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Feynman diagrams

Generic structure of diagrammatic expansions:

o(y) = i/z/jD(ﬁm,y,xl,xz,...,xm)a’x1 dx,--dx

m=0 &,

These functions are visualized
with diagrams.

Example:

o (y) can be sampled by Monte Carlo



Diagrammatic MC: Random walk in the diagrammatic space

Not to be confused with the diagram-by-diagram evaluation!

The space = diagram order + topology + internal/external continuous variables

Diagram order
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Diagram topology



Convergence of the series. Fermionic sign blessing



Q. How can a series with factorially growing number of
diagrams within a given order converge?

A. Fermionic sign blessing: Factorially accurate cancellation
of different diagrams within a given order.

But why should we expect the miracle of the fermionic sign blessing ?...



Dyson’s collapse as the guiding principle

Dyson’s argument (1952): A perturbative series has zero convergence radius
if changing the sign of interaction renders the system pathological.

A conjecture: Finite convergence radius if no Dyson’s collapse.

Pauli principle protects lattice and momentum-truncated fermions from
Dyson’s collapse.




Computational complexity of diagrammatic Monte Carlo

Rossi, Prokof'ev, Svistunov, Van Houcke, and Werner, EPL 118, 10004 (2017)

t(g) the computational time needed to achieve the relative accuracy &

-1
t( g) ~ g_#ln(lng ) with standard DiagMC: quasi-polynomial
t(g) ~ ¢ with Rossi’s determinant trick: polynomial
Rossi, PRL, 119, 045701 (2017)




Model of Resonant Fermions Works whenever R, <1/c,

where R, isthe range

from ultra-cold atoms to (dilute) neutron matter . )
of interaction.

No explicit interactions—just the boundary conditions:

4 B

Vi,j at ‘rTi_rJ/j‘ —0: LP(rm,...,rTN,r“,...,rw) — + B, = ¢ = const

I, _rij

(In the two-body problem, the parameter ¢ defines the s-scattering length: a =-1/c .)
1/3 :
c>n -~ kF = BCS regime
1/3 k .
—C > n ~K, = BEC regime

1/3
‘C‘ ~n""~k, = the crossover

c=0 = unitarity point: scale invariance



Bold Diag MC protocol
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Feynman diagrams versus Fermi-gas

Feynman emulator

K. Van Houcke?*, F. Werner"?, E. Kozik*®, N. Prokof'ev'®, B. Svistunov', M. J. H. Ku’,
A.T.Sommer’, L. W. Cheuk’, A. Schirotzek® and M. W. Zwierlein’

Precise understanding of strongly interacting fermions, from
electrons in modern materials to nuclear matter, presents
a major goal in modern physics. However, the theoretical
description of interacting Fermi systems is usually plagued
by the intricate quantum statistics at play. Here we present
a cross-validation between a new theoretical approach, bold
diagrammatic Monte Carlo'3, and precision experiments on
ultracold atoms. Specifically, we compute and measure, with
unprecedented precision, the normal-state equation of state of
the unitary gas, a prototypical example of a strongly correlated
fermionic system*¢. Excellent agreement demonstrates that a
series of Feynman diagrams can be controllably resummed in a
non-perturbative regime using bold diagrammatic Monte Carlo.

In his seminal 1981 lecture’, Richard Feynman argued that
an arbitrary quantum system cannot be efficiently simulated
with a classical universal computer, because generally, quantum
statistics can only be imitated with a classical theory if probabilities
are replaced with negative (or complex) weighting factors. For
the majority of many-particle models this indeed leads to the
so-called sign problem, which has remained an insurmountable
obstacle. According to Feynman, the only way out is to employ
computers made out of quantum-mechanical elements’. The recent
experimental breakthroughs in cooling, probing and controlling
strongly interacting quantum gases prompted a challenging
effort to use this new form of quantum matter to realize
Feynman’s emulators of fundamental microscopic models™.
Somewhat ironically, Feynman’s arguments, which led him to the
idea of emulators, may be defied by a theoretical method that
he himself devised, namely Feynman diagrams. This technique
organizes the calculation of a given physical quantity as a series of
diagrams representing all the possible ways particles can propagate
and interact (for example, ref. 9). For the many-body problem, this

with zero-range interactions at infinite scattering length**. This
system offers the unique possibility to stringently test our theory
against a quantum emulator realized here with trapped ultracold
°Li atoms at a broad Feshbach resonance*®. This experimental
validation is indispensable for our theory, based on resummation of
a possibly divergent series: although the physical answer is shown to
be independent of the applied resummation technique—suggesting
that the procedure is adequate—its mathematical validity remains
to be proven. In essence, nature provides the ‘proof’. This presents
the first—although long-anticipated—compelling example of how
ultracold atoms can guide new microscopic theories for strongly
interacting quantum matter.

At unitarity, the disappearance of an interaction-imposed length
scale leads to scale invariance. This property renders the model
relevant for other physical systems such as neutron matter. It
also makes the balanced (that is, spin-unpolarized) unitary gas
ideally suited for the experimental high-precision determination
of the equation of state (EOS) described below. Finally, it
implies the absence of a small parameter, making the problem
notoriously difficult to solve.

In traditional Monte Carlo approaches, which simulate a
finite piece of matter, the sign problem causes an exponential
increase of the computing time with system size and inverse
temperature. In contrast, BDMC simulates a mathematical answer
in the thermodynamic limit. This radically changes the role of the
fermionic sign. Diagrammatic contributions are sign-alternating
with order, topology and values of internal variables. Because
the number of graphs grows factorially with diagram order, a
near-cancellation between these contributions is actually necessary
for the series to be resummable by techniques requiring a
finite radius of convergence. We find that this ‘sign blessing’
indeed takes place.
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K. Van Houcke, F. Werner, E. Kozik, N. Prokofev, B. Svistunov, M. Ku, A. Sommer, L. W. Cheuk, A. Schirotzek, and M. W. Zwierlein,
Nat. Phys. 8, 366 (2012).



PHYSICAL REVIEW LETTERS 121, 130405 (2018)

Resummation of Diagrammatic Series with Zero Convergence Radius
for Strongly Correlated Fermions

R. Rossi,"”" T. Ohgoe,2 K. Van Houcke,' and F. Werner’
'Laboratoire de Physique Statistique, Ecole Normale Supérieure—Université PSL, CNRS,
Sorbonne Université, Université Paris Diderot, 75005 Paris, France
2Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
3Laboratoire Kastler Brossel, Ecole Normale Supérieure—Université PSL, CNRS,
Sorbonne Université, College de France, 75005 Paris, France

® (Received 21 February 2018; revised manuscript received 26 July 2018; published 27 September 2018)

We demonstrate that a summing up series of Feynman diagrams can yield unbiased accurate results for
strongly correlated fermions even when the convergence radius vanishes. We consider the unitary Fermi
gas, a model of nonrelativistic fermions in three-dimensional continuous space. Diagrams are built from
partially dressed or fully dressed propagators of single particles and pairs. The series is resummed by a
conformal-Borel transformation that incorporates the large-order behavior and the analytic structure in the
Borel plane, which are found by the instanton approach. We report highly accurate numerical results for the
equation of state in the normal unpolarized regime, and reconcile experimental data with the theoretically
conjectured fourth virial coefficient.




Nmax

FIG. 4. Density vs maximal diagram order at fu =2
(T/Tr ~0.2). The bold diagrammatic series is resummed by
three variants of the conformal-Borel transformation (see text).

R. Rossi, T. Ohgoe, K. Van Houcke, and F. Werner, PRL 121, 130405 (2018)



Non-Fermi-liquid behavior of unitary Fermi gas

ne (k)

FIG. 5. BDMC data for the momentum distribution at various
temperatures. Error bars are represented by the gray error bands.
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Inverse slope of the momentum distribution at the Fermi

momentum vs temperature. For a Fermi liquid this quantity
linearly tends to zero for T/T; — 0 (see solid line). In contrast,
a linear extrapolation of our data for the unitary Fermi gas
(dashed line) does not go through the origin.

R. Rossi, T. Ohgoe, E. Kozik, N. Prokof’ev, B. Svistunov, K. Van Houcke, and F. Werner, PRL 121, 130406 (2018)



Homotopic action



PHYSICAL REVIEW LETTERS 126, 257001 (2021)

Homotopic Action: A Pathway to Convergent Diagrammatic Theories

Aaram J. Kim®,' Nikolay V. Prokof’ev,” Boris V. Svistunov,>*>* and Evgeny Kozik'
lDepartment of Physics, Kings College London, Strand, London WC2R 2LS, United Kingdom
2Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
3National Research Center Kurchatov Institute, 123182 Moscow, Russia
‘Wilczek Quantum Center, School of Physics and Astronomy and T. D. Lee Institute, Shanghai Jiao Tong University,
Shanghai 200240, China

® (Received 11 October 2020; revised 12 April 2021; accepted 20 May 2021; published 23 June 2021)

The major obstacle preventing Feynman diagrammatic expansions from accurately solving many-
fermion systems in strongly correlated regimes is the series slow convergence or divergence problem.
Several techniques have been proposed to address this issue: series resummation by conformal mapping,
changing the nature of the starting point of the expansion by shifted action tools, and applying the
homotopy analysis method to the Dyson-Schwinger equation. They emerge as dissimilar mathematical
procedures aimed at different aspects of the problem. The proposed homotopic action offers a universal and
systematic framework for unifying the existing—and generating new—methods and ideas to formulate a
physical system in terms of a convergent diagrammatic series. It eliminates the need for resummation,
allows one to introduce effective interactions, enables a controlled ultraviolet regularization of continuous-
space theories, and reduces the intrinsic polynomial complexity of the diagrammatic Monte Carlo method.
We illustrate this approach by an application to the Hubbard model.




Homotopic action S(w)

For our purposes, by the homotopy we mean an analytic transformation of a
certain bilinear action S(w=0) into a physical one, S(w=1), controlled by a
single parameter w.

Example 1.  S(w) = (1 —w) Sé?f) + W Spnys

Example 2. Sw) = (1= w)SQ + w(l —w) S + ws,,

A controlled way of (most broadly understood) regrouping of
diagrammatic contributions; ultimately resulting in a convergent Taylor
series in powers of homotopic parameter w.



Important example

High-order diagrammatic expansion around BCS theory

G. Spada,’>2:3:[R. Rossi,% % [f| F. Simkovic,%: 7 R. Garioud,®7 M. Ferrero,®” K. Van Houcke,? and F. Werner" [f]
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CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
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(Dated: April 16, 2021)

We demonstrate that summation of connected diagrams to high order on top of the BCS hamil-
tonian is a viable generic unbiased approach for strongly correlated fermions in superconducting
or superfluid phases. For the 3D attractive Hubbard model in a strongly correlated regime, we
observe convergence of the diagrammatic series, evaluated up to 12 loops thanks to the connected
determinant diagrammatic Monte Carlo algorithm. Our study includes the polarized regime, where
conventional quantum Monte Carlo methods suffer from the fermion sign problem. Upon increas-
ing the Zeeman field, we observe the first-order superconducting-to-normal phase transition at low
temperature, and a significant polarization of the superconducting phase at higher temperature.

15 Apr 2021



More examples

PHYSICAL REVIEW B 93, 161102(R) (2016)

Shifted-action expansion and applicability of dressed diagrammatic schemes

Riccardo Rossi,! Félix Werner,? Nikolay Prokof’ev,>* and Boris Svistunov>*>

! Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC, Université Paris Diderot, CNRS, Paris Sciences et Lettres,
Sorbonne Universités, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France
2L aboratoire Kastler Brossel, Ecole Normale Supérieure, UPMC, Collége de France, CNRS, Paris Sciences et Lettres, Sorbonne Universités,
24 rue Lhomond, 75005 Paris, France
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(Received 14 August 2015; revised manuscript received 29 February 2016; published 5 April 2016)

While bare diagrammatic series are merely Taylor expansions in powers of interaction strength, dressed
diagrammatic series, built on fully or partially dressed lines and vertices, are usually constructed by reordering
the bare diagrams, which is an a priori unjustified manipulation, and can even lead to convergence to an unphysical
result [E. Kozik, M. Ferrero, and A. Georges, Phys. Rev. Lett. 114, 156402 (2015)]. Here we show that for a
broad class of partially dressed diagrammatic schemes, there exists an action S¢ depending analytically on
an auxiliary complex parameter £, such that the Taylor expansion in £ of correlation functions reproduces the
original diagrammatic series. The resulting applicability conditions are similar to the bare case. For fully dressed
skeleton diagrammatics, analyticity of S® is not granted, and we formulate a sufficient condition for converging
to the correct result.

PHYSICAL REVIEW B 98, 195104 (2018)

Full and unbiased solution of the Dyson-Schwinger equation in
the functional integro-differential representation

Tobias Pfeffer and Lode Pollet
Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, University of Munich,
Theresienstrasse 37, 80333 Munich, Germany

® (Received 17 March 2018; revised manuscript received 11 October 2018; published 2 November 2018)

We provide a full and unbiased solution to the Dyson-Schwinger equation illustrated for ¢* theory in 2D.
It is based on an exact treatment of the functional derivative dI"/dG of the four-point vertex function I with
respect to the two-point correlation function G within the framework of the homotopy analysis method (HAM)
and the Monte Carlo sampling of rooted tree diagrams. The resulting series solution in deformations can be
considered as an asymptotic series around G = 0 in a HAM control parameter coG, or even a convergent one up
to the phase transition point if shifts in G can be performed (such as by summing up all ladder diagrams). These
considerations are equally applicable to fermionic quantum field theories and offer a fresh approach to solving
functional integro-differential equations beyond any truncation scheme.




Shifted action as a simple example of homotopic action
S[¥]=S,[V¥]+gS, [V] original action
S[¥;E1= S, [W]+ A[W;E]+EgS. [P] shifted action

The shift: A=Y EA [P, S W]+ AY;E=1]=S,[¥]

Expand in & rather than §.

Still problematic if & is large. Would need a conformal map & = &(w).



Standard routine: shifted action + conformal map

............ 4 Imw

f A Reg W ( gs ) . - \\
S ’/" A // \
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Conformal map as a homotopy

Adding interactions by appropriately small pieces

Quite physical and very illustrative of the general idea of homotopic expansion
Letustake g="7.

T=3+2+1+7+,+5+...

gw)=3w+2w’ +w’ +1w' +1w + 1w’ + . no large terms

4w?

2—w

= 3w+ equivalence with a conformal map

glw=1 =7



Proof-of-principle simulation for the Hubbard model

H=-
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“Ultraviolet” regularization. Option 1

Along the shifted-action lines (cf. the symmetry-breaking-restoring trick)

ey = elk)+oall-wk’ modified dispersion

The quartic term prevents a fermionic system from Dyson-collapsing
into dense droplets.



“Ultraviolet” regularization. Option 2

Adding interaction by momentum dependent pieces

o0

Split interaction into momentum shells: S = ZS.U)
int

nt
J=1

Let characteristic momentum of the j-th shell increase with J.

Sint(w = 1) :Sint

int 2

: . ' _ 7 Q)
Introduce homotopic action: S (w) = Z w’S!
j=1

In the case of fermions, a finite convergent radius of the homotopic expansion is
guaranteed by the Pauli principle, preventing the system from Dyson’s collapse.

Convergence at w = 1 is then achieved by conformal map.




In conclusion, key questions for future developments

» How to properly group the diagrams?

 How to optimize the choice of homotopic action (both qualitatively and
quantitatively)?

* In particular, how to optimize marginal convergence at w—1 ?



