dependent pieces

Split interaction into momentum shells: Sint = Sint
( j )

j=1

∞

∑

Introduce homotopic action: Sint (w) = w j Sint
( j )

j=1

∞

∑ , Sint (w = 1) = Sint

Let characteristic momentum of the j-th shell increase with j.

In the case of fermions, a finite convergent radius of the homotopic expansion is 
guaranteed by the Pauli principle, preventing the system from Dyson’s collapse.


Convergence at    is then achieved by conformal map.w = 1



In conclusion, key questions for future developments

• How to properly group the diagrams?


• How to optimize the choice of homotopic action (both qualitatively and 
quantitatively)?


• In particular, how to optimize marginal convergence at             ?     
w→1


